• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氫氣泵自適應無跡卡爾曼濾波無傳感器控制

    2020-08-26 14:56SheianovAleksandr康爾良
    哈爾濱理工大學學報 2020年3期

    Sheianov Aleksandr 康爾良

    摘?要:提出了一種氫氣泵用PMSM轉(zhuǎn)子位置新型非線性估算方法。卡爾曼濾波常用于在非線性系統(tǒng),在計算量相同的情況下,無跡卡爾曼濾波器(UKF)較擴展卡爾曼濾波器(EKF)的計算結(jié)果更為準確,因為應用較多。在燃料電池系統(tǒng)中,氫氣泵用PMSM的負載常發(fā)生持續(xù)變化或突變;由于UKF采用固定過程噪聲協(xié)方差(Q矩陣),無法響應負載變換造成的過程噪聲變化,傳統(tǒng)卡爾曼濾波器的性能可能下降。提出了一種自適應UKF方法,通過計算UKF的自適應增益,以補償實際殘差協(xié)方差與濾波器導出值之間的不匹配,從而在負載變換的情況下,保證了轉(zhuǎn)子位置估算的精度。最后,搭建氫氣泵用PMSM控制系統(tǒng),并進行了自適應UKF轉(zhuǎn)子位置估算。實驗結(jié)果驗證了該算法的可行性和有效性。

    關鍵詞:無傳感器控制;自適應卡爾曼濾波;氫氣泵

    DOI:10.15938/j.jhust.2020.03.005

    中圖分類號:?TM351

    文獻標志碼:?A

    文章編號:?1007-2683(2020)03-0025-08

    Abstract:This?paper?demonstrates?a?special?and?new?type?of?non-linear?observer?for?a?permanent?magnet?synchronous?motor?used?in?hydrogen?pump?applications.?For?nonlinear?systems,?the?unscented?Kalman?filter?(UKF)?is?a?very?popular?approach?for?the?controller?design.?Some?researches?have?shown?that?the?UKF?is?usually?more?accurate?than?the?extended?Kalman?filter?(EKF)?whereas?the?computation?burden?is?the?same?in?both?cases.?However,?the?performance?of?traditional?Kalman?filter?may?degrade?when?process?noise?and?load?are?constantly?changing?or?a?sudden?disturbance?occurs?due?to?the?fixed?process?noise?covariance?(Q?matrix)?in?the?filter,?which?is?the?case?in?fuel?cell?systems?where?a?hydrogen?pump?is?used.?An?adaptive?gain?is?calculated?to?compensate?for?the?mismatch?between?the?actual?residual?covariance?and?the?deduced?value?from?the?filter,?ensuring?that?the?sequence?of?residual?is?uncorrelated.?Also,?the?derivation?of?the?proposed?adaptive?UKF?is?explained?in?details.?Finally,?experimental?tests?under?sensorless?position?control?for?hydrogen?pump?are?carried?out?with?the?proposed?method,?in?which?the?feasibility?and?effectiveness?of?the?algorithm?is?shown.

    Keywords:sensorless?control;?adaptive?unscented?kalman?filter;?hydrogen?pump

    0?INTRODUCTION

    Recently,?sensorless?permanent-magnet?synchronous?motor?(PMSM)?drive?systems?have?gained?much?interest?from?industries?as?well?as?researchers?because?of?the?elimination?of?fragile?and?noisy?rotor?position?sensors?[1-3],?[19-21].?In?these?drive?systems,?the?speed?and?rotor?position?play?a?key?role?in?the?good?performance?of?a?closed-loop?system,?but?these?values?cannot?be?directly?estimated.?Therefore,?to?obtain?these?values?and?then?feed?them?into?a?controller?and?reference?frame?transformations,?position?estimator?in?the?feed-back?path?is?used.?Usually?the?inputs?to?the?estimator?are?the?measured?voltages?and?currents,?and?the?outputs?are?the?estimated?speed?and?rotor?position.

    In?the?present,?there?are?a?number?of?types?of?observers?in?Kalmans?family.?A?Kalman?filter?originally?is?a?linear?observer,?also?known?as?a?linear?quadratic?estimator?(LQE).?The?filter?is?named?after?Rudolf?E.?Kálmán,?the?developer?of?this?theory.?Kalman?filter?is?widely?used?in?applications?such?as?guidance,?navigation,?and?control?of?vehicles,?particularly?aircraft?and?spacecraft,?because?it?gives?the?best?performance?among?all?of?the?linear?estimators?and?observers.?Also,?for?non-linear?problems,?the?Kalman?filters?family?provide?a?number?of?different?approaches?[4].?The?most?popular?and?most?studied?until?now?is?the?extended?Kalman?filter,?which?is?used?to?compute?the?predicted?state?from?the?previous?estimate?first?and?then?in?the?same?manner,?the?output?function?h?computes?the?predicted?measurement?from?the?forecasted?state.?However,?in?this?type?of?filters?f?and?h?cannot?be?applied?to?the?covariance?directly.?Therefore,?a?matrix?of?partial?derivatives?(the?Jacobian)?is?calculated?at?each?time?step?[5].?Although?the?extended?Kalman?filter?(EKF)?is?relatively?simple?to?apply?for?the?motor?control?application,?it?has?a?number?of?major?drawbacks:

    1)relatively?complex?derivation?of?the?Jacobian?matrices?in?the?linearization?process.

    2)it?has?only?first-order?accuracy,?because?higher-order?terms?are?neglected.

