• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials?

    2019-06-18 05:42:40HaoLu陸浩JunyangWang汪君洋BonanLiu劉柏男GengChu褚賡GeZhou周格FeiLuo羅飛JieyunZheng鄭杰允XiqianYu禹習(xí)謙andHongLi李泓
    Chinese Physics B 2019年6期

    Hao Lu(陸浩),Junyang Wang(汪君洋),Bonan Liu(劉柏男),Geng Chu(褚賡),Ge Zhou(周格),Fei Luo(羅飛),Jieyun Zheng(鄭杰允),Xiqian Yu(禹習(xí)謙),?,and Hong Li(李泓),?

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences(CAS),Beijing 100049,China

    3CAS Research Group on High Energy Density Lithium Batteries for EV,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    4Key Laboratory of Green Process Engineering,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    5Tianmulake Excellent Anode Materials Co.,Ltd.,Changzhou 213300,China

    Keywords:lithium-ion battery,silicon monoxide,carbon coating,anode material

    1.Introduction

    Rechargeable lithium-ion batteries(LIBs)have been widely applied as predominant power sources in portable electronic devices,electric vehicles(EV),and electricity storage systems.With the rapid development of emerging electric vehicle markets,the increasing demands for high energy and power density,long-term cyclic stability,and low-cost have been critical challenges for lithium-ion batteries.[1-3]Among all the anode materials for LIBs that have been developed until now,silicon(Si)is considered as the most promising anode material for next generation high-energy-density LIBs owing to its high specific capacity(~ 4200 mAh·g-1)and low operating voltage for Li+insertion/extraction(<0.5 V versus Li+/Li).[4,5]However,there are two major drawbacks for the Si anode that hinder its commercial application:(i)the low intrinsic electric conductivity,and(ii)the severe volume swelling(>400%)during repeated Li-Si alloying/dealloying process.The drastic volume change leads to severe pulverization of the electrode,continuous formation of unstable solid electrolyte interphase(SEI)over recurrent charge/discharge cycles,and thus rapid decay of specific capacity.[6,7]Many strategies-such as employing nanocrystallized Si,forming composites with other phases,and surface coating with carbon-have been applied to achieve better electrochemical performance of Si anodes.[8-14]However,the long-term cycling stability of Si anode materials is still not yet able to meet the strict requirements for practical applications.

    As an alternative material among the Si-based anode materials,silicon monoxide(SiO)has been attracting growing attention in recent years because of its high reversible specific capacity(~ 2400 mAh·g-1)and stable cycling performance.The structural model of amorphous SiO is still ambiguous,with amorphous Si and SiO2clusters surrounded by Si-suboxide matrix as one plausible model.[15-17]This unique microstructure of SiO can effectively alleviate the large volume change of SiO electrodes during cycling,comparing with Si anodes.More speci fically,during the first lithiation pro-cess,Li reacts with SiO2to produce Li2O and LixSiOy(mainly Li4SiO4).Such compounds can act as buffer skeleton and relieve the severe volume change of SiO electrodes caused by further lithiation reaction,reducing the pulverization of SiO electrodes and the electrical disconnection with current collectors,and thus improve the cyclic performance of SiO.

    Nevertheless,SiO anode materials still suffer from relatively large volume change(~200%)during Li+insertion/extraction and low initial coulombic efficiency(ICE),due to the poor intrinsic electrical conductivity and the irreversible reactionbetweenLi+andSiO2clusters.Toresolvetheseproblems,several methods including element doping(e.g.,boron,titanium,and tungsten),construction of SiO/C composites,and surface coating(e.g.,carbon,TiO2,and Fe3O4)have been conducted to further improve the performance of SiO.[18-24]Among these strategies,surface coating with carbonaceous materials(e.g.,graphite,amorphous carbon,carbon nano fiber,carbon nanotubes,graphene,and reduced graphene oxide)has been widely employed in industrial production due to its lowcost and remarkable improvements in performance.For example,Wang et al.synthesized a carbon coated SiO nanocomposite with a core-shell structure via a solution route,which exhibits a high reversible specific capacity of~ 800 mAh·g-1at the 50th cycle and excellent rate performance.[25]Lee et al.reported that a nitrogen-doped carbon coated micro-sized SiO anode delivers a reversible capacity of 955 mAh·g-1after 200 cycles at a current density of 1500 mA·g-1,whereas only 545 mAh·g-1for bare SiO.[26]Carbon coating on SiO surface can greatly improve the electrical conductivity,effectively reduce the polarization,and relieve the severe volume change of SiO electrode,thus significantly enhance its cycling stability and rate capability.To achieve an excellent comprehensive performance,the carbon content in the surface coating layers needs to be further controlled to maintain the high capacity,initial coulombic efficiency,and cycle stability.

