• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Application in Supercapacitors of Shiitake Biomass-Based Nitrogen-Doped Microporous Carbon

    2020-08-20 03:14:52HUQingTaoZHANGWenDaLITaoYANXiaoDongGUZhiGuo

    HU Qing-TaoZHANG Wen-DaLI TaoYAN Xiao-Dong*,GU Zhi-Guo*,,2

    (1School of Chemistry and Material Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)

    (2Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,Wuxi,Jiangsu 214122,China)

    Abstract:Shiitake-derived nitrogen-doped microporous carbon materials were prepared by a simple activation/carbonization process.It was found that the nitrogen content was enhanced owing to the consumption of carbon in the activation process,and that the pyridinic nitrogen groups were promoted after activation.The microporous carbons offered a high specific surface area of 1 930 m2·g-1with a high micropore surface area of 1 594 m2·g-1.The high micropore surface area accompanied with rich nitrogen and oxygen groups contributed to a remarkable specific capacitance of 325 F·g-1at 0.5 A·g-1and high rate capability.In addition,shiitake-derived microporous carbons presented robust cycling stability with 2.3% capacitance loss during 5 000 cycles,and a high specific capacitance of 203 F·g-1at 0.5 A·g-1in symmetric supercapacitors.The high performance could be attributed to the high surface area,enhancing electric double layer capacitance,and numerous nitrogen groups.

    Keywords:supercapacitors;carbon;microporous materials;carbonization;nitrogen doping

    Carbon-based supercapacitors are well-known for their long cycle life,relatively high energy density and high power density[1-2].These merits originate from the unique energy storage/conversion process of electric double layer capacitors.Electrostatic charge accumulation at the carbon electrode/electrolyte interface forms the electric double layer that enables the energy storage and release rapidly[2].Therefore,the capacitance of carbon-based supercapacitors is proportional to the specific surface area of the carbon electrode materials[2-3],and activated carbons dominate the electrode materials for supercapacitors due to their high surface area,good conductivity,low cost,and easy processability.

    Since the first usage of porous carbon in supercapacitors by Becker in 1957[4],various activated carbon materials have been studied as electrode materials for supercapacitors[5-13],aiming to find highcapacitance porous carbons.With more research efforts and interests devoted to the study of porous carbon electrode materials, researchers found that the capacitance of porous carbons is not only dependent on their specific surface area,but also related to pore size and pore shape[14-15].Particularly,micropores are considered to play a decisive role in enhancing the capacitance[14-15].Though activation method is a mature manufacturing technique that is widely used worldwide and is still preferred to produce low-cost porous carbons for supercapacitors,it is very difficult to produce microporous carbons.By reviewing the literature,it is concluded that the physicochemical properties of the precursors can greatly affect the porous structures of the resulted activated carbons.For example,fibrous precursors will more likely evolve into microporous carbons[15-17],and many biomass materials can be easily transformed into microporous carbons by common activation methods.[18]

    On the other hand,biomass materials are sustainable precursors which are critical to the longterm development of carbon-based supercapacitors.In addition,biomass-derived carbons usually contain various heteroatoms such as nitrogen and oxygen,which contribute to high pseudocapacitance owing to the reversible redox reactions of the heteroatom groups,raising the capacitance of carbon materials up to 300~350 F·g-1in aqueous electrolytes[19-24].KOH is a commonly used activator,but a high KOH/biomass mass ratio of 3~4 is usually needed to carbonize/activate the biomass materials[19,21,23].The presence of abundant KOH leads to strong corrosion of the instruments/equipment,high cost,low carbon yield,etc.Herein,we took full advantage of the intrinsic porous structure of dry shiitake mushrooms to achieve high-surface-area nitrogen-doped microporous nanocarbons at a low KOH/biomass mass ratio of 0.3 by a simple one-step carbonization/activation process.The high-surface-area microporous carbons with rich nitrogen groups demonstrated high specific capacitance,excellent cycling stability,and remarkable rate capability.

    1 Experimental

    1.1 Preparation of microporous carbons

    In a typical synthesis,two pieces of dry shiitake mushrooms were soaked in 1.0 mol·L-1KOH aqueous solution for 10 h.Then the shiitake mushrooms were transferred from the alkaline solution to a petri dish and dried at 100℃overnight in an oven.The weight ratio of dry shiitake to KOH was about 0.3.The carbonization/activation process was carried out at 800℃for 3 h under nitrogen atmosphere with a heating rate of 5 ℃·min-1.The product was washed with abundant 0.1 mol·L-1HCl aqueous solutions,plenty of deionized water until neutral pH,and dried at 120℃for 5 h.The as-prepared product was the microporous carbons(NMCs).For comparison,dry shiitake mushrooms were directly carbonized at 800℃for 3 h under nitrogen atmosphere with a heating rate of 5℃·min-1,and the product was designated as NCs.

