• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials?

    2019-06-18 05:42:40HaoLu陸浩JunyangWang汪君洋BonanLiu劉柏男GengChu褚賡GeZhou周格FeiLuo羅飛JieyunZheng鄭杰允XiqianYu禹習(xí)謙andHongLi李泓
    Chinese Physics B 2019年6期

    Hao Lu(陸浩),Junyang Wang(汪君洋),Bonan Liu(劉柏男),Geng Chu(褚賡),Ge Zhou(周格),Fei Luo(羅飛),Jieyun Zheng(鄭杰允),Xiqian Yu(禹習(xí)謙),?,and Hong Li(李泓),?

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences(CAS),Beijing 100049,China

    3CAS Research Group on High Energy Density Lithium Batteries for EV,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    4Key Laboratory of Green Process Engineering,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    5Tianmulake Excellent Anode Materials Co.,Ltd.,Changzhou 213300,China

    Keywords:lithium-ion battery,silicon monoxide,carbon coating,anode material

    1.Introduction

    Rechargeable lithium-ion batteries(LIBs)have been widely applied as predominant power sources in portable electronic devices,electric vehicles(EV),and electricity storage systems.With the rapid development of emerging electric vehicle markets,the increasing demands for high energy and power density,long-term cyclic stability,and low-cost have been critical challenges for lithium-ion batteries.[1-3]Among all the anode materials for LIBs that have been developed until now,silicon(Si)is considered as the most promising anode material for next generation high-energy-density LIBs owing to its high specific capacity(~ 4200 mAh·g-1)and low operating voltage for Li+insertion/extraction(<0.5 V versus Li+/Li).[4,5]However,there are two major drawbacks for the Si anode that hinder its commercial application:(i)the low intrinsic electric conductivity,and(ii)the severe volume swelling(>400%)during repeated Li-Si alloying/dealloying process.The drastic volume change leads to severe pulverization of the electrode,continuous formation of unstable solid electrolyte interphase(SEI)over recurrent charge/discharge cycles,and thus rapid decay of specific capacity.[6,7]Many strategies-such as employing nanocrystallized Si,forming composites with other phases,and surface coating with carbon-have been applied to achieve better electrochemical performance of Si anodes.[8-14]However,the long-term cycling stability of Si anode materials is still not yet able to meet the strict requirements for practical applications.

    As an alternative material among the Si-based anode materials,silicon monoxide(SiO)has been attracting growing attention in recent years because of its high reversible specific capacity(~ 2400 mAh·g-1)and stable cycling performance.The structural model of amorphous SiO is still ambiguous,with amorphous Si and SiO2clusters surrounded by Si-suboxide matrix as one plausible model.[15-17]This unique microstructure of SiO can effectively alleviate the large volume change of SiO electrodes during cycling,comparing with Si anodes.More speci fically,during the first lithiation pro-cess,Li reacts with SiO2to produce Li2O and LixSiOy(mainly Li4SiO4).Such compounds can act as buffer skeleton and relieve the severe volume change of SiO electrodes caused by further lithiation reaction,reducing the pulverization of SiO electrodes and the electrical disconnection with current collectors,and thus improve the cyclic performance of SiO.