    In this work,the micro-sized SiO@C with carbon coating layer of different thicknesses were controllably synthesized via a simple pitch pyrolysis reaction method.The effect of carbon content on the electrochemical performances of SiO@C was investigated.The SiO@C/graphite(SiO@C/G)composites with the target capacity of 600 mAh·g-1were further synthesized by a ball-milling process.The SiO@C/G composite anodes exhibit a high reversible capacity and improved cycling performance in half cells as well as full cells with LiNi0.5Co0.2Mn0.3O2(NCM)as cathode material.

    2.Experiment

    2.1.Fabrication of SiO@C/G composites

    Silicon monoxide(Tianmulake Excellent Anode Materials Co.,Ltd.)was selected as the raw material to prepare the SiO@C composites via a simple pitch pyrolysis method.Firstly,SiO powder with an average particle size of 4μm-6μm was mixed with petroleum pitch,then the above mixture was heat-treated at a temperature of 300°C for 2 h and then 900°C for 2 h at a heating rate of 10°C·min-1in Ar atmosphere to obtain SiO@C composites.By the above process,SiO@C composites with different carbon coating contents(5 wt%,10 wt%,15 wt%,and 35 wt%)were synthesized at different mass ratios of SiO powders and petroleum pitch,which were labeled as SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.

    SiO@C/G composites were prepared to match the capacity of the cathode material.Graphite(Tianmulake Excellent Anode Materials Co.,Ltd.)was added to maintain the total capacity of SiO@C/G at 600 mAh·g-1.These mixtures were ball-milled for 5 h to obtain the final SiO@C/G composite materials(labeled as SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35).The amount of graphite of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 is 75.6 wt%,73.8 wt%,71.0 wt%,and 63.6 wt%,respectively.

    2.2.Characterizations

    The phase purity of aforementioned composite materials was characterized by an x-ray diffractometer(D8 Bruker)with Cu Kα radiation in the 2θ range of 10°-80°.The morphologies were investigated by scanning electron microscope(SEM,Hitachi-S4800)and transmission electron microscopy(TEM,FEI Tecnai G2 F20).Raman spectra were obtained by a Raman spectrometer(JY-HR800)using a 532-nm laser as a light source.The content of carbon was analyzed by carbon and sulphur analyzer(Yronh,CS-320).The tap density was measured by tapping apparatus(BNST,FZS4-4B).The specific surface areas of SiO@C samples were measured with the Brunauere-Emmete-Teller(BET)method by nitrogen adsorption isotherms collected at 77 K(Quantachrome,NOVA4200e).

    2.3.Electrochemical characterizations

    To make the electrode,the active material,carbon black,and water-soluble binder were mixed in a weight ratio of 93:2:5 in distilled water.The binder consisted of sodium carboxymethyl cellulose(CMC)and water system styrene butadiene rubber emulsion(SBR)water solutions in a weight ratio of 2:3.The slurry was deposited on copper foil using a blade and dried at 80°C in vacuum for 10 h.The mass loading of active materials was about 5 mg·cm-2.

    Coin-type cells were assembled in an argon- filled glovebox using Celgard 2500 as a separator,1-mol·L-1LiPF6in ethylene carbonate(EC)/diethyl carbonate(DEC)(1:1,v/v)as an electrolyte,and Li foil as a counter electrode.The charge/discharge tests were carried out using a Land battery test system(CT2001 A,Land)in a voltage range of 0.005 V-2.0 V at 0.1 A·g-1.Electrochemical impedance spectroscopy(EIS)was measured at anopen-circuit voltage inthe frequency range of 100 kHz and 10 mHz on an electrochemical station(CHI600E).

    Full cell electrochemical performance was evaluated in 2.5-Ah pouch cells using LiNi0.5Co0.2Mn0.3O2as cathodes and SiO@C/G composites as anodes.Both cathode and anode electrodes were fabricated in a pilot line(Tianmulake Excellent Anode Materials Co.,Ltd.).The electrolyte solution was 1-mol·L-1LiPF6in EC:DEC:DMC(1:1:1 in volume ratio).The full cells were charged and discharged in the voltage range of 2.75 V-4.2 V at various C-rates(1 C=677 mA·g-1).

    3.Results and discussion

    The synthesis process for micro-sized SiO@C/G composites is schematically illustrated in Fig.1.The micro-sized SiO@C samples with carbon coating layer of different thicknesses are first synthesized through a simple pitch pyrolysis reaction method.Then,the as-prepared SiO@C samples are mixed with graphite powders via a mechanical milling process to obtain the SiO@C/G composites.The carbon content of SiO@C samples are analyzed by carbon and sulphur analyzer.The actual carbon content for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples are 5.3%,9.8%,15.8%,and 35.1%,respectively,which are well consistent with the designed values.With the increase in carbon content,the tap densities and the specific surface areas of SiO@C samples remain almost unchanged(Table 1),indicating a similar particle size and surface morphology.

    Fig.1.Schematic illustration of the preparation process of micro-sized SiO@C/G composites.