    1.2 Materials characterization

    Scanning electron microscopy (SEM) and transmission electron microscopy(TEM)were used to examine the morphologies of the samples.The SEM images were collected on a Hitachi S4700 scanning electron microscope at 3.0 kV,and the TEM images were obtained on a JEOL JEM-3010 transmission electron microscope at 200 kV.The powder X-ray diffraction(XRD)patterns were collected on a Bruker D8 Venture diffractometer from 10°to 90°using a CuKαradiation source(40 kV,40 mA,λ=0.154 nm).X-ray photoelectron spectroscopy(XPS)measurements were carried out with an AXIS Supra by Kratos Analytical Inc.using monochromatic Al X-ray(hν=1 486.6 eV)as the excitation source.All XPS spectra were calibrated by Clssignal at 284.8 eV.N2adsorption-desorption isotherm was measured at 77 K with a Quantachrome QUADRASORB SI instrument after the samples were degassed at 573 K for 4 h.Brunauer-Emmett-Teller(BET)model was performed to measure the specific surface area.Micropore surface area was calculated byV-tmethod.Pore volume,average pore size and pore size distribution were analyzed based on density functional theory(DFT)method.

    1.3 Electrochemical characterization

    To prepare the working electrodes,the samples and the polyvinylidene fluoride binder with the mass ratio of 9 were dispersed in 1-methyl-2-pyrro-lidone.The as-prepared slurry was coated on the Pt plates.The electrodes were dried at 120℃for 10 h in a vacuum oven.The mass of active materials on each Pt plate was about 3.0 mg·cm-2.The electrochemical measure-ments were separately carried out in a threeelectrode system and in a two-electrode system.1 mol·L-1H2SO4aqueous solution was used as the electrolyte.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy(EIS)measurements in the frequency range of 103kHz~10 mHz at an open circuit potential with an amplitude of 5 mV were performed on a CHI760E electrochemical workstation.The galvanostatic charge/discharge profiles were obtained on a LAND CT2001A system.

    In the three-electrode system,an Ag/AgCl electrode(3.5 mol·L-1KCl,0.204 6 V vs standard hydrogen electrode at 25℃)and a platinum plate were used as the reference electrode and the counter electrode,respectively.The capacitance was calculated according to the following equation[25]:

    Cs=IΔt/(mΔV)

    whereCsis the specific capacitance(F·g-1),Iis the current density(A·g-1),Δtis the discharge time(s),ΔVis the potential window(V),andmis the mass of the active materials on each electrode.

    In the two-electrode system,CV and galvanostatic charge/discharge measurements were carried out in the potential range of 0~1.0 V.The specific capacitance was calculated based on the following equation[25-26]:

    C=2IΔt/(mΔV)

    whereCis the specific capacitance(F·g-1).The specific energy densityE(Wh·kg-1)and the power densityP(W·kg-1)were obtained by the following two equations[25]:

    E=(1/4)×(1/3.6)×C(ΔV)2

    P=3 600E/Δt

    2 Results and discussion

    Fig.1A showed the digital image of dry shiitake mushrooms.Shiitake was selected as the carbon source because shiitake mushrooms were full of air-filled cavities with a size of several micrometers(Fig.1B)and presented high water absorbing capacity(weight ratio of water to dry shiitake was~5).Plenty of KOH aqueous solution could be locked in the cavities of shiitake mushrooms.Once the water was evaporated,KOH was uniformly coated on the walls of each cavity which favors a thorough activation of shiitake mushrooms for high specific surface area.The KOH/shiitake mass ratio was about 0.3.Fig.1C displayed the SEM image of NCs.The morphology was similar to that of the dry shiitake(Fig.1A).Magnified SEM image showed the relatively smooth surface of NCs(Fig.1D).The activation process disintegrated the structure of dry shiitake owing to the drastic activation reaction,and the NMCs showed granular morphology(Fig.1E).Magnified SEM image showed that the size of NMCs at least in one dimension was within 200 nm(Fig.1F).This confirmed the advantage of shiitake to produce nanosized porous carbons.TEM image demonstrated many macropores in NCs(Fig.1G),and the highresolution TEM (HRTEM)image indicated the amorphous nature of NCs(Fig.1H).As depicted by Fig.1I,NMCs present a sheet-like structure with a thin thickness,confirming the nanosized structure.HRTEM demonstrated the microporous structure of NMCs with pore sizes within~2 nm(Fig.1J).XRD analysis were further carried out to study the microstructures of NCs and NMCs.Fig.2 presented the XRD profiles of NCs and NMCs.NMCs had a more disordered structure than NCs as indexed by the less intensified diffraction peaks at around 25°and 43.5°due to the activation reaction.

