• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      遺傳算法優(yōu)化支持向量機的城市交通狀態(tài)識別

      2020-08-24 03:01:02李巧茹郝恩強范忠國楊文偉
      關(guān)鍵詞:城市交通遺傳算法向量

      李巧茹,郝恩強,陳 亮,范忠國,楊文偉

      (1.河北工業(yè)大學(xué) 土木與交通學(xué)院,天津 300401;2.河北工業(yè)大學(xué) 智慧基礎(chǔ)設(shè)施研究院,天津 300401)

      0 引 言

      城市交通狀態(tài)識別不僅是現(xiàn)代智能交通系統(tǒng)(intelligent transport system, ITS)的重要內(nèi)容之一,同時也是城市交通規(guī)劃、設(shè)計和交通組織的重要依據(jù)。

      交通狀態(tài)識別具有主觀模糊性,因此選取合理高效的算法判斷交通狀態(tài)是實現(xiàn)交通識別的關(guān)鍵。現(xiàn)有算法主要有:數(shù)理統(tǒng)計算法、聚類分析算法、模式識別算法。針對數(shù)理統(tǒng)計算法,A.R.COOK等[1]通過比較交通參數(shù)的實際觀測值和雙指數(shù)平滑法(DES)獲得的預(yù)測值判斷交通狀態(tài);B.N.PERSAUD等[2]提出了基于突變理論的McMaster算法,實現(xiàn)對交通擁堵類別的準(zhǔn)確分類;M.LEVIN等[3]通過貝葉斯算法計算占有率變化的條件概率,實現(xiàn)交通狀態(tài)的自動檢測。針對聚類分析算法,任其亮等[4]通過建立交通參數(shù)之間的模糊相似性與樣本之間歐式距離的映射關(guān)系,構(gòu)建了基于遺傳動態(tài)模糊聚類的交通狀態(tài)判定方法;張亮亮等[5]考慮交通流參數(shù)在交通狀態(tài)劃分過程中作用的不同,提出了一種基于參數(shù)權(quán)重模糊聚類的交通狀態(tài)識別方法;黃艷國等[6]提出了一種基于模糊C均值聚類的城市道路交通狀態(tài)識別方法。針對模式識別算法,最具代表的算法為神經(jīng)網(wǎng)絡(luò)(neural network,NNet)算法和支持向量機算法,巫威眺等[7]提出了一種基于BP神經(jīng)網(wǎng)絡(luò)的交通狀態(tài)判別算法,該算法在實測數(shù)據(jù)驗證下具有較高的精確度和較好的收斂性;C.CORTES等[8]首次提出支持向量機模型,其在非線性和高維模式識別中也表現(xiàn)出許多優(yōu)勢;于榮等[9]利用支持向量機對道路交通狀態(tài)進行分類;廖瑞輝等[10]針對擁擠預(yù)警信息的隨機性和模糊性特點,利用支持向量機對交通狀態(tài)進行判別,在預(yù)警系統(tǒng)取得成功。

      綜合分析現(xiàn)階段國內(nèi)外交通狀態(tài)識別研究現(xiàn)狀,數(shù)理統(tǒng)計算法、聚類分析算法以及模式識別算法已成為交通狀態(tài)識別的重要手段。數(shù)理統(tǒng)計算法使用簡便,但存在交通狀態(tài)識別誤報率高,實用性不強等缺點。聚類分析算法適用于交通狀態(tài)識別的模糊性特征,但易于陷入局部最優(yōu)以及對初始參數(shù)較為敏感,處理海量數(shù)據(jù)時存在一定弊端。神經(jīng)網(wǎng)絡(luò)模型簡單,在處理并行數(shù)據(jù)方面具有天然優(yōu)勢,具備強大的非線性映射及反饋學(xué)習(xí)能力,但其易產(chǎn)生過擬合現(xiàn)象,在實際應(yīng)用中效果并不理想。支持向量機具有嚴(yán)格的理論基礎(chǔ)和數(shù)學(xué)基礎(chǔ),可避免局部最小問題,克服了神經(jīng)網(wǎng)絡(luò)算法過擬合的缺陷,且小樣本學(xué)習(xí)具有較強的泛化能力。然而,支持向量機的分類性能對參數(shù)選擇比較敏感,實際應(yīng)用中存在依靠經(jīng)驗或試算方法確定參數(shù)的局限性,這在一定程度上限制了模型的泛化能力。吐松江·卡日等[11]提出了一種基于支持向量機和遺傳算法的電力變壓器故障診斷方法,該方法能準(zhǔn)確、有效診斷變壓器故障。

      綜上所述,本研究基于聚類分析算法,獲取先驗分類數(shù)據(jù),并嘗試采用遺傳算法優(yōu)化支持向量機參數(shù)模型,確定SVM最優(yōu)參數(shù)組合,建立基于GA-SVM的城市交通狀態(tài)識別模型,并在MATLAB平臺下進行驗證分析。