    Table 1.The carbon content,tap density,and specific surface area of as-prepared SiO@C samples.

    Phase composition and crystallinities of the pristine SiO and SiO@C samples are characterized by x-ray diffraction(XRD).For all diffraction patterns,as shown in Fig.2(a),they are composed of a hump and several relatively sharp diffraction peaks.The hump located in the 2θ range of 20°-30°is corresponding to a typical amorphous phase of SiO2,and the sharp diffraction peaks at 28.4°,47.3°,and 56.1°can be assigned to the crystalline phase of Si.The occurrence of the diffraction peaks of Si crystalline in the XRD patterns of SiO@C samples is due to a partial thermal disproportionation reaction of SiO during the pyrolysis process(Fig.1).The intensities of Si diffraction peaks are almost identical for all SiO@C samples,indicating that there is no signi ficant difference in Si content for all SiO@C samples.Figure 2(b)shows the Raman spectra of the as-prepared SiO@C samples.The peaks located at around 520 cm-1and 980 cm-1correspond to Si crystalline phase,which is in accordance with the XRD results.The peaks located at~1340 cm-1and~1575 cm-1correspond to the disordered(D)bands and graphene(G)bands of carbon,respectively,and the peak intensity ratio can be used to describe the extent of graphitization.The Raman spectra results demonstrate the existence of amorphous carbon(ID/IGratio is~1.57)for the SiO@C samples.

    Fig.2.(a)XRD patterns and(b)Raman spectra of the SiO@C samples.

    SEM and high-resolution transmission electron microscopy(HRTEM)measurements are carried out to investigate the morphology and microstructure of the as-prepared SiO@C samples.As shown in Fig.3,the pristine SiO and as-prepared SiO@C samples have similar particle size with an average diameter of 4μm-6μm.The surface of SiO particles becomes smoother after carbon coating,contrasting the coarse surface of the pristine SiO particle(Figs.3(a)-3(f)).The uniform carbon coating is further con firmed by HRTEM.It can be clearly observed from Figs.3(g)-3(j)that the surface of SiO@C particles is uniformly coated by a dense amorphous carbon layer.With the increase in carbon content,the thickness of coating layer increases from 10.6 nm for SiO@C-5 to 23.8 nm,36.8 nm,and 81.0 nm for SiO@C-10,SiO@C-15,and SiO@C-35 samples,respectively.Such a dense carbon coating layer can enhance the electric conductivity of SiO electrode during lithium intercalation/de-intercalation,leading to the improvement of the electrochemical performance of SiO.

    To evaluate the electrochemical performances of asprepared SiO@C samples,galvanostatic charge-discharge tests are performed by using a coin-type half-cell. Figure4(a)shows the charge/discharge voltage profiles of SiO@C electrodes at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V.The initial charge capacities are 1708.9 mAh·g-1,1634.2 mAh·g-1,1500.4 mAh·g-1,and 1151.5 mAh·g-1for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).As for the charge specific capacity of soft carbon is just about 250 mAh·g-1,the composite with a higher carbon amount will have a lower initial charge specific capacity.The cycling performance and corresponding coulombic efficiency(CE)of the SiO@C samples are shown in Figs.4(b)and 4(c).It can be seen that the cycling stability and coulombic efficiency of SiO@C gradually improve with the increase of carbon content. The discharge capacity retention after 20 cycles is 54.1%,59.4%,65.3%,and 87.2%for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).The reasons for such improvements can be explained as follows:i)The carbon coating layer greatly enhances the electric conductivity and then effectively reduces the polarization of SiO electrodes;and ii)the carbon layer can function as a buffer layer to relieve the large volume swelling of SiO.

    Fig.3.(a)and(b)SEM images of pristine SiO;(c)-(f)SEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35;(g)-(j)HRTEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples.

    Fig.4.(a)and(d)The initial charge/discharge curves,(b)and(e)discharge capacity retention,and(c)and(f)the corresponding coulombic efficiencies of SiO@C and SiO@C/G composites,respectively.

    Table 2.The electrochemical performance of SiO@C samples and SiO@C/G composites in half cells.

    SiO@C/G composites are prepared to further improve the long-term cycle stability of SiO@C.To match the capacity of positive electrode materials,the initial charge capacity of SiO@C/G composites is designed to 600 mAh·g-1(the highest charge capacity of commercial silicon-based anodes)by introducing different mass ratios of graphite powders.The galvanostatic charge-discharge tests of SiO@C/G composites are performed at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V in coin-type half-cell firstly.The electrochemistry performances are displayed and summarized in Fig.4 and Table 2.The initial charge capacities of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 are 596.2 mAh·g-1,592.6 mAh·g-1,598.0 mAh·g-1,and 601.0 mAh·g-1,respectively,which are in good accordance with the designed value of 600 mAh·g-1.All the SiO@C/G composites show higher initial coulombic efficiency and better cycling performance than the SiO@C samples, illustrating that the introduction of graphite is bene ficial to further improve the long-term cycling life of SiO@C.Among all SiO@C/G composites,the SiO@C/G-15 sample exhibits the best capacity retention of 80.4%after 50 cycles,while for SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35,the capacity retention is 66.7%,71.9%,and 76.4%,respectively.The capacity retention of SiO@C/G-35 is slightly poorer than that of SiO@C/G-15 because a smaller amount of graphite is added(lower capacity of SiO@C).