    Fig.1 (A)Digital and(B)SEM images of dry shiitake mushrooms;SEM images of(C,D)NCs and(E,F)NMCs;TEM images of(G,H)NCs and(I,J)NMCs

    Fig.2 XRD patterns of NCs and NMCs

    Nitrogen adsorption-desorption measurement was employed to evaluate the porous structures of NCs and NMCs.All the data were summarized in Table 1.The isotherm of NMCs showed a type-Ⅰcurve with a sharp nitrogen adsorption at relative pressures below 0.1(Fig.3A).This indicated that NMCs possessed microporous structure and high porosity(pore volume:0.863 cm3·g-1)[27].The BET surface area of NMCs was as large as 1 930 m2·g-1with a high micropore surface area of 1 594 m2·g-1.In contrast,NCs showed limited nitrogen uptake,suggesting low porosity(pore volume:0.073 cm3·g-1).The BET surface area of NCs was calculated to be only 63 m2·g-1.Fig.3B showed the pore size distribution of NCs and NMCs calculated by DFT method.The pore size of NMCs was in the range from 0.5 to 3 nm,concentrating at 0.7 and 1.2 nm.The average pore size of NMCs was~2.05 nm,which was consistent with the HRTEM observation.NCs presented a large average pore size of 5.27 nm with negligible micropores(Fig.3B).It was thus highly efficient to synthesize high-surface-area microporous nanocarbons with shiitake by KOH activation.

    XPS measurement was performed to reveal the elemental composition and chemical structure of NMCs and NCs.Fig.3C showed the XPS survey spectra of NCs and NMCs.It was found that shiitake-based carbons contained abundant nitrogen and oxygen heteroatoms.This was good for enhancing the specific capacitance by pseudo-capacitance from redox reactions of heteroatom groups[28-30].The N contents of NCs and NMCs were 1.4% and 2.1%(n/n),respectively,while the O contents of NCs and NMCs were 11.4% and 14.1%(n/n),respectively.NMCs displayed a higher N content than NCs because of the consumption of some carbon in the activation reaction.Nitrogen groups were believed to improve the surface wettability of carbons and further favored the surface kinetics duringthe energy storage process[31].The N1sspectrum(Fig.3D)was fitted into three parts:the signals at around 398,400,and 401 eV were attributed to pyridinic nitrogen(N-6),pyrrolic nitrogen(N-5),and quaternary nitrogen(N-Q),respectively[28-29,32].NMCs had a much higher content of N-6 than NCs as evidenced by the fitted N1sspectra,which greatly enhanced the pseudocapacitance[33].In addition,N-Q groups could improve the conductivity of carbons[34].

    Table 1 Summary of key parameter from N2adsorption-desorption analyses

    Fig.3 (A)Nitrogen adsorption/desorption isotherms,(B)pore size distribution,(C)XPS survey spectra,and(D)N1s XPS spectra of NCs and NMCs

    Electrochemical properties of NMCs and NCs were firstly investigated in the potential window of-0.1~0.9 V vs Ag/AgCl in a three-electrode system.Fig.4A showed the CV curves of NCs and NMCs at 5 mV·s-1.Both NCs and NMCs presented rectangularshaped CV curves,indicative of the domination of electric double layer capacitive behavior.The CV curve of NMCs displayed much larger redox reaction peaks,indicating enhanced pseudo-capacitance.This was consistent with the XPS analysis that NMCs had a relatively higher nitrogen content.Fig.4B demonstrated the galvanostatic charge-discharge profiles of NCs and NMCs at 0.5 A·g-1.The galvanostatic charge or discharge profile significantly deviated from linear shape due to the faradaic reactions of heteroatom groups.The charge-discharge time of the NMCs electrode approached 3 times that of the NCs electrode.Rate capability of NCs and NMCs was evaluated by varying currentdensity.Specific capacitances at various current densities were displayed in Fig.4C.The specific capacitance of NMCs at 0.5 A·g-1was 325 F·g-1,while it was only 114 F·g-1for NCs.More importantly,the specific capacitance of NMCs still reached as high as 180 F·g-1at a high current density of 20 A·g-1,which accounted for 55% of the value at 0.5 A·g-1.For comparison,the specific capacitance of NCs at 20 A·g-1was only 44% of that at 0.5 A·g-1.These results implied that NMCs possessed high energy storage capability and good rate capability.The shape of the CV curves of the NMCs electrode only slightly deviated with increasing scan rate(Fig.4D),confirming the high rate capability of NMCs.