    3)Filter?instability?because?of?linearization.

    Therefore,to?help?eliminate?this?problem?and?therefore?make?non-linear?Kalman?filters?family?be?more?accurate?and?superior?to?other?non-linear?algorithms,?Julier?and?Uhlmann[6-7]proposed?a?new?approach?to?improve?the?performance?of?non-linear?Kalman?filters.?Instead?of?linearizing?non-linear?system?at?each?time?step(sovling?Jacobian?matrices)?the?UKF?uses?a?minimal?set?of?sample?points,?which?are?fed?to?the?nonlinear-state?equations?to?obtain?the?mean?and?covariance?of?a?non-linear?system?in?the?prediction?step?and?then?use?them?to?correct?the?predicted?estimates?according?to?the?new?measurements.?The?UKF?has?been?proven?to?be?more?accurate?than?EKF?with?similar?computation?burden.?It?also?has?been?successfully?implemented?in?a?few?practical?applications[7-8]such?as:?navigation,?radar?tracking,?signal?processing,?neural?networks,?and?robotics.?The?first?implementation?of?the?UKF?in?motor?control?was?reported?by?Akin[9].?Tze-Fun?Chan,?Pieter?Borsje?and?Weimin?Wang?[10],?reported?the?application?of?the?UKF?for?sensorless?vector?control?of?PMSM?in?d-q?reference?frame,?whereas?A.Titaouine,?D.?Taibi?[11],?realized?this?algorithm?together?with?non-linear?control?of?inverter?[16],?also?Cheol?Moon,?Kee?Hyun?Nam?[12],?reported?the?results?of?the?implementation?of?the?UKF?in?alpha-beta?reference?frame.?However,?UKF?still?suffers?some?drawbacks?from?traditional?Kalman?filter.?For?the?state?estimation?of?a?hydrogen?pump,?the?pm?motor?may?work?in?a?various?load?conditions.?Thus,?a?mismatch?between?the?real?process?noise?characteristic?and?the?one?in?the?filter?usually?occurs?and?the?performance?of?the?filter?deteriorates.?Besides,?UKF?might?react?slowly?in?cases?when?sudden?disturbances?occur?in?the?system.?Therefore,?the?adaptive?UKF[13-15]is?needed?to?overcome?the?drawbacks?listed?above.?Xia,?Rao?et?al.?developed?an?adaptive?fading?Kalman?filter?(AFKF)?for?linear?systems,?which?ensured?the?Kalman?gain?was?optimal?by?making?the?auto-covariance?of?residual?equal?zero[17,22].

    In?this?paper,?an?adaptive?UKF?is?designed?by?adjusting?the?process?noise?covariance?matrix?Qk?at?each?sample?with?an?adaptive?gain.?The?gain?is?calculated?based?on?the?optimal?feature?in?[17]?and?real-time?estimated?k?inspired?by?[18].?The?proposed?method?is?tested?on?the?hydrogen?pumps?permanent?magnet?motor.?Experimental?results?show?that?the?proposed?algorithm?has?a?good?performance?in?sensorless?control?and?hydrogen?pumps?state?estimation.

    1?MODEL?OF?PMSM

    The?Kalman?filter?requires?a?mathematical?model?of?the?system?in?order?to?estimate?the?states?of?the?system.?Formulation?of?the?mathematical?model?of?a?controlled?system?is?an?important?task?during?the?design?stage?of?the?estimator.?The?correct?model?can?simplify?the?solution?of?the?estimation?problem?as?well?as?simplify?the?computational?cost?of?the?whole?algorithm.

    To?avoid?convergence?problems?at?startup?and?to?simplify?the?motor?equations,?the?d-q?reference?frame?is?chosen?for?evaluation?of?the?Kalman?filters?[2].?The?motor?nonlinear?state?equations?can?be?expressed:

    The?UKF?consists?of?four?state?variables:?stationary?reference?frame?currents,?estimated?speed?and?estimated?angle.?Since?the?mechanical?variables?have?a?tendency?to?change?rapidly?and?are?very?hard?to?measure?correctly,?the?state?variables?consists?of?only?electrical?variables.?The?state?variable?vector?is?then?x=[id?iq?ωe?θe]T.?By?taking?the?partial?derivatives?by?x?we?can?write?the?system?state?matrices?(3)?and?(4):

    2?UNSCENTED?KALMAN?FILTER

    For?sensorless?control?of?PMSM?using?UKF,?the?motor?nonlinear?state?equations?(1)?and?(2)?should?be?expressed?in?the?discretized?form?(5)~(6):

    The?state?model?represented?by?(5)?and?(6)?also?includes?the?statistical?description?for?the?inaccuracies,?where?wk~N(0,Qk)?and?vk~N(0,Rk)?are,?respectively,?the?zero-mean?Gaussian?process?noise?and?measurement?noise?vectors?with?covariance?matrices?Qk?and?Rk.

    2.1?Unscented?Transformation?(UT)

    Unscented?Transformation?(UT)?is?designed?on?the?fact?that?it?is?easier?to?approximate?a?probability?distribution?than?to?approximate?a?nonlinear?function(later?is?the?principle?the?EKF?is?based?on).?But?the?most?important?is?that?the?approximations?are?accurate?up?to?the?third?order?in?case?of?Gaussian?inputs.?For?non-Gaussian?inputs,?approximations?are?accurate?to?at?least?a?second?order.?Therefore,?the?UKF?is?expected?to?give?better?performance?and?accuracy?than?the?EKF?which?has?only?first-order?accuracy.