    Nevertheless,SiO anode materials still suffer from relatively large volume change(~200%)during Li+insertion/extraction and low initial coulombic efficiency(ICE),due to the poor intrinsic electrical conductivity and the irreversible reactionbetweenLi+andSiO2clusters.Toresolvetheseproblems,several methods including element doping(e.g.,boron,titanium,and tungsten),construction of SiO/C composites,and surface coating(e.g.,carbon,TiO2,and Fe3O4)have been conducted to further improve the performance of SiO.[18-24]Among these strategies,surface coating with carbonaceous materials(e.g.,graphite,amorphous carbon,carbon nano fiber,carbon nanotubes,graphene,and reduced graphene oxide)has been widely employed in industrial production due to its lowcost and remarkable improvements in performance.For example,Wang et al.synthesized a carbon coated SiO nanocomposite with a core-shell structure via a solution route,which exhibits a high reversible specific capacity of~ 800 mAh·g-1at the 50th cycle and excellent rate performance.[25]Lee et al.reported that a nitrogen-doped carbon coated micro-sized SiO anode delivers a reversible capacity of 955 mAh·g-1after 200 cycles at a current density of 1500 mA·g-1,whereas only 545 mAh·g-1for bare SiO.[26]Carbon coating on SiO surface can greatly improve the electrical conductivity,effectively reduce the polarization,and relieve the severe volume change of SiO electrode,thus significantly enhance its cycling stability and rate capability.To achieve an excellent comprehensive performance,the carbon content in the surface coating layers needs to be further controlled to maintain the high capacity,initial coulombic efficiency,and cycle stability.

    In this work,the micro-sized SiO@C with carbon coating layer of different thicknesses were controllably synthesized via a simple pitch pyrolysis reaction method.The effect of carbon content on the electrochemical performances of SiO@C was investigated.The SiO@C/graphite(SiO@C/G)composites with the target capacity of 600 mAh·g-1were further synthesized by a ball-milling process.The SiO@C/G composite anodes exhibit a high reversible capacity and improved cycling performance in half cells as well as full cells with LiNi0.5Co0.2Mn0.3O2(NCM)as cathode material.

    2.Experiment

    2.1.Fabrication of SiO@C/G composites

    Silicon monoxide(Tianmulake Excellent Anode Materials Co.,Ltd.)was selected as the raw material to prepare the SiO@C composites via a simple pitch pyrolysis method.Firstly,SiO powder with an average particle size of 4μm-6μm was mixed with petroleum pitch,then the above mixture was heat-treated at a temperature of 300°C for 2 h and then 900°C for 2 h at a heating rate of 10°C·min-1in Ar atmosphere to obtain SiO@C composites.By the above process,SiO@C composites with different carbon coating contents(5 wt%,10 wt%,15 wt%,and 35 wt%)were synthesized at different mass ratios of SiO powders and petroleum pitch,which were labeled as SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.

    SiO@C/G composites were prepared to match the capacity of the cathode material.Graphite(Tianmulake Excellent Anode Materials Co.,Ltd.)was added to maintain the total capacity of SiO@C/G at 600 mAh·g-1.These mixtures were ball-milled for 5 h to obtain the final SiO@C/G composite materials(labeled as SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35).The amount of graphite of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 is 75.6 wt%,73.8 wt%,71.0 wt%,and 63.6 wt%,respectively.

    2.2.Characterizations

    The phase purity of aforementioned composite materials was characterized by an x-ray diffractometer(D8 Bruker)with Cu Kα radiation in the 2θ range of 10°-80°.The morphologies were investigated by scanning electron microscope(SEM,Hitachi-S4800)and transmission electron microscopy(TEM,FEI Tecnai G2 F20).Raman spectra were obtained by a Raman spectrometer(JY-HR800)using a 532-nm laser as a light source.The content of carbon was analyzed by carbon and sulphur analyzer(Yronh,CS-320).The tap density was measured by tapping apparatus(BNST,FZS4-4B).The specific surface areas of SiO@C samples were measured with the Brunauere-Emmete-Teller(BET)method by nitrogen adsorption isotherms collected at 77 K(Quantachrome,NOVA4200e).

    2.3.Electrochemical characterizations

    To make the electrode,the active material,carbon black,and water-soluble binder were mixed in a weight ratio of 93:2:5 in distilled water.The binder consisted of sodium carboxymethyl cellulose(CMC)and water system styrene butadiene rubber emulsion(SBR)water solutions in a weight ratio of 2:3.The slurry was deposited on copper foil using a blade and dried at 80°C in vacuum for 10 h.The mass loading of active materials was about 5 mg·cm-2.