    Fig.4 (A)CV curves at 5 mV·s-1,(B)charge/discharge profiles at 0.5 A·g-1,and(C)rate capability of NCs and NMCs;(D)CV curves of an NMCs electrode at various scan rates

    Kinetics at the electrode/electrolyte interface were further disclosed by EIS measurement.The Nyquist plots showed one semicircle in the high-frequency region and a linear line in the low-frequency region(Fig.5A).In general,the larger the slope of the linear part,the faster the electric double layer will be formed[34].Obviously,ion diffusion was much faster on the NMCs electrode.The diameter of the semicircle indexed the charge transfer resistance(Rct).TheRctvalues of the NMCs and NCs electrodes were 0.35 and 0.45 Ω,respectively,confirming faster charge transfer process on the surface of NMCs.The intercept of the Nyquist plot withxaxis represented the equivalent series resistance(Rs)from the electrolyte,current collector,electrode/electrolyte interface,etc.The NMCs electrodes had smallerRs(1.15 Ω)than the NCs electrodes (1.51 Ω).Excitingly,NMCs exhibited outstanding cycling stability with a small capacitance loss of 2.3% during the first 200 cycles and with no capacitance loss during the following 4 800 cycles(Fig.5B).The capacitance loss during the initial 200 cycles might be due to the presence of some unstable oxygen groups[35].

    Fig.5 (A)EIS spectra of NCs and NMCs electrodes;(B)Stability test at a current density of 5 A·g-1in a three-electrode system

    To explore the practical applications of NMCs in supercapacitors,symmetric supercapacitors fabricated from NMCs were tested.Fig.6A showed the CV curves of a NMCs supercapacitor.The CV curves displayed a rectangular shape,which was the typical shape of the CV curves of electric double layer capacitors.The CV curve maintained its rectangular shape as the scan rate increased up to 200 mV·s-1,confirming its excellent rate capability.The charge/discharge profiles at different current densities demonstrated near-triangular shape and small ohmic loss(Fig.6B).These indicated good capacitive properties of NMCs in real supercapacitors.

    The specific capacitance was plotted against the current density(Fig.6C).The specific capacitance at 0.5 A·g-1was 203 F·g-1,and still reached 120 F·g-1at 20 A·g-1,outperforming many other carbon electrode materials reported in the literature(Table 2)[25-26,36-40].The specific capacitance at 20 A·g-1was~60% of that at0.5 A·g-1,consolidating its remarkable rate capability.The smallRctand near-vertical linear part suggested fast surface charge transfer kinetics,as indicated by the EIS spectrum(Fig.6D).It thus could be concluded thatNMCs had high capacitive performance and that the high performance could be ascribed to the high surface area,improved surface kinetics because of abundant nitrogen groups,and good conductivity.

    Fig.6 (A)CV curves at various scan rates,(B)charge/discharge profiles at different current densities,(C)rate capability,and(D)EIS spectrum of a symmetric NMCs supercapacitor

    Table 2 Electrochemical performance of biomass-derived porous carbons in symmetric supercapacitors

    Fig.7 Energy density against powder density for different carbon materials

    The Ragone plot(power density vs energy density)was presented in Fig.7.The NMCs superca-pacitor demonstrated a high energy density of 14.1 Wh·kg-1at a power density of 180 W·kg-1.More importantly,it still achieved a high energy density of 11.1 Wh·kg-1at a high powerdensity of ~5 700 W·kg-1.For comparison,the highest powder density va1ues of the other carbon-based supercapacitors reported in the literature were plotted in the Ragone plot.Obviously,NMCs was one of the best electrode materials for highrate supercapacitors[20,24-26,37,41-42].