    Unscented?Kalman?filters,?as?in?a?classical?form?of?the?linear?Kalman?filter?is?based?on?two?cycles?which?include?prediction?and?correction.?However,?in?the?case?of?the?UKF?a?set?of?sample?points?around?the?last?state?is?taken?and?propagated?through?a?nonlinear?function?(the?PMSM?model?or?PMSM?nonlinear?state?transition?and?measurement?functions).?With?these?results?a?mean?and?covariance?can?be?approximated?using?weighted?sample?mean?and?covariance?of?the?transformed?sample?points.?These?weighted?sample?points?are?generated?as?follows.?Consider?the?state?variable?x?with?dimension?L?having?mean?and?covariance?Px.?We?now?choose?a?set?of?2L+1?weighted?samples?χi?(sigma?points)?deterministically?so?that?they?completely?represent?the?true?mean?and?covariance?of?state?x.?Following?is?how?sigma?points?and?weights?determined:

    where?=α2(L+κ)-L?indicates?a?scaling?parameter.?The?superscripts?m,c,?express?the?weighted?point?for?mean?and?covariance?calculation.?The?value?α?determines?the?spread?of?the?sigma?points?around?x?and?usually?it?equals?10-4<α≤1.?The?constant?κ?is?an?another?scaling?parameter?which?is?usually?set?to?(3-L),?and?β?is?a?prior?knowledge?of?the?distribution?of?x?(for?Gaussian?distribution?β=2?is?optimal).

    3)Each?point?is?propagated?through?the?nonlinear?state?transition?and?measurement?functions?to?yield?a?set?of?transformed?sigma?points.

    4)The?mean?and?covariance?of?y?are?approximated?by?the?weighted?average?mean?and?covariance.

    2.2?UKF?Algorithm

    The?UKF?is?a?straightforward?application?of?the?UT?to?the?recursiveKalman?filter?equations.?Fig.1?shows?the?flowchart?of?the?proposed?algorithm,?which?involves?the?following?steps:

    In?this?paper,?the?author?designs?an?adaptive?UKF?(AUKF)for?state?estimation?of?permanent?magnet?synchronous?motor.?In?the?application?of?a?hydrogen?pump?system,?load?conditions?varies?according?to?the?demand?of?the?fuel?cell?system.?Thus?the?characteristic?of?process?noise?is?hard?to?predict?before?the?implementation.?Its?possible?for?standard?UKF?that?the?estimator?would?have?an?unsatisfactory?performance?due?to?the?model?error?or?the?difference?between?the?real?noise?characteristic?and?the?one?used?in?the?filter.?Moreover,?standard?UKF?filter?may?respond?slowly?if?the?disturbance?occurs?and?measurements?have?a?sudden?change.?The?solution?to?the?problems?above?is?to?adjust?process?noise?covariance?adaptively.?In?this?paper,?equation?(17)?is?modified?as:

    where?η(k)?is?a?positive?gain,?and?Qa.k?is?the?adjusted?process?noise?covarianve?in?discrete-time?domain.?The?advantage?of?using?Qa.k?instead?of?original?noise?covariance?matrix?Qk?is?that?the?characteristic?of?each?noise?signal?can?be?estimated?adaptively.

    The?adaptive?gain?η(k)?is?derived?first.?In?[17]?Xia?et?al.?proposed?an?adaptive?fading?linear?Kalman?filter?which?guaranteed?that?the?sequence?of?residuals?was?uncorrelated?by?the?following?equation:

    where?Hk?is?the?output?matrix,?and?C0,k?is?the?covariance?of?the?residual.?This?idea?is?extended?in?the?UKF?adaptive?scheme?in?this?paper.?Define?the?residual:

    If?weknow?Qa,k,?then?adaptive?gain?can?be?computed.?In?the?following,?an?estimation?algorithm?for?process?noise?covariance?matrix?is?designed.?In?[18],?process?noice?covariance?matrix?is?estimated?on-line?by:

    whereФ?is?Jacobian?matrix?and?Δxj?is?the?difference?between?a?posterior?and?a?priori?estimated?state:

    Using?(32)?in?UKF?scheme?and?use?another?fading?factor?ρ2?instead?of?the?average?operation?in?(32)?to?overweight?the?recent?values,?the?real-time?k?is:

    However,?(34)?may?yield?a?k?which?is?not?positive-definite.?To?cope?with?this?issue,?some?constraints?must?be?introduced.?When?the?sample?time?is?small,?the?estimated?c?can?be?obtained?if?B′wBw?is?non-singular:

    Since?a?relatively?large?process?noise?covariance?matrix?is?needed?to?overcome?the?model?error?and?sudden?disturbances,?very?small?diagonal?elements?in?k?is?not?suitable,?which?means?that?minimum?values?constraints?must?be?set.?Besides,?the?maximum?values?also?need?to?be?constrained?because?(34)?is?only?an?estimation.?It?is?not?realistic?if?the?estimated?covariance?is?very?large.?As?a?result,?the?constraints?for?the?diagonal?terms?in?estimated?covariance?matrix?c?are?as?follows:

    where?ξ?is?a?large?positive?tuning?parameter,?d?is?the?number?of?disturbances?in?(5)?and?C(i,i)?is?the?ith?diagonal?element?of?c.?Normalize?the?constrained?c?so?that:

    If?we?define?this?adjusted?matrixas?′c,?then?the?process?noise?covariance?matrix?Qa,k?in?(30)?can?be?calculated?as:

    Substitute?(38)?into?(31),?the?gain?η(k)?can?be?obtained.?Since?large?process?noise?covariance?can?contribute?to?a?quick?response?which?is?one?of?the?main?requirements?in?hydrogen?pump?application,?therefore?η(k)?is?set?to?be?larger?than?1,

    Thediagram?of?the?proposed?sensorless?control?system?is?presented?in?Fig.2.