    Coin-type cells were assembled in an argon- filled glovebox using Celgard 2500 as a separator,1-mol·L-1LiPF6in ethylene carbonate(EC)/diethyl carbonate(DEC)(1:1,v/v)as an electrolyte,and Li foil as a counter electrode.The charge/discharge tests were carried out using a Land battery test system(CT2001 A,Land)in a voltage range of 0.005 V-2.0 V at 0.1 A·g-1.Electrochemical impedance spectroscopy(EIS)was measured at anopen-circuit voltage inthe frequency range of 100 kHz and 10 mHz on an electrochemical station(CHI600E).

    Full cell electrochemical performance was evaluated in 2.5-Ah pouch cells using LiNi0.5Co0.2Mn0.3O2as cathodes and SiO@C/G composites as anodes.Both cathode and anode electrodes were fabricated in a pilot line(Tianmulake Excellent Anode Materials Co.,Ltd.).The electrolyte solution was 1-mol·L-1LiPF6in EC:DEC:DMC(1:1:1 in volume ratio).The full cells were charged and discharged in the voltage range of 2.75 V-4.2 V at various C-rates(1 C=677 mA·g-1).

    3.Results and discussion

    The synthesis process for micro-sized SiO@C/G composites is schematically illustrated in Fig.1.The micro-sized SiO@C samples with carbon coating layer of different thicknesses are first synthesized through a simple pitch pyrolysis reaction method.Then,the as-prepared SiO@C samples are mixed with graphite powders via a mechanical milling process to obtain the SiO@C/G composites.The carbon content of SiO@C samples are analyzed by carbon and sulphur analyzer.The actual carbon content for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples are 5.3%,9.8%,15.8%,and 35.1%,respectively,which are well consistent with the designed values.With the increase in carbon content,the tap densities and the specific surface areas of SiO@C samples remain almost unchanged(Table 1),indicating a similar particle size and surface morphology.

    Fig.1.Schematic illustration of the preparation process of micro-sized SiO@C/G composites.

    Table 1.The carbon content,tap density,and specific surface area of as-prepared SiO@C samples.

    Phase composition and crystallinities of the pristine SiO and SiO@C samples are characterized by x-ray diffraction(XRD).For all diffraction patterns,as shown in Fig.2(a),they are composed of a hump and several relatively sharp diffraction peaks.The hump located in the 2θ range of 20°-30°is corresponding to a typical amorphous phase of SiO2,and the sharp diffraction peaks at 28.4°,47.3°,and 56.1°can be assigned to the crystalline phase of Si.The occurrence of the diffraction peaks of Si crystalline in the XRD patterns of SiO@C samples is due to a partial thermal disproportionation reaction of SiO during the pyrolysis process(Fig.1).The intensities of Si diffraction peaks are almost identical for all SiO@C samples,indicating that there is no signi ficant difference in Si content for all SiO@C samples.Figure 2(b)shows the Raman spectra of the as-prepared SiO@C samples.The peaks located at around 520 cm-1and 980 cm-1correspond to Si crystalline phase,which is in accordance with the XRD results.The peaks located at~1340 cm-1and~1575 cm-1correspond to the disordered(D)bands and graphene(G)bands of carbon,respectively,and the peak intensity ratio can be used to describe the extent of graphitization.The Raman spectra results demonstrate the existence of amorphous carbon(ID/IGratio is~1.57)for the SiO@C samples.

    Fig.2.(a)XRD patterns and(b)Raman spectra of the SiO@C samples.