    3 Conclusions

    Shiitake-derived microporous nanocarbons with a high micropore surface area of 1 594 m2·g-1were synthesized by a simple one-step carbonization/activation process.The rich air-filled cavities in shiitake mushrooms made them ideal raw materials for highsurface-area porous nanocarbons with high accessible micropore surface area.The high micropore surface area and numerous nitrogen groups synergistically contributed to a high capacitance of 325 F·g-1at 0.5 A·g-1,along with good rate capability(180 F·g-1at 20 A·g-1)and excellent cycling stability(2.3% capa-citance loss in the period of 5 000 cycles).In symmetric supercapacitors,shiitake-derived microporous nanocarbons still presented a high capacitance of 203 F·g-1at0.5 A·g-1,making them promising electrode materials for high-performing supercapacitors.

    秋霞伦理黄片| xxx大片免费视频| 2022亚洲国产成人精品| 欧美人与善性xxx| 国产日韩欧美在线精品| 国产精品久久久久久久久免| 内地一区二区视频在线| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 国产成人免费无遮挡视频| 爱豆传媒免费全集在线观看| 99国产综合亚洲精品| 国产免费现黄频在线看| 老司机影院毛片| 插逼视频在线观看| 国产av一区二区精品久久| 99久久人妻综合| 欧美日韩亚洲高清精品| 国产一级毛片在线| 美女视频免费永久观看网站| 久久久久久人妻| 一本大道久久a久久精品| av免费观看日本| 少妇熟女欧美另类| 久久精品久久久久久久性| 一二三四在线观看免费中文在 | 又黄又粗又硬又大视频| 中文字幕最新亚洲高清| 日韩不卡一区二区三区视频在线| 免费在线观看黄色视频的| freevideosex欧美| 欧美精品人与动牲交sv欧美| 国产成人午夜福利电影在线观看| 日韩在线高清观看一区二区三区| 亚洲精华国产精华液的使用体验| 中国美白少妇内射xxxbb| 国产精品.久久久| 高清视频免费观看一区二区| 日韩制服丝袜自拍偷拍| 99热这里只有是精品在线观看| 最近2019中文字幕mv第一页| 久久久久网色| 精品久久久精品久久久| 满18在线观看网站| 国产成人午夜福利电影在线观看| 97在线人人人人妻| 国产精品一二三区在线看| 国产在视频线精品| 国产精品女同一区二区软件| 成人国产av品久久久| 新久久久久国产一级毛片| 水蜜桃什么品种好| 久久韩国三级中文字幕| 精品久久国产蜜桃| 制服诱惑二区| 久久99一区二区三区| 九草在线视频观看| 久久婷婷青草| 国产在线一区二区三区精| 亚洲精品成人av观看孕妇| 美女内射精品一级片tv| 精品第一国产精品| 五月玫瑰六月丁香| 亚洲国产av影院在线观看| 99国产综合亚洲精品| 亚洲成色77777| 亚洲成色77777| 男女下面插进去视频免费观看 | 最近最新中文字幕免费大全7| 亚洲精品,欧美精品| 男的添女的下面高潮视频| 国产精品无大码| 女人精品久久久久毛片| 大片电影免费在线观看免费| 久久午夜综合久久蜜桃| 少妇的丰满在线观看| 国产一区二区三区av在线| 中文字幕人妻熟女乱码| 成人国产av品久久久| videos熟女内射| 一二三四在线观看免费中文在 | 中国国产av一级| 各种免费的搞黄视频| 啦啦啦在线观看免费高清www| 26uuu在线亚洲综合色| 精品福利永久在线观看| 日本av免费视频播放| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 亚洲av男天堂| 女人精品久久久久毛片| 亚洲欧洲日产国产| 日韩成人av中文字幕在线观看| 久久97久久精品| 在线观看美女被高潮喷水网站| 欧美精品国产亚洲| 午夜av观看不卡| 69精品国产乱码久久久| 日韩制服骚丝袜av| 国产男女内射视频| 国产精品秋霞免费鲁丝片| 1024视频免费在线观看| 在线看a的网站| 全区人妻精品视频| 黑丝袜美女国产一区| 女人久久www免费人成看片| 国产一区二区三区综合在线观看 | 精品国产一区二区三区久久久樱花| 岛国毛片在线播放| 在线看a的网站| 一级,二级,三级黄色视频| 纵有疾风起免费观看全集完整版| 看十八女毛片水多多多| 国产又色又爽无遮挡免| 夜夜爽夜夜爽视频| 亚洲少妇的诱惑av| 18禁观看日本| 