    Fig.5.Charge/discharge pro files of SiO@C/G||NCM full cell(a)at 2nd cycle and(b)at 100th cycle,the corresponding differential capacity(dQ/dV)plots(c)at 2nd cycle and(d)at 100th cycle,the cyclic performance of full cells(e)at 25 °C and(f)45 °C,and(g)the rate performance of the full cells.

    To evaluate the feasibility of the SiO@C/G composite anodes for practical application,2.5-Ah pouch-type full cells are assembled with the as-synthesized SiO@C/G composites as anodes and the commercially available LiNi0.5Co0.2Mn0.3O2as the cathodes.Figures 5(a)and 5(b)show the chargedischarge curves of the SiO@C/G‖NCM full cells at the 2nd and 100th cycles,respectively.The full cell with SiO@C/G-15 exhibits the highest discharge capacity of 2212.9 mAh·g-1after 100 cycles. The corresponding differential capacity(dQ/dV)plots of SiO@C/G||NCM full cells exhibit similar peak features at 2nd cycle(Fig.5(c))and at 100th cycle(Fig.5(d)).The intense peak between 3.95 V and 4.1 V is ascribed to the delithiation of graphite.This peak in SiO@C/G-15 remains in the highest voltage range after 100 cycles,indicating that the polarization of SiO@C/G-15 electrode is minimal among the SiO@C/G composite electrodes.It is expected that the polarization caused by electronic conductivity is negligible due to the introduction of graphite and the measurement of dQ/dV at such a low rate of 0.02 C.Therefore,it can be further inferred that the SiO@C/G-15 maintains better ionic conductivity than other SiO@C/G composites during cycling.As shown in Figs.5(e)and 5(f),the full cells with SiO@C/G-15 exhibit the best capacity retention of 90.7%and 90.1%at 25°C and 45°C,respectively(Table 3).Thus,stable cycling is achieved with SiO@C/G-15 composite electrodes in full cells even at a high temperature of 45°C.The rate capabilities of full cells at different current densities are exhibited in Fig.5(g).The charge capacity gradually decreases with the increases of rate from 0.5 C to 5 C.A notable drop of the charge capacity occurs at a high rate of 10 C.

    Table 3.The electrochemical performance of SiO@C/G||NCM full cells.

    Fig.6.SEMimagesof(a)and(e)SiO@C/G-5,(b)and(f)SiO@C/G-10,(c)and(g)SiO@C/G-15,(d)and(h)SiO@C/G-35composite electrodes collected in full cells after 2 cycles,and(i)and(m)SiO@C/G-5,(j)and(n)SiO@C/G-10,(k)and(o)SiO@C/G-15,(l)and(p)SiO@C/G-35 composite electrodes after 100 cycles.

    The morphology of the SiO@C/G electrodes after 2nd cycle and 100th cycle in full cells is investigated by SEM(Fig.6).It can be seen that there is no particle pulverization and fracture in the SiO@C/G composite electrodes,even after 100 cycles,indicating that the carbon coating layer and graphite skeleton play a signi ficant role in buffering the volume swelling of SiO particles and enhancing the mechanical stability of SiO electrodes.Figures 6(a)-6(h)show the sur-face morphology of SiO@C/G composite electrodes after two cycles.It is obvious that the particle surface of the SiO@C/G composites,especiallySiO@C/G-5,iscoveredbyarough film(Fig.6(e)),which can be ascribed to the solid-electrolyte interphase(SEI) film.After 100 cycles,the thickness of SEI increases on the surface of SiO@C/G particles(Figs.6(i)-6(p)).It can be clearly observed in Fig.6(m)that the SiO@C/G-5 particle is almost completely covered by a thick SEI film.In contrast,no signi ficant changes of surface morphology can be observed on SiO@C/G-15 after cycling compared with SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35.These results suggest that a carbon coating layer with moderate thickness will be propitious to effectively form a stable SEI film and maintain a high ionic conductivity for the SiO@C/G composite,thus enhancing its long-term cycling stability.