    SEM and high-resolution transmission electron microscopy(HRTEM)measurements are carried out to investigate the morphology and microstructure of the as-prepared SiO@C samples.As shown in Fig.3,the pristine SiO and as-prepared SiO@C samples have similar particle size with an average diameter of 4μm-6μm.The surface of SiO particles becomes smoother after carbon coating,contrasting the coarse surface of the pristine SiO particle(Figs.3(a)-3(f)).The uniform carbon coating is further con firmed by HRTEM.It can be clearly observed from Figs.3(g)-3(j)that the surface of SiO@C particles is uniformly coated by a dense amorphous carbon layer.With the increase in carbon content,the thickness of coating layer increases from 10.6 nm for SiO@C-5 to 23.8 nm,36.8 nm,and 81.0 nm for SiO@C-10,SiO@C-15,and SiO@C-35 samples,respectively.Such a dense carbon coating layer can enhance the electric conductivity of SiO electrode during lithium intercalation/de-intercalation,leading to the improvement of the electrochemical performance of SiO.

    To evaluate the electrochemical performances of asprepared SiO@C samples,galvanostatic charge-discharge tests are performed by using a coin-type half-cell. Figure4(a)shows the charge/discharge voltage profiles of SiO@C electrodes at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V.The initial charge capacities are 1708.9 mAh·g-1,1634.2 mAh·g-1,1500.4 mAh·g-1,and 1151.5 mAh·g-1for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).As for the charge specific capacity of soft carbon is just about 250 mAh·g-1,the composite with a higher carbon amount will have a lower initial charge specific capacity.The cycling performance and corresponding coulombic efficiency(CE)of the SiO@C samples are shown in Figs.4(b)and 4(c).It can be seen that the cycling stability and coulombic efficiency of SiO@C gradually improve with the increase of carbon content. The discharge capacity retention after 20 cycles is 54.1%,59.4%,65.3%,and 87.2%for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).The reasons for such improvements can be explained as follows:i)The carbon coating layer greatly enhances the electric conductivity and then effectively reduces the polarization of SiO electrodes;and ii)the carbon layer can function as a buffer layer to relieve the large volume swelling of SiO.

    Fig.3.(a)and(b)SEM images of pristine SiO;(c)-(f)SEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35;(g)-(j)HRTEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples.

    Fig.4.(a)and(d)The initial charge/discharge curves,(b)and(e)discharge capacity retention,and(c)and(f)the corresponding coulombic efficiencies of SiO@C and SiO@C/G composites,respectively.

    Table 2.The electrochemical performance of SiO@C samples and SiO@C/G composites in half cells.

    SiO@C/G composites are prepared to further improve the long-term cycle stability of SiO@C.To match the capacity of positive electrode materials,the initial charge capacity of SiO@C/G composites is designed to 600 mAh·g-1(the highest charge capacity of commercial silicon-based anodes)by introducing different mass ratios of graphite powders.The galvanostatic charge-discharge tests of SiO@C/G composites are performed at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V in coin-type half-cell firstly.The electrochemistry performances are displayed and summarized in Fig.4 and Table 2.The initial charge capacities of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 are 596.2 mAh·g-1,592.6 mAh·g-1,598.0 mAh·g-1,and 601.0 mAh·g-1,respectively,which are in good accordance with the designed value of 600 mAh·g-1.All the SiO@C/G composites show higher initial coulombic efficiency and better cycling performance than the SiO@C samples, illustrating that the introduction of graphite is bene ficial to further improve the long-term cycling life of SiO@C.Among all SiO@C/G composites,the SiO@C/G-15 sample exhibits the best capacity retention of 80.4%after 50 cycles,while for SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35,the capacity retention is 66.7%,71.9%,and 76.4%,respectively.The capacity retention of SiO@C/G-35 is slightly poorer than that of SiO@C/G-15 because a smaller amount of graphite is added(lower capacity of SiO@C).

    Fig.5.Charge/discharge pro files of SiO@C/G||NCM full cell(a)at 2nd cycle and(b)at 100th cycle,the corresponding differential capacity(dQ/dV)plots(c)at 2nd cycle and(d)at 100th cycle,the cyclic performance of full cells(e)at 25 °C and(f)45 °C,and(g)the rate performance of the full cells.