国产69精品久久久久777片| 熟女人妻精品中文字幕| 热99国产精品久久久久久7| 久久精品国产综合久久久 | h视频一区二区三区| 老女人水多毛片| 狠狠精品人妻久久久久久综合| 久久精品久久久久久久性| av女优亚洲男人天堂| 亚洲人与动物交配视频| 香蕉精品网在线| 下体分泌物呈黄色| 99热这里只有是精品在线观看| 多毛熟女@视频| 一级片'在线观看视频| 亚洲av福利一区| 一级片'在线观看视频| 成人18禁高潮啪啪吃奶动态图| 黄色毛片三级朝国网站| 看免费av毛片| 精品少妇久久久久久888优播| videossex国产| 韩国高清视频一区二区三区| 91成人精品电影| 人人妻人人爽人人添夜夜欢视频| 国产福利在线免费观看视频| 日韩成人伦理影院| 自线自在国产av| 欧美日韩亚洲高清精品| 久久久久久人妻| av线在线观看网站| 久久精品aⅴ一区二区三区四区 | 国产片特级美女逼逼视频| av女优亚洲男人天堂| 久久人人爽人人片av| 精品亚洲成国产av| 欧美精品高潮呻吟av久久| 精品一区二区三区四区五区乱码 | 美女主播在线视频| 2018国产大陆天天弄谢| 男女边吃奶边做爰视频| 爱豆传媒免费全集在线观看| 欧美另类一区| xxxhd国产人妻xxx| 一级毛片我不卡| 亚洲欧美清纯卡通| 久久综合国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 男女国产视频网站| 欧美性感艳星| 久久97久久精品| 午夜91福利影院| 一本大道久久a久久精品| 2021少妇久久久久久久久久久| 国产精品嫩草影院av在线观看| 久久久精品区二区三区| 高清毛片免费看| 精品一区二区三卡| 蜜桃在线观看..| www.av在线官网国产| 成人免费观看视频高清| 亚洲成色77777| 插逼视频在线观看| 亚洲av日韩在线播放| 午夜福利在线观看免费完整高清在| 日本-黄色视频高清免费观看| 亚洲av日韩在线播放| 欧美精品人与动牲交sv欧美| 亚洲精品日韩在线中文字幕| av在线观看视频网站免费| 欧美日韩成人在线一区二区| 两性夫妻黄色片 | 黑人高潮一二区| 久久综合国产亚洲精品| 精品少妇久久久久久888优播| 99久国产av精品国产电影| 亚洲图色成人| 九草在线视频观看| 蜜臀久久99精品久久宅男| av免费在线看不卡| 少妇的丰满在线观看| 欧美精品av麻豆av| 好男人视频免费观看在线| 一级黄片播放器| 久久久国产欧美日韩av| 人体艺术视频欧美日本| 99香蕉大伊视频| 51国产日韩欧美| 秋霞在线观看毛片| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 18在线观看网站| 久久人人爽人人爽人人片va| av电影中文网址| 午夜福利视频在线观看免费| 日本黄色日本黄色录像| 中文字幕人妻丝袜制服| 最近中文字幕2019免费版| 伊人亚洲综合成人网| 又大又黄又爽视频免费| 日韩av免费高清视频| 欧美国产精品va在线观看不卡| 丝瓜视频免费看黄片| 亚洲中文av在线| 欧美精品一区二区免费开放| 99热国产这里只有精品6| 国产成人精品婷婷| 欧美日韩国产mv在线观看视频| 香蕉精品网在线| 午夜影院在线不卡| 国产一区二区三区综合在线观看 | 99久久综合免费| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 制服丝袜香蕉在线| 亚洲熟女精品中文字幕| 亚洲精品色激情综合| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 国产日韩欧美亚洲二区| 国产在线免费精品| 亚洲精品乱码久久久久久按摩| 国产精品一国产av| 亚洲精品乱久久久久久| 丰满迷人的少妇在线观看| 99九九在线精品视频| 国产精品国产三级国产专区5o| av黄色大香蕉| 宅男免费午夜| 中文字幕人妻丝袜制服| 亚洲美女黄色视频免费看| 一本色道久久久久久精品综合| 一级毛片电影观看| 日本欧美国产在线视频| 亚洲伊人色综图| 少妇的逼水好多| 女性生殖器流出的白浆| 高清黄色对白视频在线免费看| 中文欧美无线码| 99久久中文字幕三级久久日本| 狂野欧美激情性xxxx在线观看| 一二三四中文在线观看免费高清| 亚洲四区av| 黄色 视频免费看| 国产一区有黄有色的免费视频| 亚洲,欧美精品.| 国产av精品麻豆| 免费人妻精品一区二区三区视频| 七月丁香在线播放| 国产精品一区二区在线不卡| av国产久精品久网站免费入址| 人妻少妇偷人精品九色| 男人舔女人的私密视频| 人妻 亚洲 视频| 90打野战视频偷拍视频| 国产精品国产三级专区第一集| 国产国语露脸激情在线看| 看免费av毛片| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费| 国产精品国产三级国产av玫瑰| av卡一久久| 麻豆乱淫一区二区| 在线观看人妻少妇| 亚洲成av片中文字幕在线观看 | 亚洲av在线观看美女高潮| 在线看a的网站| 亚洲欧洲日产国产| 欧美丝袜亚洲另类| 高清视频免费观看一区二区| 伊人亚洲综合成人网| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 街头女战士在线观看网站| 国产日韩一区二区三区精品不卡| 