    To further understand the difference in the electrochemical performance of SiO@C/G composites,electrochemical impedance spectroscopy measurements are performed with full cells.As shown in Figs.7(a)and 7(b),the Nyquist plots consist of a small intercept at high frequency region(corresponding to the ohmic resistance,Ro),several semicircles at the medium frequency region(corresponding to the interface resistance and charge transfer resistance,RSEIand Rct),and a sloping straight line at the low frequency region(corresponding to the Warburg impedance,W).Figures 7(c)and 7(d)show the EIS fitting results of full cells after 2nd and 100th cycles.SiO@C/G-15 exhibits the minimum RSEIand Rctthan those of SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35 after the 2nd and 100th cycles,implying that better ionic conductivity can be maintained in the SiO@C/G-15 electrode after cycling,which is consistent with the variation of delithiation peak voltage of graphite derived from dQ/dV plots in Figs.5(c)and 5(d).In contrast,the SiO@C/G-5 electrode displays significantly larger RSEIand Rctafter 100 cycles due to the increase in SEI thickness,which can be inferred from the SEM results as shown in Fig.6(m).These results suggest that a moderate carbon coating layer can effectively stabilize the solid/liquid interfaces between the SiO@C/G composite electrode and electrolyte and maintain better ionic conductivity during cycling,thus greatly improving the long-term cycling stability.

    Fig.7.The Nyquist plots and corresponding fitting parameters of SiO@C/G‖NCM full cells after(a)and(c)2nd,and(b)and(d)100th cycles.The inserts are the corresponding equivalent circuits.

    4.Conclusions

    In summary,the micro-sized SiO@C/G composites with different thicknesses of carbon coating layers have been controllably synthesized via a pitch pyrolysis reaction method followed by a ball-milling process.Uniform amorphous carbon coating on SiO particle with thicknesses of 11.9 nm,21.6 nm,36.8 nm,and 81.0 nm is achieved,for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.The capacity retention and coulombic efficiency of SiO@C samples are gradually improved with the increase of carbon content.For practical application,SiO@C/G composites have been fabricated with the target overall capacity of 600 mAh·g-1.Among all the SiO@C/G composites,the SiO@C/G-15 composite electrode exhibits a high initial coulombic efficiency of 84.5%and an outstanding capacity retention of 90.7%at room temperature and 90.1%at high temperature of 45°C after 100 cycles in full cells with NCM as cathode.Therefore,a carbon coating layer with a moderate thickness will be propitious for SiO@C/G composites to effectively form a stable SEI film and maintain a high ionic conductivity during cycling,thus enhancing the long-term cycling stability.The new insights into SiO@C/G composites presented in this work will promote the commercialized application of SiO anode materials.