    To evaluate the feasibility of the SiO@C/G composite anodes for practical application,2.5-Ah pouch-type full cells are assembled with the as-synthesized SiO@C/G composites as anodes and the commercially available LiNi0.5Co0.2Mn0.3O2as the cathodes.Figures 5(a)and 5(b)show the chargedischarge curves of the SiO@C/G‖NCM full cells at the 2nd and 100th cycles,respectively.The full cell with SiO@C/G-15 exhibits the highest discharge capacity of 2212.9 mAh·g-1after 100 cycles. The corresponding differential capacity(dQ/dV)plots of SiO@C/G||NCM full cells exhibit similar peak features at 2nd cycle(Fig.5(c))and at 100th cycle(Fig.5(d)).The intense peak between 3.95 V and 4.1 V is ascribed to the delithiation of graphite.This peak in SiO@C/G-15 remains in the highest voltage range after 100 cycles,indicating that the polarization of SiO@C/G-15 electrode is minimal among the SiO@C/G composite electrodes.It is expected that the polarization caused by electronic conductivity is negligible due to the introduction of graphite and the measurement of dQ/dV at such a low rate of 0.02 C.Therefore,it can be further inferred that the SiO@C/G-15 maintains better ionic conductivity than other SiO@C/G composites during cycling.As shown in Figs.5(e)and 5(f),the full cells with SiO@C/G-15 exhibit the best capacity retention of 90.7%and 90.1%at 25°C and 45°C,respectively(Table 3).Thus,stable cycling is achieved with SiO@C/G-15 composite electrodes in full cells even at a high temperature of 45°C.The rate capabilities of full cells at different current densities are exhibited in Fig.5(g).The charge capacity gradually decreases with the increases of rate from 0.5 C to 5 C.A notable drop of the charge capacity occurs at a high rate of 10 C.

    Table 3.The electrochemical performance of SiO@C/G||NCM full cells.

    Fig.6.SEMimagesof(a)and(e)SiO@C/G-5,(b)and(f)SiO@C/G-10,(c)and(g)SiO@C/G-15,(d)and(h)SiO@C/G-35composite electrodes collected in full cells after 2 cycles,and(i)and(m)SiO@C/G-5,(j)and(n)SiO@C/G-10,(k)and(o)SiO@C/G-15,(l)and(p)SiO@C/G-35 composite electrodes after 100 cycles.

    The morphology of the SiO@C/G electrodes after 2nd cycle and 100th cycle in full cells is investigated by SEM(Fig.6).It can be seen that there is no particle pulverization and fracture in the SiO@C/G composite electrodes,even after 100 cycles,indicating that the carbon coating layer and graphite skeleton play a signi ficant role in buffering the volume swelling of SiO particles and enhancing the mechanical stability of SiO electrodes.Figures 6(a)-6(h)show the sur-face morphology of SiO@C/G composite electrodes after two cycles.It is obvious that the particle surface of the SiO@C/G composites,especiallySiO@C/G-5,iscoveredbyarough film(Fig.6(e)),which can be ascribed to the solid-electrolyte interphase(SEI) film.After 100 cycles,the thickness of SEI increases on the surface of SiO@C/G particles(Figs.6(i)-6(p)).It can be clearly observed in Fig.6(m)that the SiO@C/G-5 particle is almost completely covered by a thick SEI film.In contrast,no signi ficant changes of surface morphology can be observed on SiO@C/G-15 after cycling compared with SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35.These results suggest that a carbon coating layer with moderate thickness will be propitious to effectively form a stable SEI film and maintain a high ionic conductivity for the SiO@C/G composite,thus enhancing its long-term cycling stability.