      1 支持向量機

      1.1 支持向量機分類理論

      支持向量機是一種基于VC維理論和結(jié)構(gòu)風(fēng)險最小原理的模式識別算法,可根據(jù)有限樣本信息在模型的復(fù)雜性和學(xué)習(xí)能力之間尋求最佳折中,進而實現(xiàn)模型推廣能力的最優(yōu)化。支持向量機在線性可分情況下,最優(yōu)分類超平面定義的分類決策函數(shù)為:

      f(x)=sgn[(w·x)+b]

      (1)

      (2)

      (3)

      (4)

      (5)

      (6)

      已有成果表明,目前應(yīng)用較多的支持向量機核函數(shù)包括多項式核函數(shù)、徑向基(RBF)核函數(shù)和Sigmod核函數(shù)3種,且在城市交通狀態(tài)識別方面均有較好的應(yīng)用效果。其中,徑向基(RBF)核函數(shù)不僅能實現(xiàn)非線性映射,且參數(shù)較少,易于優(yōu)化。因此選取徑向基(RBF)核函數(shù)進行參數(shù)尋優(yōu)。

      1.2 支持向量機參數(shù)對其性能的影響

      在支持向量機分類方法中,關(guān)鍵參數(shù)主要為懲罰系數(shù)C和核函數(shù)參數(shù)σ,其選擇效果直接影響支持向量機的性能。

      1)懲罰系數(shù)C影響模型的復(fù)雜度和訓(xùn)練誤差。當(dāng)C取值偏小時,樣本數(shù)據(jù)中超出不敏感帶的樣本懲罰也偏小,同時訓(xùn)練精確度降低,系統(tǒng)推廣能力變差,出現(xiàn)“欠學(xué)習(xí)”現(xiàn)象;當(dāng)C取值偏大時,則易出現(xiàn)“過學(xué)習(xí)”現(xiàn)象。

      2)核函數(shù)參數(shù)σ主要反映訓(xùn)練樣本數(shù)據(jù)的范圍特性,直接影響支持向量機模型的學(xué)習(xí)能力。當(dāng)σ取值偏小時易出現(xiàn)“欠學(xué)習(xí)”現(xiàn)象,當(dāng)σ取值偏大時易出現(xiàn)“過學(xué)習(xí)”現(xiàn)象。

      由此可見,合理確定上述參數(shù)值能夠有效降低支持向量機的訓(xùn)練誤差,提高其學(xué)習(xí)能力。

      2 GA-SVM交通狀態(tài)識別模型

      城市交通狀態(tài)識別具有高度復(fù)雜性和主觀模糊性等特點,雖然SVM模型在城市交通狀態(tài)識別方面具有較好的應(yīng)用效果,但在參數(shù)選擇上依然存在依靠經(jīng)驗或者反復(fù)試驗確定參數(shù)的局限性,影響SVM的推廣能力。針對SVM模型中存在的問題,建立基于遺傳算法優(yōu)化支持向量機參數(shù)的城市交通狀態(tài)識別模型。該模型分為3個部分,即城市道路交通狀態(tài)分類理論和方法、遺傳算法優(yōu)化SVM參數(shù)、城市交通狀態(tài)識別的GA-SVM模型。算法流程圖如圖1。

      2.1 城市道路交通狀態(tài)分類理論和方法

      描述道路交通流整體特性主要有車流量、平均速度、占有率等參數(shù)指標(biāo)。不同時段,城市道路交通流在這些參數(shù)下表現(xiàn)出不同的交通特性,據(jù)此建立三維指標(biāo)評價體系,指標(biāo)定義如下[12]:

      1)車流量(pcu/h):單車道2 min內(nèi)各車型車輛數(shù)目之和,計算公式為:

      (7)

      式中:ni1為第1 min通過的第i類車的車輛數(shù);ni2為第2 min通過的第i類車的車輛數(shù);wi為第i類車輛的折算系數(shù)。

      2)平均速度(mile/h):單車道2 min內(nèi)所有機動車的平均速度,計算公式為:

      (8)

      式中:v1為第1 min的平均速度;v2為第2 min的平均速度;f1為第1 min的流量;f2為第2 min的流量。

      3)占有率(%):單車道2 min內(nèi)車輛在環(huán)形線圈檢測器上的時間比例,計算公式為:

      (9)

      式中:ft為t時間段內(nèi)的流量;lt為t時間段內(nèi)所有機動車輛的車身長度;vt為t時間段內(nèi)的平均速度;t為時間間隔,此處定義為2 min。

      根據(jù)上述三維指標(biāo),對城市道路交通狀態(tài)數(shù)據(jù)進行聚類分析,得到聚類中心矩陣為:

      (10)

      該矩陣第1列v1,v2,v4,v4分別代表順暢流、平穩(wěn)流、擁擠流、堵塞流的聚類中心;第2列代表車流量;第3列代表速度;第4列代表占有率。

      2.2 遺傳算法優(yōu)化SVM參數(shù)

      遺傳算法種群規(guī)模設(shè)定為20,進化代數(shù)設(shè)定為200。保留精英遺傳算法優(yōu)化參數(shù)執(zhí)行過程如下:

      1)種群初始化。參數(shù)C和σ分別以n1和n2位二進制進行編碼,則每組參數(shù)為一個基因長度n1+n2的二進制代碼,如圖2。

      2)確定適應(yīng)度函數(shù)。根據(jù)種群中個體得到SVM模型的初始參數(shù)值,用樣本數(shù)據(jù)訓(xùn)練SVM模型,然后依據(jù)訓(xùn)練精確度確定個體適應(yīng)度值,如式(11)~式(12):

      f=Ac

      (11)

      (12)

      式中:f為適應(yīng)度函數(shù);Ac為預(yù)測精確度;N為訓(xùn)練總樣本;Nf為錯誤分類的樣本。

      3)選擇操作。采用遺傳算法選擇操作中的輪盤賭法。個體被選中的概率與其適應(yīng)度值的大小成正比,這樣就增加了個體的多樣性,便于執(zhí)行交叉操作和變異操作,如式(13):

      (13)

      式中:fi為個體i的適應(yīng)度值。

      4)交叉操作。按照一定交叉概率交換配對個體基因,產(chǎn)生新的個體。第1代交叉后自適應(yīng)概率如式(14):

      (14)

      式中:G為遺傳代數(shù);Gmax為最大遺代數(shù);Pc(1)為第1代交叉概率,此處定義為0.7;Pc(G)為第G代的交叉概率。

      5)變異操作。按照一定的變異概率改變選中個體染色體的等位基因,增強種群的多樣性。第1代變異后自適應(yīng)概率如式(15):

      (15)

      式中:Pm(1)為第1代變異概率,此處定義為0.01;Pm(G)為第G代的變異概率。

      2.3 GA-SVM模型

      將上述遺傳算法進化過程中得到的最優(yōu)個體分解為參數(shù)組合C*和σ*,代入SVM模型,得到城市交通狀態(tài)識別的GA-SVM模型。在MATLAB平臺下對GA-SVM模型性能進行測試分析。

      3 MATLAB實驗分析

      3.1 數(shù)據(jù)采集與處理

      岳麓大道為長沙市四橫六縱的重要一環(huán),承載著連接?xùn)|西城區(qū)的重任。選取長沙市岳麓大道的實驗路段西起澗塘立交橋,東至銀盆嶺大橋,道路線型大致呈直線線形,車道數(shù)為雙向八車道,易于交通數(shù)據(jù)的采集。在車輛出行高峰期和低谷期,呈現(xiàn)多種交通狀態(tài)。因此采集其周一至周五6:00—19:00的流量、速度和占有率數(shù)據(jù),將城市道路交通狀態(tài)設(shè)定為順暢流、平穩(wěn)流、擁擠流和堵塞流4種類別,進行聚類分析。每一種交通狀態(tài)選用100個樣本,共400組觀測數(shù)據(jù)。取每種狀態(tài)80個樣本作為訓(xùn)練數(shù)據(jù),20個樣本作為測試數(shù)據(jù),結(jié)果如圖3、圖4。其中,圖3為交通數(shù)據(jù)的box可視化圖,記錄了樣本數(shù)據(jù)分布情況,交通流參數(shù)屬性正常,不存在異常點;圖4為交通樣本數(shù)據(jù)三維可視化圖,在三維空間內(nèi)呈現(xiàn)出4種交通狀態(tài),數(shù)據(jù)聚類效果明顯。

      3.2 仿真分析

      在MATLAB平臺下,利用LIBSVM工具箱對樣本數(shù)據(jù)進行歸一化處理,將數(shù)據(jù)歸一化到[0,1]范圍內(nèi)。其中,圖5為遺傳算法迭代尋優(yōu)過程,設(shè)定遺傳算法種群規(guī)模為20,迭代次數(shù)為200。迭代尋優(yōu)前期,適應(yīng)度曲線隨著迭代次數(shù)的增加,適應(yīng)度逐漸上升;迭代尋優(yōu)后期,適應(yīng)度曲線趨于平穩(wěn)狀態(tài),最佳適應(yīng)度穩(wěn)定在99.69%,說明在尋優(yōu)過程中支持向量機參數(shù)種群不斷進化,直到滿足訓(xùn)練條件,獲得最優(yōu)參數(shù)C*和σ*。