    欧美性猛交黑人性爽| 国产精品久久视频播放| 国内少妇人妻偷人精品xxx网站 | 成人18禁在线播放| 精品熟女少妇八av免费久了| 日韩高清综合在线| 噜噜噜噜噜久久久久久91| 国产精品久久久av美女十八| 国产亚洲精品久久久久久毛片| 精品一区二区三区av网在线观看| 久久精品国产99精品国产亚洲性色| www.www免费av| 中文字幕熟女人妻在线| 波多野结衣高清作品| 国产高清激情床上av| 精品电影一区二区在线| 亚洲人成网站在线播放欧美日韩| 国产激情欧美一区二区| 国产激情久久老熟女| 三级毛片av免费| 女警被强在线播放| 岛国在线免费视频观看| 久久久水蜜桃国产精品网| 美女免费视频网站| 日韩欧美精品v在线| 白带黄色成豆腐渣| 日日摸夜夜添夜夜添小说| 久久久久久久久免费视频了| 亚洲成a人片在线一区二区| 两性夫妻黄色片| 欧美日韩中文字幕国产精品一区二区三区| 午夜a级毛片| 国产爱豆传媒在线观看| 久久久久久九九精品二区国产| 啦啦啦免费观看视频1| svipshipincom国产片| 美女 人体艺术 gogo| 两性夫妻黄色片| 性色avwww在线观看| 国产精华一区二区三区| 丝袜人妻中文字幕| 黄频高清免费视频| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 国产av一区在线观看免费| 很黄的视频免费| 男插女下体视频免费在线播放| 国产精品日韩av在线免费观看| 无遮挡黄片免费观看| 国产激情欧美一区二区| 精品无人区乱码1区二区| av中文乱码字幕在线| 无限看片的www在线观看| 两个人看的免费小视频| 国产69精品久久久久777片 | 操出白浆在线播放| 在线观看午夜福利视频| 俄罗斯特黄特色一大片| 成人特级av手机在线观看| 淫妇啪啪啪对白视频| 美女cb高潮喷水在线观看 | 成年女人毛片免费观看观看9| 男插女下体视频免费在线播放| 国产精品久久久久久人妻精品电影| 国产一区二区激情短视频| 久久精品夜夜夜夜夜久久蜜豆| 国产三级在线视频| 亚洲成人久久性| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利欧美成人| www.自偷自拍.com| 18禁观看日本| 亚洲精品在线美女| 国产成人av激情在线播放| 亚洲国产精品久久男人天堂| 美女高潮的动态| 精品久久蜜臀av无| 无人区码免费观看不卡| 亚洲国产色片| 亚洲人与动物交配视频| x7x7x7水蜜桃| 在线观看免费午夜福利视频| 国产亚洲av嫩草精品影院| 国产精品久久视频播放| 男插女下体视频免费在线播放| 一本久久中文字幕| 成人av在线播放网站| 麻豆成人午夜福利视频| 99久久国产精品久久久| 在线看三级毛片| 亚洲avbb在线观看| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| 亚洲第一电影网av| 级片在线观看| 国产又黄又爽又无遮挡在线| 精品久久久久久久久久免费视频| 国产探花在线观看一区二区| 午夜久久久久精精品| 精品国内亚洲2022精品成人| 一本一本综合久久| 午夜亚洲福利在线播放| av在线天堂中文字幕| 最近视频中文字幕2019在线8| 最近视频中文字幕2019在线8| 精品免费久久久久久久清纯| 亚洲五月天丁香| 毛片女人毛片| 亚洲精华国产精华精| 18禁裸乳无遮挡免费网站照片| 亚洲精华国产精华精| 国产成人影院久久av| 一本一本综合久久| 国产成人精品久久二区二区91| www.自偷自拍.com| 色在线成人网| 最好的美女福利视频网| 女人高潮潮喷娇喘18禁视频| 丁香欧美五月| 美女午夜性视频免费| 国产精品久久久人人做人人爽| 婷婷六月久久综合丁香| 亚洲片人在线观看| 久久亚洲精品不卡| 五月伊人婷婷丁香| 十八禁网站免费在线| 国产精品九九99| 变态另类丝袜制服| 91在线精品国自产拍蜜月 | 91av网一区二区| 五月伊人婷婷丁香| 午夜免费观看网址| svipshipincom国产片| 啦啦啦观看免费观看视频高清| 可以在线观看毛片的网站| 亚洲午夜理论影院| 亚洲专区字幕在线| 婷婷精品国产亚洲av| 又紧又爽又黄一区二区| 黄色日韩在线| 中文亚洲av片在线观看爽| 婷婷亚洲欧美| 久久人妻av系列| 亚洲av电影不卡..在线观看| 色尼玛亚洲综合影院| 国内精品久久久久精免费| 国产精品99久久久久久久久| 久久久久久人人人人人| 国产精品久久久久久久电影 | 好男人在线观看高清免费视频| 真人一进一出gif抽搐免费| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 桃色一区二区三区在线观看| 日韩欧美在线二视频| 国产又黄又爽又无遮挡在线| 午夜精品一区二区三区免费看| 亚洲av片天天在线观看| 香蕉久久夜色| 免费一级毛片在线播放高清视频| 国产又黄又爽又无遮挡在线| 国产精品电影一区二区三区| 国产免费男女视频| 亚洲欧美日韩东京热| 12—13女人毛片做爰片一| 亚洲真实伦在线观看| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 黄片小视频在线播放| 日韩欧美免费精品| 国产亚洲精品久久久com| 99久久国产精品久久久| 狂野欧美激情性xxxx| 99久国产av精品| 最近最新中文字幕大全电影3| 亚洲 欧美一区二区三区| 亚洲专区字幕在线| 亚洲电影在线观看av| 18禁黄网站禁片免费观看直播| 精品国产三级普通话版| 88av欧美| 国产精品 国内视频| 国产亚洲精品久久久com| x7x7x7水蜜桃| 亚洲av电影不卡..在线观看| 天堂影院成人在线观看| 真实男女啪啪啪动态图| 国产激情欧美一区二区| 成人永久免费在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国内精品美女久久久久久| 人人妻,人人澡人人爽秒播| 少妇丰满av| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 免费观看人在逋| 亚洲精品久久国产高清桃花| 夜夜爽天天搞| 美女cb高潮喷水在线观看 | 久久久精品大字幕| 少妇的逼水好多| 国语自产精品视频在线第100页| 999久久久精品免费观看国产| 亚洲美女黄片视频| 国产伦精品一区二区三区视频9 | 麻豆一二三区av精品| 国内精品一区二区在线观看| 国产亚洲精品久久久久久毛片| 此物有八面人人有两片| 国产高清激情床上av| 亚洲精品美女久久av网站| 男女之事视频高清在线观看| 后天国语完整版免费观看| 国产精品 欧美亚洲| 一级毛片精品| 久久久久国产精品人妻aⅴ院| 久久香蕉精品热| 国产av在哪里看| 