    To further understand the difference in the electrochemical performance of SiO@C/G composites,electrochemical impedance spectroscopy measurements are performed with full cells.As shown in Figs.7(a)and 7(b),the Nyquist plots consist of a small intercept at high frequency region(corresponding to the ohmic resistance,Ro),several semicircles at the medium frequency region(corresponding to the interface resistance and charge transfer resistance,RSEIand Rct),and a sloping straight line at the low frequency region(corresponding to the Warburg impedance,W).Figures 7(c)and 7(d)show the EIS fitting results of full cells after 2nd and 100th cycles.SiO@C/G-15 exhibits the minimum RSEIand Rctthan those of SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35 after the 2nd and 100th cycles,implying that better ionic conductivity can be maintained in the SiO@C/G-15 electrode after cycling,which is consistent with the variation of delithiation peak voltage of graphite derived from dQ/dV plots in Figs.5(c)and 5(d).In contrast,the SiO@C/G-5 electrode displays significantly larger RSEIand Rctafter 100 cycles due to the increase in SEI thickness,which can be inferred from the SEM results as shown in Fig.6(m).These results suggest that a moderate carbon coating layer can effectively stabilize the solid/liquid interfaces between the SiO@C/G composite electrode and electrolyte and maintain better ionic conductivity during cycling,thus greatly improving the long-term cycling stability.

    Fig.7.The Nyquist plots and corresponding fitting parameters of SiO@C/G‖NCM full cells after(a)and(c)2nd,and(b)and(d)100th cycles.The inserts are the corresponding equivalent circuits.

    4.Conclusions

    In summary,the micro-sized SiO@C/G composites with different thicknesses of carbon coating layers have been controllably synthesized via a pitch pyrolysis reaction method followed by a ball-milling process.Uniform amorphous carbon coating on SiO particle with thicknesses of 11.9 nm,21.6 nm,36.8 nm,and 81.0 nm is achieved,for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.The capacity retention and coulombic efficiency of SiO@C samples are gradually improved with the increase of carbon content.For practical application,SiO@C/G composites have been fabricated with the target overall capacity of 600 mAh·g-1.Among all the SiO@C/G composites,the SiO@C/G-15 composite electrode exhibits a high initial coulombic efficiency of 84.5%and an outstanding capacity retention of 90.7%at room temperature and 90.1%at high temperature of 45°C after 100 cycles in full cells with NCM as cathode.Therefore,a carbon coating layer with a moderate thickness will be propitious for SiO@C/G composites to effectively form a stable SEI film and maintain a high ionic conductivity during cycling,thus enhancing the long-term cycling stability.The new insights into SiO@C/G composites presented in this work will promote the commercialized application of SiO anode materials.