国产精品一二三区在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男男h啪啪无遮挡| 人妻少妇偷人精品九色| 国产色婷婷99| 丝袜人妻中文字幕| 国产成人av激情在线播放| 日韩制服丝袜自拍偷拍| 全区人妻精品视频| 一级片'在线观看视频| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 亚洲欧洲国产日韩| 高清不卡的av网站| 欧美xxxx性猛交bbbb| 久久狼人影院| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 成年美女黄网站色视频大全免费| 亚洲内射少妇av| 久久人人爽人人片av| 看免费成人av毛片| 视频区图区小说| 亚洲四区av| av线在线观看网站| 五月开心婷婷网| 99热国产这里只有精品6| 日韩三级伦理在线观看| 美女内射精品一级片tv| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 婷婷色av中文字幕| 久久久欧美国产精品| 日本-黄色视频高清免费观看| www.色视频.com| 免费观看无遮挡的男女| 在线观看www视频免费| 国产精品不卡视频一区二区| 天天操日日干夜夜撸| 大码成人一级视频| 国产在视频线精品| videos熟女内射| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| 精品第一国产精品| 日日啪夜夜爽| 国产免费一级a男人的天堂| 制服人妻中文乱码| 午夜精品国产一区二区电影| 中国美白少妇内射xxxbb| 欧美精品人与动牲交sv欧美| 最近最新中文字幕免费大全7| 亚洲精品av麻豆狂野| 婷婷色av中文字幕| 久久久欧美国产精品| 22中文网久久字幕| 国产一区亚洲一区在线观看| 美国免费a级毛片| 中文字幕制服av| 看免费成人av毛片| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 熟女人妻精品中文字幕| 精品一品国产午夜福利视频| 免费观看av网站的网址| 成人毛片a级毛片在线播放| 国产极品粉嫩免费观看在线| 久久久久人妻精品一区果冻| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区| 韩国精品一区二区三区 | 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 人人妻人人添人人爽欧美一区卜| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 汤姆久久久久久久影院中文字幕| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 蜜臀久久99精品久久宅男| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 两性夫妻黄色片 | 大片免费播放器 马上看| 免费黄网站久久成人精品| 日本黄色日本黄色录像| 中国三级夫妇交换| 人妻系列 视频| 国产免费现黄频在线看| 亚洲av福利一区| 国产69精品久久久久777片| 99re6热这里在线精品视频| 日本色播在线视频| 久久午夜福利片| h视频一区二区三区| 欧美人与性动交α欧美精品济南到 | 日韩 亚洲 欧美在线| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人 | 18禁观看日本| 免费av不卡在线播放| 九色成人免费人妻av| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 97在线视频观看| 婷婷成人精品国产| 久久久久精品人妻al黑| 欧美日韩视频精品一区| 热re99久久国产66热| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 大码成人一级视频| 在线免费观看不下载黄p国产| 女人久久www免费人成看片| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 免费观看在线日韩| 极品人妻少妇av视频| 人妻人人澡人人爽人人| 日本欧美视频一区| 男的添女的下面高潮视频| 久久热在线av| 婷婷色av中文字幕| 亚洲成人av在线免费| 国产高清国产精品国产三级| 丝瓜视频免费看黄片| 男女边摸边吃奶| 99九九在线精品视频| 两个人免费观看高清视频| 国产黄色免费在线视频| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av涩爱| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 日韩欧美一区视频在线观看| 久久99蜜桃精品久久| 在线观看免费高清a一片| 一个人免费看片子| a级毛片在线看网站| 热re99久久国产66热| 另类亚洲欧美激情| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 国产精品成人在线| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av涩爱| av卡一久久| 18禁观看日本| 久久人妻熟女aⅴ| 久久影院123| 男人舔女人的私密视频| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 国产伦理片在线播放av一区| 日韩中文字幕视频在线看片| 啦啦啦啦在线视频资源| 满18在线观看网站| 91精品伊人久久大香线蕉| 人妻 亚洲 视频| 免费观看a级毛片全部| 一级毛片我不卡| 日韩成人伦理影院| 五月玫瑰六月丁香| av在线老鸭窝| 欧美人与性动交α欧美精品济南到 | www.av在线官网国产| www.