男女床上黄色一级片免费看| 欧美性猛交╳xxx乱大交人| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频| 亚洲人成伊人成综合网2020| 99热这里只有精品一区 | 不卡av一区二区三区| 熟妇人妻久久中文字幕3abv| h日本视频在线播放| 国产一区二区三区视频了| 最新中文字幕久久久久 | 91久久精品国产一区二区成人 | 国产野战对白在线观看| 国产主播在线观看一区二区| 欧美日韩中文字幕国产精品一区二区三区| 两个人视频免费观看高清| 欧美成狂野欧美在线观看| 国产精品亚洲av一区麻豆| 99精品在免费线老司机午夜| 亚洲一区二区三区不卡视频| 日本成人三级电影网站| 日本与韩国留学比较| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 天天躁日日操中文字幕| 国产69精品久久久久777片 | 女同久久另类99精品国产91| 悠悠久久av| 黄色女人牲交| 舔av片在线| 成年人黄色毛片网站| 免费看日本二区| av黄色大香蕉| 老熟妇乱子伦视频在线观看| 三级国产精品欧美在线观看 | 黄频高清免费视频| 成人性生交大片免费视频hd| 国产v大片淫在线免费观看| 亚洲av中文字字幕乱码综合| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 久久中文字幕人妻熟女| e午夜精品久久久久久久| 国产久久久一区二区三区| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 人人妻,人人澡人人爽秒播| 亚洲精品色激情综合| 99国产精品一区二区蜜桃av| av片东京热男人的天堂| 窝窝影院91人妻| 日本成人三级电影网站| 美女免费视频网站| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 99久久精品国产亚洲精品| 亚洲人成网站高清观看| 亚洲午夜精品一区,二区,三区| 亚洲熟女毛片儿| 少妇人妻一区二区三区视频| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 成人三级黄色视频| 国产精品九九99| 午夜免费激情av| 亚洲第一电影网av| 香蕉久久夜色| 巨乳人妻的诱惑在线观看| 叶爱在线成人免费视频播放| 日本一二三区视频观看| www.精华液| 国语自产精品视频在线第100页| 亚洲成人中文字幕在线播放| 听说在线观看完整版免费高清| 国产淫片久久久久久久久 | 欧美国产日韩亚洲一区| 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 丰满的人妻完整版| 夜夜爽天天搞| 欧洲精品卡2卡3卡4卡5卡区| 香蕉久久夜色| 午夜福利在线在线| 99在线人妻在线中文字幕| 欧美xxxx黑人xx丫x性爽| 黄色片一级片一级黄色片| svipshipincom国产片| 午夜日韩欧美国产| h日本视频在线播放| 2021天堂中文幕一二区在线观| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 亚洲成人久久爱视频| 国产高清videossex| 国产成+人综合+亚洲专区| 麻豆久久精品国产亚洲av| 国产精品一及| 国产高清有码在线观看视频| 国产成人欧美在线观看| 岛国在线观看网站| 免费看a级黄色片| 嫩草影院精品99| 在线看三级毛片| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 国产成人福利小说| 在线观看日韩欧美| 高潮久久久久久久久久久不卡| 国产精品国产高清国产av| 99re在线观看精品视频| 日本a在线网址| 美女高潮的动态| 国产1区2区3区精品| 老熟妇仑乱视频hdxx| 亚洲精品在线观看二区| 床上黄色一级片| 午夜福利视频1000在线观看| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 性欧美人与动物交配| 757午夜福利合集在线观看| 少妇丰满av| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 欧美精品啪啪一区二区三区| 国产一区二区在线观看日韩 | 在线a可以看的网站| 男女做爰动态图高潮gif福利片| 啪啪无遮挡十八禁网站| 黄色丝袜av网址大全| 麻豆成人av在线观看| 香蕉av资源在线| 成年人黄色毛片网站| 日日夜夜操网爽| 亚洲真实伦在线观看| 99国产综合亚洲精品| 精品99又大又爽又粗少妇毛片 | 国产激情欧美一区二区| 91av网一区二区| 免费看十八禁软件| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 99久久无色码亚洲精品果冻| 国产精品永久免费网站| 国产午夜福利久久久久久| 久久精品综合一区二区三区| 成年免费大片在线观看| 黄色成人免费大全| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 欧美绝顶高潮抽搐喷水| 村上凉子中文字幕在线| 18禁美女被吸乳视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品98久久久久久宅男小说| 精品久久久久久,| 18美女黄网站色大片免费观看| 高清在线国产一区| 悠悠久久av| 免费观看人在逋| 亚洲avbb在线观看| 亚洲电影在线观看av| 听说在线观看完整版免费高清| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美精品.| 免费在线观看亚洲国产| 亚洲av五月六月丁香网| 美女高潮喷水抽搐中文字幕| 成人鲁丝片一二三区免费| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 在线看三级毛片| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 日本撒尿小便嘘嘘汇集6| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| av女优亚洲男人天堂 | 男女下面进入的视频免费午夜| 毛片女人毛片| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 亚洲成人久久爱视频| 国产免费男女视频| 热99在线观看视频| 99精品久久久久人妻精品| 超碰成人久久| 国产成年人精品一区二区| 国产美女午夜福利| 亚洲无线观看免费| 他把我摸到了高潮在线观看| 在线免费观看不下载黄p国产 | 