    精品不卡国产一区二区三区| 国产又爽黄色视频| www.999成人在线观看| 日韩欧美免费精品| x7x7x7水蜜桃| 亚洲国产日韩欧美精品在线观看 | 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 男人操女人黄网站| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 国产国语露脸激情在线看| 国内久久婷婷六月综合欲色啪| av电影中文网址| 午夜视频精品福利| 色综合站精品国产| 在线观看日韩欧美| 中文字幕高清在线视频| 成人国产一区最新在线观看| 亚洲精品美女久久久久99蜜臀| 夜夜爽天天搞| www国产在线视频色| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| 亚洲精品中文字幕一二三四区| 亚洲免费av在线视频| 一级毛片精品| 欧美+亚洲+日韩+国产| 深夜精品福利| 午夜福利视频1000在线观看 | 天堂√8在线中文| 男人的好看免费观看在线视频 | www国产在线视频色| 午夜福利影视在线免费观看| 日本欧美视频一区| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 男女下面进入的视频免费午夜 | 久久久久九九精品影院| 欧美一级a爱片免费观看看 | 亚洲中文字幕一区二区三区有码在线看 | 国产一区二区激情短视频| 高清毛片免费观看视频网站| 免费观看精品视频网站| 97碰自拍视频| 欧美日韩乱码在线| 亚洲成国产人片在线观看| 91九色精品人成在线观看| 国产精品久久久久久亚洲av鲁大| 男女之事视频高清在线观看| 日本在线视频免费播放| 不卡一级毛片| 久久精品人人爽人人爽视色| 成人国语在线视频| 欧美绝顶高潮抽搐喷水| 国产真人三级小视频在线观看| 午夜亚洲福利在线播放| 老司机福利观看| 色婷婷久久久亚洲欧美| 午夜福利欧美成人| 9热在线视频观看99| 身体一侧抽搐| 女人被躁到高潮嗷嗷叫费观| 亚洲精品一区av在线观看| 中文字幕人成人乱码亚洲影| 一级,二级,三级黄色视频| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 母亲3免费完整高清在线观看| 首页视频小说图片口味搜索| 亚洲av五月六月丁香网| 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 国内精品久久久久精免费| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 一级毛片高清免费大全| www.自偷自拍.com| 91成年电影在线观看| 久久这里只有精品19| 黄色毛片三级朝国网站| 最好的美女福利视频网| 欧美激情高清一区二区三区| 久久久久国产一级毛片高清牌| 久久精品亚洲精品国产色婷小说| 亚洲片人在线观看| 国产精品 国内视频| 亚洲av电影不卡..在线观看| 欧美精品啪啪一区二区三区| 美女大奶头视频| 欧美日韩亚洲综合一区二区三区_| x7x7x7水蜜桃| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 国产精品久久电影中文字幕| 久久精品亚洲精品国产色婷小说| av天堂在线播放| 欧美激情高清一区二区三区| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 久久中文看片网| 久久九九热精品免费| 黄色a级毛片大全视频| 12—13女人毛片做爰片一| 久久久水蜜桃国产精品网| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 女性生殖器流出的白浆| 国产成人欧美在线观看| 国产精品98久久久久久宅男小说| 在线天堂中文资源库| 一进一出抽搐动态| 又黄又爽又免费观看的视频| 国产成年人精品一区二区| 亚洲色图 男人天堂 中文字幕| 可以在线观看毛片的网站| 丝袜在线中文字幕| 国产一区二区三区在线臀色熟女| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女 | 国产激情欧美一区二区| 女人高潮潮喷娇喘18禁视频| 久久久久久久精品吃奶| 免费观看精品视频网站| 亚洲欧美日韩无卡精品| 色综合站精品国产| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 久热这里只有精品99| 1024视频免费在线观看| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 香蕉久久夜色| 一区福利在线观看| 成人手机av| 窝窝影院91人妻| 村上凉子中文字幕在线| 电影成人av| 久久草成人影院| 久久精品国产综合久久久| 一边摸一边做爽爽视频免费| 美女高潮到喷水免费观看| 日本vs欧美在线观看视频| 老司机深夜福利视频在线观看| 男女下面进入的视频免费午夜 | 日韩精品青青久久久久久| 亚洲激情在线av| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区免费| 国产一区在线观看成人免费| av福利片在线| 变态另类成人亚洲欧美熟女 | 亚洲最大成人中文| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 如日韩欧美国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 在线观看免费视频网站a站| 一本久久中文字幕| 一级毛片高清免费大全| 亚洲激情在线av| 可以在线观看的亚洲视频| 搞女人的毛片| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 久久中文字幕一级| 两性夫妻黄色片| 女人精品久久久久毛片| 最近最新中文字幕大全电影3 | 神马国产精品三级电影在线观看 | 亚洲人成77777在线视频| 在线观看免费午夜福利视频| 首页视频小说图片口味搜索| 精品高清国产在线一区| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 激情视频va一区二区三区| videosex国产| 国产精品一区二区在线不卡| 午夜影院日韩av| 最近最新中文字幕大全免费视频| 波多野结衣巨乳人妻| 