熟女人妻精品国产 | 91国产中文字幕| 免费日韩欧美在线观看| 精品酒店卫生间| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 中国三级夫妇交换| 黄色 视频免费看| 99视频精品全部免费 在线| av免费在线看不卡| 99热这里只有是精品在线观看| 全区人妻精品视频| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 这个男人来自地球电影免费观看 | 久久久久久久久久成人| 一级毛片电影观看| 亚洲欧美色中文字幕在线| 日韩制服骚丝袜av| 国产乱来视频区| av.在线天堂| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 亚洲四区av| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| 精品人妻在线不人妻| 亚洲伊人久久精品综合| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看| 日本免费在线观看一区| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 美女xxoo啪啪120秒动态图| a级片在线免费高清观看视频| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 考比视频在线观看| 亚洲综合色网址| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 久久久久久人人人人人| 两性夫妻黄色片 | 少妇精品久久久久久久| 免费观看a级毛片全部| 九色亚洲精品在线播放| 国产av码专区亚洲av| 久久ye,这里只有精品| 亚洲图色成人| 如日韩欧美国产精品一区二区三区| 熟女人妻精品中文字幕| 免费观看在线日韩| 国产成人a∨麻豆精品| 亚洲在久久综合| 亚洲精品国产色婷婷电影| 欧美97在线视频| 七月丁香在线播放| 欧美日韩亚洲高清精品| freevideosex欧美| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 欧美国产精品va在线观看不卡| 日本黄大片高清| 久久久久精品性色| 高清黄色对白视频在线免费看| 99久国产av精品国产电影| 亚洲经典国产精华液单| 看免费av毛片| 亚洲人成网站在线观看播放| 777米奇影视久久| 久久精品国产亚洲av天美| 免费观看a级毛片全部| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 精品久久久精品久久久| 在线天堂最新版资源| 欧美日韩视频高清一区二区三区二| 久久久欧美国产精品| 91aial.com中文字幕在线观看| 久久精品夜色国产| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| 最新中文字幕久久久久| 亚洲成人一二三区av| 国产精品国产三级专区第一集| a级毛片黄视频| 日本黄大片高清| 我要看黄色一级片免费的| 波野结衣二区三区在线| 少妇猛男粗大的猛烈进出视频| 亚洲久久久国产精品| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 一级a做视频免费观看| 青春草视频在线免费观看| 十分钟在线观看高清视频www| 久久精品国产鲁丝片午夜精品| av福利片在线| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 久久精品久久久久久久性| 日本与韩国留学比较| 麻豆乱淫一区二区| 黄片无遮挡物在线观看| 亚洲成人一二三区av| 69精品国产乱码久久久| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到 | 久久av网站| 9色porny在线观看| 欧美97在线视频| 亚洲美女视频黄频| 午夜影院在线不卡| 日韩av免费高清视频| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| 在线天堂中文资源库| 美女内射精品一级片tv| 九九在线视频观看精品| 曰老女人黄片| 免费人妻精品一区二区三区视频| 青春草国产在线视频| 街头女战士在线观看网站| 国产69精品久久久久777片| 国产 一区精品| 熟女av电影| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 欧美 亚洲 国产 日韩一| 高清黄色对白视频在线免费看| 人妻少妇偷人精品九色| 免费人妻精品一区二区三区视频| 999精品在线视频| 波多野结衣一区麻豆| 久久人人97超碰香蕉20202|