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 欧美成人性av电影在线观看| 制服人妻中文乱码| 国产精品影院久久| 麻豆av在线久日| 日日摸夜夜添夜夜添小说| 草草在线视频免费看| 1024手机看黄色片| 成人精品一区二区免费| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频 | 久久人人精品亚洲av| 亚洲国产欧美一区二区综合| 欧美大码av| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 精品国产三级普通话版| 在线永久观看黄色视频| 欧美日韩福利视频一区二区| 一个人看视频在线观看www免费 | 亚洲美女黄片视频| 久久久国产成人免费| 亚洲午夜精品一区,二区,三区| 久久久久久久久久黄片| 国产69精品久久久久777片 | 久久亚洲真实| 91九色精品人成在线观看| 国产黄a三级三级三级人| 真实男女啪啪啪动态图| 草草在线视频免费看| 欧美日韩亚洲国产一区二区在线观看| av福利片在线观看| 国产午夜精品久久久久久| 欧美中文综合在线视频| 国产精品影院久久| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 天堂√8在线中文| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 亚洲欧美日韩东京热| 免费高清视频大片| 亚洲男人的天堂狠狠| 午夜免费成人在线视频| 欧美成狂野欧美在线观看| 国产精品1区2区在线观看.| 叶爱在线成人免费视频播放| 中文字幕久久专区| 男女做爰动态图高潮gif福利片| 日韩有码中文字幕| 免费av不卡在线播放| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站高清观看| 男女下面进入的视频免费午夜| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 亚洲av熟女| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 人妻夜夜爽99麻豆av| 欧美zozozo另类| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 国内精品久久久久久久电影| 国产视频一区二区在线看| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 老汉色∧v一级毛片| 精品久久久久久久末码| 亚洲国产欧美网| 国产一区二区在线av高清观看| 国产精品永久免费网站| 国产三级在线视频| 亚洲国产色片| 女同久久另类99精品国产91| 两个人视频免费观看高清| 欧美日韩国产亚洲二区| 麻豆国产97在线/欧美| 欧洲精品卡2卡3卡4卡5卡区| 天天躁狠狠躁夜夜躁狠狠躁| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 免费大片18禁| 看片在线看免费视频| 国产高清视频在线观看网站| 在线播放国产精品三级| 99re在线观看精品视频| 色视频www国产| 国内少妇人妻偷人精品xxx网站 | 国产探花在线观看一区二区| 丰满的人妻完整版| 一卡2卡三卡四卡精品乱码亚洲| 婷婷精品国产亚洲av在线| 香蕉国产在线看| 免费av不卡在线播放| 亚洲av熟女| 国产精品99久久久久久久久| 露出奶头的视频| 美女被艹到高潮喷水动态| 男女床上黄色一级片免费看| av黄色大香蕉| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 啦啦啦免费观看视频1| 欧美色欧美亚洲另类二区| 午夜福利高清视频| 午夜精品久久久久久毛片777| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 国产精品99久久99久久久不卡| 日本免费a在线| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 亚洲人成网站高清观看| 久久中文看片网| 久久久久精品国产欧美久久久| 中文字幕人成人乱码亚洲影| 欧美色欧美亚洲另类二区| 91字幕亚洲| 一进一出抽搐动态| 一级黄色大片毛片| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 五月伊人婷婷丁香| 精品一区二区三区视频在线 | 99热这里只有是精品50| 99久久精品热视频| 精品99又大又爽又粗少妇毛片 | 波多野结衣高清无吗| 精品熟女少妇八av免费久了| 国产一级毛片七仙女欲春2| 嫁个100分男人电影在线观看| 在线a可以看的网站| 中国美女看黄片| 国产黄片美女视频| 一个人观看的视频www高清免费观看 | 亚洲五月天丁香| 久久国产精品影院| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播放欧美日韩| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 日本一二三区视频观看| 老汉色∧v一级毛片| 一级作爱视频免费观看| 成人av一区二区三区在线看| 最近在线观看免费完整版| 身体一侧抽搐| 亚洲国产色片| 999久久久国产精品视频| 非洲黑人性xxxx精品又粗又长| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 国产一区二区三区视频了| 丝袜人妻中文字幕| 国产视频一区二区在线看| 亚洲五月婷婷丁香| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 亚洲熟妇中文字幕五十中出| 国产成人av激情在线播放| 亚洲av成人av| 怎么达到女性高潮| 国产精品日韩av在线免费观看| 丁香六月欧美| 国产三级黄色录像| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 亚洲无线观看免费| 亚洲国产精品成人综合色| 九九在线视频观看精品| 成年人黄色毛片网站| 午夜视频精品福利| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 久久人人精品亚洲av| 欧美极品一区二区三区四区| 在线观看一区二区三区| 成人三级做爰电影| 久久久成人免费电影| 国产成人av激情在线播放| 国产午夜精品久久久久久| 久久久久久久久中文| 偷拍熟女少妇极品色| 成年版毛片免费区| 美女cb高潮喷水在线观看 | 51午夜福利影视在线观看| 老熟妇乱子伦视频在线观看| 中国美女看黄片|