    3?EXPERIMENTAL?RESULTS

    Experiments?were?carried?out?to?confirm?the?effectiveness?of?the?proposed?design.?The?experimental?setup?shown?in?Fig.?3?consists?of?an?IPMSM?(1.5?kW)?coupled?with?a?hydrogen?pump.?The?parameters?of?the?motor?are?given?below:

    Rs=0.22Ω:stator?resistance?(phase?to?phase);

    Lq=0.00217H:motor?q-axis?inductance;

    Ld=0.00107H:motor?d-axis?inductance;

    J=0.0001605N·m/rad/s:moment?of?inertia;

    p=8:number?of?the?poles;

    nN=5000r/min:rated?speed;

    ψf=0.2614Wb:flux?of?the?permanent?magnet;

    Vdc=300V:rated?voltage.

    The?carrier?frequency?of?the?inverter?is?10kHz,?and?Bw?is?an?identity?matrix.?Tuning?parameter?κ,α?and?β?in?are?0,?0.01?and?2?respectively.?Fading?factor?ρ1?in?(32)?and?ρ2?in?(34)?are?0.4.

    The?tests?were?carried?out?under?the?condition?of?a?half?of?the?rated?torque.?During?the?steady-state?operation?of?the?motor?some?random?disturbances?were?introduced?to?the?system?which?emulated?the?real?working?conditions?of?hydrogen?pump?in?a?real?fuel?cell?system.?Fig?4.?illustrates?the?speed?sensorless?control?response?under?the?reference?speed?ωref=600r/min,?ωref=1000r/min?and?the?changes?of?the?load?demand.?It?can?be?noticed?that?the?system?is?completely?robust?against?these?changes?as?well?as?disturbances?occured?during?the?steady?state?operation,?also?the?transient?time?is?very?short,?which?confirms?the?effectiveness?of?the?proposed?scheme.

    Fig.5?shows?the?real?and?estimated?rotor?position.?Themaximum?value?of?the?rotor?position?estimation?error?is?0.02?which?is?equivalent?to?7°in?the?whole?operation?range.?The?phase?current?of?the?proposed?method?under?a?half?of?the?rated?torque?and?ωref=1000r/min?are?shown?in?Fig?6.

    The?only?drawback?of?the?proposed?method?is?that?it?cant?be?implemented?on?a?fixed-point?processor,?because?it?doesnt?guarantee?the?convergence?of?the?state?covariance?matrix.?But?it?can?be?readily?realized?on?a?floating?point?processor?with?frequency?more?than?70MHz?which?has?enough?capability?to?calculate?the?whole?sensorless?control?algorithm?during?one?interrupt?and?the?problem?with?convergence?will?not?occur.

    4?CONCLUSION

    In?this?paper,?the?sensorless?control?of?permanent?magnet?motor?drive?system?using?an?adaptive?Unscented?Kalman?filter?(UKF)?has?been?studied?to?improve?the?state?estimation?accuracy,?robustness?of?the?system?and?the?overall?performance?of?the?motor?drive?system.?The?process?noise?covariance?matrix?is?first?estimated?and?restricted?to?maintain?its?positive?definitiveness,?and?then?an?adaptive?gain?is?introduced?to?ensure?the?sequence?of?output?residuals?is?uncorrelated.?Notice?that?the?algorithm?requires?that?the?measurement?model?is?linear.?For?the?nonlinear?case,?the?Jacobian?matrix?of?measurement?model?can?be?used.?Experimental?test?results?validate?that?the?proposed?filter?has?the?best?performance?compared?with?EKF,?and?standard?UKF?with?the?presence?of?disturbances,?load?changes?and?process?uncertainty?mismatch?for?sensorless?control?algorithm?of?permanent?magnet?motor?used?in?hydrogen?pump.

    REFERENCES:

    [1]?YOU?C?J,?LI?J,?HUANG?X?Y,?et?al.?A?Full-speed?Sensorless?Control?Algorithm?for?Interior?Permanent?Magnet?Synchronous?Motor?Using?Sliding-mode?Observer?and?hf?Signal?Injection[C]//?Vehicle?Power?and?Propulsion?Conference?(VPPC).?Belfort,?France:?IEEE,?2017:1.

    [2]?YANG?S?C,?HSU?Y?L,?CHEN?G?R.?Design?Issues?for?Permanent?Magnet?Machine?Sensorless?Drive?Combining?Saliency-based?and?Back-emf-based?Control?in?the?Entire?Speed?Range[C]//?International?Conference?on?Industrial?Technology?(ICIT).?Taipei,?Taiwan:?IEEE,?2016:1270.

    [3]?YANG?P,?XIAO?X,?ZHANG?M,?et?al.?High-precision?Rotor?Position?Estimation?for?High-speed?SPMSM?Drive?Based?on?State?Observer?and?Harmonic?Elimination[C]//?The?2018?International?Power?Electronics?Conference,?Nigata,?Japan,?2018:1966.

