彭元雙 陳國平 董彥君
摘? 要:科技進(jìn)步帶動(dòng)著數(shù)學(xué)模型的發(fā)展,傳統(tǒng)的整數(shù)階微分方程已經(jīng)難以滿足人們的研究需要,分?jǐn)?shù)階微分方程在某些方面能夠更準(zhǔn)確描述一些實(shí)際現(xiàn)象,近幾十年來得到了各個(gè)領(lǐng)域的應(yīng)用。研究此類系統(tǒng)解的個(gè)數(shù)問題最常用的方法是不動(dòng)點(diǎn)理論,但是由于分?jǐn)?shù)階微分算子的大多性質(zhì)都與整數(shù)階微分算子不同,使得一些左右混合RL型分?jǐn)?shù)階微分方程難以適用。該文使用臨界點(diǎn)理論有效研究了一類左右混合RL型分?jǐn)?shù)階脈沖微分方程邊值問題。
關(guān)鍵詞:分?jǐn)?shù)階微分方程;脈沖;臨界點(diǎn)理論
Abstract:Advances in science and technology have led to the further development of mathematical models. Traditional integer-order differential equations have been difficult to meet peoples research needs. However,fractional differential equations can more accurately describe some practical phenomena in some aspects. In recent decades,it has been applied in various fields. The most commonly used method for studying the number of solutions to such systems is the fixed point theory. However,most of the properties of fractional differential operators are different from integer-order differential operators,making some left-right mixed RL-type fractional differential equations difficult to apply. In this paper,we use the critical point theory to effectively study the boundary value problem of a class of left-right mixed RL-type fractional impulsive differential equations.
Keywords:fractional differential equation;impulsive;critical point theory
0? 引? 言
隨著科技的發(fā)展,人們對數(shù)學(xué)模型的精確性提出了更嚴(yán)格的要求,如果將傳統(tǒng)整數(shù)階微分方程中的導(dǎo)數(shù)換成分?jǐn)?shù)階導(dǎo)數(shù),有時(shí)候比整數(shù)階微分方程模型更能精確地?cái)M合某些實(shí)際現(xiàn)象,因此近幾十年來被廣泛應(yīng)用于物理、金融理論等領(lǐng)域[1-3]。分?jǐn)?shù)階微積分的發(fā)展并沒有像整數(shù)階微積分的發(fā)展那樣完善,有待學(xué)者們的進(jìn)一步研究。筆者的研究方向是微分方程與動(dòng)力系統(tǒng),長期致力于學(xué)習(xí)和研究分?jǐn)?shù)階微分方程,并參與了有關(guān)的課題研究工作,目的是希望能夠形成一定的研究規(guī)模,拓展分?jǐn)?shù)階微積分的知識體系,將分?jǐn)?shù)階微分方程應(yīng)用于更多的領(lǐng)域當(dāng)中,促進(jìn)分?jǐn)?shù)階微積分的研究和教學(xué)工作的展開。
目前,在分?jǐn)?shù)階微分方程解的存在性問題的研究中,傳統(tǒng)的研究方法有不動(dòng)點(diǎn)理論等[4,5]。運(yùn)用該方法的前提是必須先找到與邊值問題等價(jià)的積分方程,但是分?jǐn)?shù)階微分算子有很多性質(zhì),與整數(shù)階微分算子不同,表現(xiàn)得更為復(fù)雜,所以試圖尋求方程等價(jià)的積分方程是一件十分復(fù)雜且困難的事情,有時(shí)候甚至無法求出來。近幾年來,人們發(fā)現(xiàn),運(yùn)用臨界點(diǎn)理論討論分?jǐn)?shù)階微分方程的解的問題可以避免求等價(jià)的積分方程的復(fù)雜工序,這種方法尤其對于研究左右混合型分?jǐn)?shù)階微分方程解的存在性問題效果甚好,2012年,Zhou和Jiao[6]首次嘗試運(yùn)用臨界點(diǎn)理論中的山路引理,并研究了如下邊值問題:
此外,現(xiàn)實(shí)中的許多現(xiàn)象在發(fā)展過程中,常常會(huì)遭遇外部干擾從而產(chǎn)生瞬時(shí)突變,即脈沖現(xiàn)象,如果不考慮該現(xiàn)象對模型的影響,就會(huì)使模型失真,然而對有脈沖影響的分?jǐn)?shù)階微分方程的相關(guān)研究還比較少,本文受文獻(xiàn)[6]的啟發(fā),在原來方程的基礎(chǔ)上加上了擾動(dòng)項(xiàng)和脈沖項(xiàng),即考慮如下的分?jǐn)?shù)階脈沖微分方程的邊值問題:
本文研究的方程(2)與文獻(xiàn)[6]中提到的方程不同之處在于多加了擾動(dòng)項(xiàng)和脈沖項(xiàng),使得求此類方程邊值問題解變得更復(fù)雜些,通過對其建立變分結(jié)構(gòu),再利用臨界點(diǎn)理論中的山路引理等,證明出了當(dāng)滿足某些新的條件時(shí),該方程至少存在一個(gè)非平凡解。
1? 預(yù)備知識
山路引理是由Rabinowitz[9]提出的,不僅可用于求證整數(shù)階微分方程對應(yīng)泛函的臨界點(diǎn),還能用于求分?jǐn)?shù)階微分方程的相應(yīng)問題。
2? 變分結(jié)構(gòu)
綜上,可知泛函? 至少存在一個(gè)非平凡臨界點(diǎn),即邊值問題(2)至少存在一個(gè)非平凡解。證畢。
4? 結(jié)? 論
本文基于臨界點(diǎn)理論,研究了一類帶脈沖項(xiàng)和擾動(dòng)項(xiàng)的分?jǐn)?shù)階微分方程邊值問題。首先在恰當(dāng)?shù)目臻g內(nèi)建立起了變分結(jié)構(gòu),再利用山路引理等得出結(jié)論:當(dāng)方程滿足條件假設(shè)1、假設(shè)2、假設(shè)3、假設(shè)4,且當(dāng)λ>λ1時(shí),至少存在一個(gè)非平凡解。
參考文獻(xiàn):
[1] LIU F,TURNER I,ANH V. An unstructured mesh finite volume method for modelling saltwater intrusion into coastal aquifers [J].Journal of Applied Mathematics and Computing,2002,9(2):391-407.
[2] WITTEN T A. Insights from soft condensed matter [J].Reviews of Modern Physics,1999,71:367-373.
[3] SU N H,LIU F W,ANH V. Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base [J].Environmental Modelling & Software,2003,18(10):937-942.
[4] SU X W,ZHANG S Q. Solutions to boundary-value problems for nonlinear differential equations of fractional order [J].Electronic Journal of Differential Equations,2009(26):571-582.
[5] ZHAO Y G,SUN S R,HAN Z L,et al. Positive solutions for boundary value problems of nonlinear fractional differential equations [J].Applied Mathematics and Computation,2011,217(16):6950-6958.
[6] JIAO F,ZHOU Y. Existence results for fractional boundary value problem viacritical point theory [J].International Journal of Bifurcation and Chaos,2012,22(4)1250086.
[7] PODLUBUY I. Fractional Differential Equations [M].New York:Academic Press,1999.
[8] 郭大均.非線性泛函分析:第2版 [M].濟(jì)南:山東科技出版社,2001.
[9] RABINOWITZ P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M].America:American Mathematical Society,1986.
[10] JIAO F,ZHOU Y. Existence of solutions for a class of fractional boundary value problems via critical point theory [J].Computers & Mathematics with Applications,2011,62(3):1181-1199.
[11] 白占兵.分?jǐn)?shù)階微分方程邊值問題理論及應(yīng)用 [M].北京:中國科學(xué)技術(shù)出版社,2013.
[12] NEMAR N,ROSANA R L. On boundary value problems for impulsive fractional differential equations [J].Apllied Mathematics and Computation,2015(271)874-892.
作者簡介:彭元雙(1989.02—),男,土家族,湖南保靖人,碩士研究生,研究方向:微分方程與動(dòng)力系統(tǒng);陳國平(1964. 06—),男,漢族,湖南邵陽人,教授,博士,研究方向:微分方程與動(dòng)力系統(tǒng)研究;董彥君(1991.07—),女,漢族,廣西百色
人,助教,碩士研究生,研究方向:微分方程與動(dòng)力系統(tǒng)。