      圖6為SVM測試集實際分類效果和預(yù)測分類效果對比圖,結(jié)合現(xiàn)有研究成果設(shè)定C=2,σ=1,圖中測試樣本總數(shù)為80,準(zhǔn)確預(yù)測樣本數(shù)為76,Ac=95%(76/80),錯誤預(yù)測的樣本點為3個順暢流樣本點預(yù)測為平穩(wěn)流樣本點,1個擁擠流樣本點預(yù)測為堵塞流樣本點;圖7為GA-SVM測試集實際分類效果和預(yù)測分類效果對比圖,圖中測試樣本總數(shù)為80,最優(yōu)參數(shù)組合C*=0.518 5,σ*=21.067 4,準(zhǔn)確預(yù)測樣本數(shù)為79,Ac=98.75%(79/80),錯誤預(yù)測的樣本點為1個擁擠流樣本點預(yù)測為堵塞流樣本點。

      比較上述結(jié)果,GA-SVM模型和SVM模型均有較好的城市交通狀態(tài)識別效果,其中GA-SVM模型比SVM模型識別精確度提高3.75%,具體結(jié)果如表1。

      由表1可知,改進后的模型優(yōu)于基于SVM的交通狀態(tài)識別模型,主要體現(xiàn)在以下3個方面:①參數(shù)選取方法,參數(shù)C和σ的選擇對支持向量分類機的學(xué)習(xí)和推廣能力有很大影響,傳統(tǒng)參數(shù)選取方法計算復(fù)雜,盲目性較強,利用遺傳算法可以在初始化范圍內(nèi)對參數(shù)進行全局、快速搜索;②全局最優(yōu),遺傳算法具有良好的全局搜索能力,不易陷入局部最優(yōu),利用遺傳算法對支持向量機關(guān)鍵參數(shù)進行尋優(yōu),可找到使模型識別精確度更高的參數(shù),在此基礎(chǔ)上進行城市道路交通狀態(tài)識別,更具科學(xué)性;③識別精確度,由表1可知,在測試集的識別分類中,GA-SVM模型識別精確度更高,更適于實際工程使用。

      表1 SVM模型和GA-SVM模型分類結(jié)果比較

      4 結(jié) 論

      將遺傳算法和支持向量機相結(jié)合應(yīng)用于城市交通狀態(tài)識別研究,得出如下結(jié)論:

      1)選取車流量、平均速度和占有率為城市交通狀態(tài)識別的基礎(chǔ)參數(shù)指標(biāo),通過聚類分析方法,獲取以順暢流、平穩(wěn)流、擁擠流和堵塞流為標(biāo)簽的城市交通狀態(tài)先驗分類數(shù)據(jù)。

      2)利用遺傳算法優(yōu)化支持向量機模型的關(guān)鍵參數(shù)——懲罰系數(shù)C和核函數(shù)σ,避免了依靠經(jīng)驗確定參數(shù)方法的盲目性。

      3)依托長沙市岳麓大道監(jiān)測數(shù)據(jù)進行城市交通狀態(tài)識別研究,SVM模型和GA-SVM模型預(yù)測精確度分別達到95.00%和98.75%,相較于SVM模型,GA-SVM模型在預(yù)測精確度方面提高3.75%。

      4)GA-SVM模型為城市交通狀態(tài)識別研究提供一種新思路,對智能交通系統(tǒng)中路徑誘導(dǎo)和交通控制有一定的實用價值。

      猜你喜歡
      城市交通遺傳算法向量
      向量的分解
      聚焦“向量與三角”創(chuàng)新題
      新形勢下我國城市交通發(fā)展戰(zhàn)略思考
      上海城市交通大數(shù)據(jù)研究與實踐
      上海公路(2018年1期)2018-06-26 08:37:40
      基于自適應(yīng)遺傳算法的CSAMT一維反演
      一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
      基于遺傳算法和LS-SVM的財務(wù)危機預(yù)測
      向量垂直在解析幾何中的應(yīng)用
      基于改進的遺傳算法的模糊聚類算法
      向量五種“變身” 玩轉(zhuǎn)圓錐曲線
      营口市| 巨鹿县| 中西区| 沾益县| 襄城县| 砚山县| 布尔津县| 临颍县| 洪泽县| 五常市| 兴宁市| 商城县| 秦安县| 万州区| 新闻| 黔南| 潞城市| 施秉县| 垫江县| 新邵县| 丹东市| 博野县| 临洮县| 汕头市| 兰西县| 北辰区| 正宁县| 衡阳县| 邯郸县| 惠来县| 日土县| 南安市| 元江| 武鸣县| 永靖县| 曲麻莱县| 合阳县| 阳城县| 芦溪县| 浦江县| 乳源|