    [4]?SIMON?D.?Optimal?State?Estimation[M].?New?Jersey:?John?Wiley?&?Sons,?2006.

    [5]?DHAOUADI?R,?MOHAN?N,?NORUM?L.?Design?and?Implementation?of?an?Extended?Kalman?Filter?for?the?State?Estimation?of?a?Permanent?Magnet?Synchronous?Motor?[J].?IEEE?Transactions?on?Power?Electronics,?1991,?6(3):?491.

    [6]?JULIER?S?J,?UHLMANN?J?K.?A?New?Extension?of?the?Kalman?Filter?to?Nonlinear?Systems[C]//?Signal?Processing,?Sensor?Fusion,?and?Target?Recognition?VI.?Orlando,?FL,?United?States:?AeroSense,?1997:182.

    [7]?MERWE?R,?WAN?E?A.?Efficient?Derivative-free?Kalman?Filters?for?Online?Learning?[C]//?Proceeding?of?European?Symposium?on?Artificial?Neural?Networks?(ESANN),?2001:205.

    [8]?STENGER?B,?MENDONA?P?R?S,?CIPOLLA?R.?Model-based?Hand?Tracking?Using?an?Unscented?Kalman?Filter[C]//?Proceedings?of?the?British?Machine?Conference,?University?of?Manchester:?BMVA?Press,?2001:63.

    [9]?AKIN?B,?ORGUNER?U,?ERSAK?A.?State?Estimation?of?Induction?Motor?Using?Unscented?Kalman?Filter[C]//?Proceedings?of?2003?IEEE?Conference?on?Control?Applications,?Istanbul,?Turkey,?IEEE,?2003:915.

    [10]BORSJE?P,?CHAN?T?F,?WONG?Y?K,?et?al.?A?Comparative?Study?of?Kalman?Filtering?for?Sensorless?Control?of?a?Permanent-magnet?Synchronous?Motor?Drive[C]//?International?Conference?on?Electric?Machines?and?Drives.?San?Antonio,?TX,?USA,?IEEE,?2005:815.

    [11]TAIBI?D,?BENNIS?O,?BENCHABANE?F,?et?al.?Adaptive?Nonlinear?Control?Combined?with?Unscented?Kalman?Filter?for?Permanent?Magnet?Synchronous?Motor?Fed?by?AC/DC/AC?Converter[C]//?International?Aegean?Conference?on?Electrical?Machines?and?Power?Electronics?and?Electromotion,?Istanbul,?Turkey,?IEEE,?2011:26.

    [12]MOON?C,?NAM?K.?H,?JUNG?M.?K,?et?al.?Sensorless?Speed?Control?of?Permanent?Magnet?Synchronous?Motor?Using?Unscented?Kalman?Filter[C]//?SICE?Annual?Conference,?Akita,?Japan,?IEEE,?2012:2018.

    [13]QUANG?N.?K,?TUNG?D.?D,?HA?Q.?P.?FPGA-based?Sensorless?PMSM?Speed?Sontrol?Using?Adaptive?Extended?Kalman?Filter[C]?//?IEEE?International?Conference?on?Automation?Science?and?Engineering?(CASE),?Gothenburg,?Sweden,?IEEE,?2015:1650.

    [14]LIU?Z?T,?WANG?Y?Y,?DU?J?N,?et?al.?RBF?Network-aided?Adaptive?Unscented?Kalman?Filter?for?Lithium-ion?Battery?SOC?Estimation?in?Electric?Vehicles[C]?//?IEEE?Conference?on?Industrial?Electronics?and?Applications?(ICIEA),?Singapore,?IEEE,?2012:1673.

    [15]GAO?B?B,?GAO?S?S,?GAO?L,?et?al.?An?Adaptive?UKF?for?Nonlinear?State?Estimation?Via?Maximum?Likelihood?Principle[C]//?6th?International?Conference?on?Electronics?Information?and?Emergency?Communication?(ICEIEC),?Beijing,?China,?IEEE,?2016:?117.

    [16]DARBA?A,?SALAHSHOOR?K.?EKF?and?UKF-based?Estimation?of?a?Sensorless?Axial?Flux?pm?Machine?under?an?Internal-model?Control?Scheme?Using?a?Svpwm?Inverter[C]?//?Proceedings?of?the?29th?Chinese?Control?Conference,?Beijing,?China,?IEEE,?2010:5676.

    [17]XIA?Q,?RAO?M,?YING?Y,?et?al.?Adaptive?Fading?Kalman?Filter?with?an?Application[J].?Automatica,?1994,?30(8):1333.

    [18]MOHAMED?A,?SCHWARZ?K.?Adaptive?Kalman?Filtering?for?INS/GPS[J].?Journal?of?Geodesy,?1999,?73(?4):?193.

    [19]TIAN?L,?ZHAO?J,?SUN?J.?Sensorless?Control?of?Interior?Permanent?Magnet?Synchronous?Motor?in?Low-Speed?Region?Using?Novel?Adaptive?Filter?[J].?Energies,?2016,?9(12):1084.

    [20]AWAN?H.?A.?A.,?TUOVINEN?T,?SAARAKKALA?S.?E,?et?al.?Discrete-Time?Observer?Design?for?Sensorless?Synchronous?Motor?Drives?[J].?IEEE?Trans.?Ind.?Appl.,?2016,?52(5):3968.

    [21]JUNG?T?U,?JANG?J?H,?PARK?C?S.?A?Back-EMF?Estimation?Error?Compensation?Method?for?Accurate?Rotor?Position?Estimation?of?Surface?Mounted?Permanent?Magnet?Synchronous?Motors?[J].?Energies,?2017,?10(8):1160.

    [22]CHUBICH?V,?CHERNIKOVA?O.?Adaptive?Fading?Kalman?Filter?with?Applications?in?Identification?Discrete?System[C]//?13th?International?Scientific-Technical?Conference?on?Actual?Problems?of?Electronics?Instrument?Engineering?(APEIE),?Novosibirsk,?Russia,?IEEE,?2016:385.

    (編輯:溫澤宇)

    国产精品久久电影中文字幕| 人人妻人人澡人人看| 99热国产这里只有精品6| 国产成人啪精品午夜网站| 久久精品国产综合久久久| 777久久人妻少妇嫩草av网站| 国产精品影院久久| 啦啦啦 在线观看视频| 男人的好看免费观看在线视频 | 他把我摸到了高潮在线观看| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 国产精品国产高清国产av| 免费看a级黄色片| 国产亚洲欧美在线一区二区| 久久久国产成人免费| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 69av精品久久久久久| 成人国语在线视频| 99久久99久久久精品蜜桃| 一进一出抽搐gif免费好疼 | 91在线观看av| 日本五十路高清| 女性生殖器流出的白浆| bbb黄色大片| 国产激情欧美一区二区| ponron亚洲| 日本精品一区二区三区蜜桃| 国产色视频综合| 亚洲欧洲精品一区二区精品久久久| 老司机在亚洲福利影院| 男女下面进入的视频免费午夜 | 一a级毛片在线观看| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 亚洲成人久久性| 国产精品二区激情视频| 久9热在线精品视频| 欧美久久黑人一区二区| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 国产高清videossex| 国产精品98久久久久久宅男小说| 他把我摸到了高潮在线观看| 国产精品成人在线| 亚洲精品久久午夜乱码| 不卡一级毛片| 成人亚洲精品一区在线观看| 欧美日韩一级在线毛片| 人妻久久中文字幕网| 热99国产精品久久久久久7| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| 在线观看一区二区三区| 大香蕉久久成人网| 脱女人内裤的视频| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 久久久久国内视频| 一级毛片女人18水好多| 妹子高潮喷水视频| www.999成人在线观看| 香蕉国产在线看| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 欧美色视频一区免费| 免费在线观看日本一区| 日本免费一区二区三区高清不卡 | 国产国语露脸激情在线看| 一级毛片高清免费大全| 色在线成人网| 少妇裸体淫交视频免费看高清 | 国产三级在线视频| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 色哟哟哟哟哟哟| 成年人免费黄色播放视频| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 男人舔女人的私密视频| 中文字幕人妻丝袜制服| 老司机福利观看| 亚洲午夜精品一区,二区,三区| 在线观看免费视频网站a站| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 国产无遮挡羞羞视频在线观看| 免费高清视频大片| 日韩有码中文字幕| 日韩免费高清中文字幕av| 国产真人三级小视频在线观看| 免费搜索国产男女视频| 亚洲情色 制服丝袜| 色哟哟哟哟哟哟| 国产三级黄色录像| 亚洲成a人片在线一区二区| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免费看| 国产av又大| 啦啦啦在线免费观看视频4| 亚洲精品在线观看二区| 69av精品久久久久久| 亚洲精品国产色婷婷电影| 夜夜看夜夜爽夜夜摸 | 成人18禁高潮啪啪吃奶动态图| 亚洲三区欧美一区| 亚洲av成人av| 国产欧美日韩综合在线一区二区| 国产精品永久免费网站| 成人特级黄色片久久久久久久| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 91大片在线观看| 不卡一级毛片| 黑丝袜美女国产一区| 中文字幕色久视频| 亚洲一区二区三区色噜噜 | 精品一区二区三区av网在线观看| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 久久人妻av系列| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 制服人妻中文乱码| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 脱女人内裤的视频| av欧美777| 久久精品亚洲av国产电影网| 中文字幕高清在线视频| 男女做爰动态图高潮gif福利片 | 一级片'在线观看视频| 一边摸一边做爽爽视频免费| 日韩视频一区二区在线观看| 一级片'在线观看视频| 亚洲三区欧美一区| 黄频高清免费视频| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 亚洲欧美日韩无卡精品| 老鸭窝网址在线观看| 9色porny在线观看| 无遮挡黄片免费观看| 一级片免费观看大全| 久久热在线av| 无遮挡黄片免费观看| 中国美女看黄片| 一级毛片精品| 亚洲片人在线观看| 国产成人av教育| www日本在线高清视频| 男女下面进入的视频免费午夜 | 亚洲av片天天在线观看| 久久久久久免费高清国产稀缺| 国产xxxxx性猛交| 亚洲激情在线av| 久久久精品欧美日韩精品| 中国美女看黄片| 极品人妻少妇av视频| 夜夜夜夜夜久久久久| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 国产成人精品在线电影| 亚洲精华国产精华精| 久久草成人影院| 国产伦一二天堂av在线观看| 婷婷精品国产亚洲av在线| 老汉色av国产亚洲站长工具| 天堂俺去俺来也www色官网| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 正在播放国产对白刺激| 一级a爱视频在线免费观看| 不卡一级毛片| 一区二区日韩欧美中文字幕| 91av网站免费观看| 操出白浆在线播放| 欧美久久黑人一区二区| 在线观看66精品国产| 国产在线观看jvid| 精品久久久久久久毛片微露脸| 男人操女人黄网站| 成人影院久久| 日韩精品中文字幕看吧| 午夜免费成人在线视频| 91av网站免费观看| а√天堂www在线а√下载| 最新在线观看一区二区三区| 悠悠久久av| 日日干狠狠操夜夜爽| 两个人看的免费小视频| 国产xxxxx性猛交| 男人操女人黄网站| 又紧又爽又黄一区二区| 欧美日韩乱码在线| 亚洲精品av麻豆狂野| 午夜a级毛片| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| а√天堂www在线а√下载| 精品国产乱子伦一区二区三区| 国产在线观看jvid| x7x7x7水蜜桃| 午夜视频精品福利| 久久久久国内视频| 色老头精品视频在线观看| 黄色视频不卡| 久久人人爽av亚洲精品天堂| 日本 av在线| 日本wwww免费看| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 免费av中文字幕在线| 亚洲伊人色综图| a在线观看视频网站| 香蕉久久夜色| 五月开心婷婷网| 男女高潮啪啪啪动态图| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 不卡一级毛片| 大型av网站在线播放| 99国产精品99久久久久| 亚洲av成人av| 制服人妻中文乱码| 80岁老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区| 日韩精品青青久久久久久| a在线观看视频网站| 一本大道久久a久久精品| 久久精品影院6| 亚洲男人的天堂狠狠| 乱人伦中国视频| 高清毛片免费观看视频网站 | 国产精品国产av在线观看| 国产区一区二久久| 嫩草影视91久久| 中国美女看黄片| 成人永久免费在线观看视频| 午夜福利免费观看在线| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 人妻久久中文字幕网| 伊人久久大香线蕉亚洲五| 久久久久九九精品影院| 国产精品1区2区在线观看.| 国产av精品麻豆| 亚洲欧美日韩高清在线视频| 久久中文看片网| 成年女人毛片免费观看观看9| 欧美一区二区精品小视频在线| 一级,二级,三级黄色视频| 午夜91福利影院| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 美女福利国产在线| 黄色视频不卡| 免费在线观看日本一区| 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 在线观看一区二区三区| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 午夜精品在线福利| 妹子高潮喷水视频| 国产色视频综合| 国产精品1区2区在线观看.| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 精品一区二区三卡| 中文字幕色久视频| 亚洲国产精品999在线| 久久久精品国产亚洲av高清涩受| 久久人人97超碰香蕉20202| 香蕉国产在线看| 在线观看66精品国产| 日日干狠狠操夜夜爽| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 国产蜜桃级精品一区二区三区| 精品国产一区二区久久| 日韩精品中文字幕看吧| 精品电影一区二区在线| 亚洲 欧美 日韩 在线 免费| 国产精品免费一区二区三区在线| 超色免费av| 国产精品一区二区免费欧美| 欧美日韩瑟瑟在线播放| 欧美在线黄色| 在线观看午夜福利视频| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 国产单亲对白刺激| 久热爱精品视频在线9| 人人妻人人爽人人添夜夜欢视频| 久99久视频精品免费| 国产精品乱码一区二三区的特点 | 精品人妻1区二区| 母亲3免费完整高清在线观看| 人人澡人人妻人| 女人高潮潮喷娇喘18禁视频| 人成视频在线观看免费观看| 人妻丰满熟妇av一区二区三区| 国产精品影院久久| 99riav亚洲国产免费| 91九色精品人成在线观看| 国产成人系列免费观看| 国产成人精品在线电影| 国产亚洲欧美精品永久| 国产三级在线视频| 亚洲国产欧美一区二区综合| 久久影院123| 精品一区二区三区视频在线观看免费 | 在线观看一区二区三区激情| 久久精品亚洲av国产电影网| netflix在线观看网站| 在线永久观看黄色视频| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 国产精品日韩av在线免费观看 | 亚洲欧洲精品一区二区精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 成人三级做爰电影| 老司机靠b影院| 欧美在线一区亚洲| 一区二区三区国产精品乱码| 国产一区二区三区在线臀色熟女 | 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 国产黄色免费在线视频| 动漫黄色视频在线观看| 99在线视频只有这里精品首页| 九色亚洲精品在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人久久性| 一个人免费在线观看的高清视频| 亚洲情色 制服丝袜| 亚洲,欧美精品.| 国产av一区在线观看免费| 精品人妻在线不人妻| 校园春色视频在线观看| 免费av毛片视频| 伦理电影免费视频| 国产精品二区激情视频| 中文字幕av电影在线播放| 19禁男女啪啪无遮挡网站| 精品国内亚洲2022精品成人| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区久久| 性色av乱码一区二区三区2| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 99久久综合精品五月天人人| 精品国产亚洲在线| 免费女性裸体啪啪无遮挡网站| 91老司机精品| 国产又色又爽无遮挡免费看| 女警被强在线播放| 亚洲专区国产一区二区| 黄频高清免费视频| xxxhd国产人妻xxx| 一a级毛片在线观看| 99久久国产精品久久久| 国产亚洲av高清不卡| 免费女性裸体啪啪无遮挡网站| 欧美最黄视频在线播放免费 | 国产精品久久视频播放| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 高清av免费在线| 亚洲 国产 在线| 亚洲人成电影观看| 欧美精品啪啪一区二区三区| 国产精品日韩av在线免费观看 | 久久 成人 亚洲| 亚洲精品一二三| 可以免费在线观看a视频的电影网站| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 淫秽高清视频在线观看| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 精品无人区乱码1区二区| 免费看a级黄色片| 中出人妻视频一区二区| 丰满的人妻完整版| 国产成人av激情在线播放| 国产一区二区在线av高清观看| 午夜日韩欧美国产| 在线看a的网站| 国产精品1区2区在线观看.| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 一区福利在线观看| 亚洲情色 制服丝袜| 国产午夜精品久久久久久| 午夜91福利影院| 亚洲欧美一区二区三区黑人| 女同久久另类99精品国产91| av福利片在线| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 19禁男女啪啪无遮挡网站| netflix在线观看网站| а√天堂www在线а√下载| 国产精品99久久99久久久不卡| 国产精品偷伦视频观看了| 女同久久另类99精品国产91| 国产精品久久久久久人妻精品电影| av电影中文网址| 久久久久久久午夜电影 | 男女床上黄色一级片免费看| 免费av中文字幕在线| 国产又色又爽无遮挡免费看| 国产97色在线日韩免费| 波多野结衣高清无吗| 日本 av在线| 免费在线观看日本一区| 免费在线观看影片大全网站| 中国美女看黄片| 激情在线观看视频在线高清| 极品教师在线免费播放| 美女福利国产在线| 欧美黑人欧美精品刺激| 国产片内射在线| 一区二区日韩欧美中文字幕| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 黄色片一级片一级黄色片| 色哟哟哟哟哟哟| 在线观看免费日韩欧美大片| av免费在线观看网站| 在线看a的网站| 两性午夜刺激爽爽歪歪视频在线观看 | e午夜精品久久久久久久| 妹子高潮喷水视频| 久久午夜亚洲精品久久| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 亚洲全国av大片| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 免费高清视频大片| 国产精品一区二区在线不卡| 国产xxxxx性猛交| 久久久国产成人精品二区 | 精品一区二区三区四区五区乱码| 国产99白浆流出| 免费观看人在逋| a级毛片黄视频| a级毛片在线看网站| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 超碰成人久久| 久久精品国产亚洲av高清一级| 中文字幕精品免费在线观看视频| 日本a在线网址| 亚洲国产精品合色在线| 亚洲精华国产精华精| 黄网站色视频无遮挡免费观看| 国产av又大| 精品电影一区二区在线| 免费不卡黄色视频| 天天影视国产精品| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 一级片'在线观看视频| 国产真人三级小视频在线观看| 欧美中文综合在线视频| 91麻豆精品激情在线观看国产 | 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 免费高清在线观看日韩| 好看av亚洲va欧美ⅴa在| 欧美日韩乱码在线| 久久精品亚洲精品国产色婷小说| 大陆偷拍与自拍| 日韩国内少妇激情av| 一级片免费观看大全| 亚洲成人免费电影在线观看| 国产av又大| 韩国精品一区二区三区| 狂野欧美激情性xxxx| 80岁老熟妇乱子伦牲交| 国产成人av激情在线播放| 久久久久久久午夜电影 | 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 久久性视频一级片| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 纯流量卡能插随身wifi吗| 性少妇av在线| 一a级毛片在线观看| 黄色丝袜av网址大全| 久久国产精品男人的天堂亚洲| 大码成人一级视频| 一区二区日韩欧美中文字幕| 精品第一国产精品| 成人免费观看视频高清| 丝袜美足系列| 日韩视频一区二区在线观看| 岛国在线观看网站| 久久久久久久久久久久大奶| 亚洲三区欧美一区| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 免费看十八禁软件| 欧美日韩黄片免| 视频区图区小说| 午夜影院日韩av| 老司机福利观看| 精品乱码久久久久久99久播| 可以在线观看毛片的网站| 俄罗斯特黄特色一大片| 免费日韩欧美在线观看| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 真人一进一出gif抽搐免费| 18禁观看日本| 国产亚洲欧美98| 精品一品国产午夜福利视频| 欧美大码av| 久久精品影院6| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 九色亚洲精品在线播放| 超色免费av| ponron亚洲| 成人国语在线视频| 日本 av在线| 亚洲在线自拍视频| 久久久国产精品麻豆| 国产伦一二天堂av在线观看| 91国产中文字幕| 亚洲第一av免费看| 99国产精品99久久久久| 99riav亚洲国产免费| 日韩成人在线观看一区二区三区| 免费观看精品视频网站| 夜夜爽天天搞| 国产三级在线视频| 精品国内亚洲2022精品成人| 国产精品 国内视频| 国产三级在线视频| 免费在线观看日本一区| 久久天躁狠狠躁夜夜2o2o| 久久人人精品亚洲av| 免费观看精品视频网站| 亚洲五月天丁香| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 视频在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 丁香六月欧美| www.www免费av| 国产在线观看jvid| 99国产精品99久久久久| 桃红色精品国产亚洲av| 一a级毛片在线观看| netflix在线观看网站| 成人黄色视频免费在线看| 日本 av在线| 亚洲一区二区三区不卡视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久人人做人人爽| 久久精品亚洲精品国产色婷小说| 亚洲人成电影免费在线| 宅男免费午夜| 亚洲午夜精品一区,二区,三区| 免费不卡黄色视频| 啦啦啦 在线观看视频| 久久香蕉精品热| 久久久国产一区二区| 国产av精品麻豆|