午夜福利欧美成人| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 在线播放国产精品三级| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 日韩国内少妇激情av| 88av欧美| 精品日产1卡2卡| 免费在线观看影片大全网站| 一级片免费观看大全| 国产激情欧美一区二区| 国产私拍福利视频在线观看| 久久草成人影院| 麻豆久久精品国产亚洲av| 亚洲欧美一区二区三区黑人| 亚洲av成人一区二区三| 91精品三级在线观看| 亚洲成国产人片在线观看| 欧美日韩黄片免| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 午夜久久久在线观看| 久久欧美精品欧美久久欧美| 波多野结衣一区麻豆| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 亚洲第一电影网av| 久久国产精品男人的天堂亚洲| 欧美色视频一区免费| 窝窝影院91人妻| 欧美成人午夜精品| 亚洲第一青青草原| 亚洲精品久久国产高清桃花| 亚洲精品国产色婷婷电影| 激情视频va一区二区三区| 亚洲av成人av| 一级作爱视频免费观看| 精品高清国产在线一区| 免费av毛片视频| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 国产成人免费无遮挡视频| 久久国产精品男人的天堂亚洲| 中亚洲国语对白在线视频| 成人18禁高潮啪啪吃奶动态图| 免费无遮挡裸体视频| 两个人免费观看高清视频| 桃红色精品国产亚洲av| 高潮久久久久久久久久久不卡| 黄色 视频免费看| 免费高清在线观看日韩| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 精品久久久久久,| 高清黄色对白视频在线免费看| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| 午夜日韩欧美国产| 午夜福利18| 少妇裸体淫交视频免费看高清 | 国产99久久九九免费精品| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 国产亚洲精品久久久久久毛片| 欧美黑人欧美精品刺激| 国产成人av教育| 老司机在亚洲福利影院| 99精品欧美一区二区三区四区| 波多野结衣一区麻豆| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 午夜a级毛片| 久久精品成人免费网站| 久久久久国产一级毛片高清牌| 欧美绝顶高潮抽搐喷水| 国产亚洲精品第一综合不卡| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 在线观看66精品国产| 久久人妻福利社区极品人妻图片| 国产激情久久老熟女| 一本综合久久免费| 亚洲国产看品久久| 欧美在线一区亚洲| 久久久久久亚洲精品国产蜜桃av| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| av天堂久久9| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 国产激情欧美一区二区| 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| 中文字幕人成人乱码亚洲影| 婷婷丁香在线五月| 午夜影院日韩av| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 老汉色∧v一级毛片| 十八禁人妻一区二区| 免费无遮挡裸体视频| 久久人妻熟女aⅴ| 黑人操中国人逼视频| 欧美激情极品国产一区二区三区| 日日夜夜操网爽| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全电影3 | 日本 av在线| 国产极品粉嫩免费观看在线| www日本在线高清视频| 国产精品国产高清国产av| 丝袜在线中文字幕| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| 老司机在亚洲福利影院| 国产精品一区二区三区四区久久 | 天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 黄色女人牲交| 日本 欧美在线| 熟女少妇亚洲综合色aaa.| 亚洲国产精品合色在线| 国产91精品成人一区二区三区| 无人区码免费观看不卡| 91在线观看av| 亚洲av成人av| 日本三级黄在线观看| 波多野结衣高清无吗| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 国产成人欧美在线观看| 动漫黄色视频在线观看| 欧美黑人欧美精品刺激| 在线观看日韩欧美| 9191精品国产免费久久| 婷婷六月久久综合丁香| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 午夜福利一区二区在线看| 久久国内精品自在自线图片| 成人欧美大片| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 51国产日韩欧美| 欧美三级亚洲精品| 十八禁网站免费在线| 51国产日韩欧美| 我的老师免费观看完整版| 一边摸一边抽搐一进一小说| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 91麻豆精品激情在线观看国产| 亚洲av免费高清在线观看| 国产精品乱码一区二三区的特点| 天堂动漫精品| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 在线国产一区二区在线| 国产精品一及| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院| 听说在线观看完整版免费高清| 真人做人爱边吃奶动态| 久久精品国产清高在天天线| 乱系列少妇在线播放| 国产精品国产高清国产av| 99热只有精品国产| 午夜精品久久久久久毛片777| 国产极品精品免费视频能看的| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| www.色视频.com| 极品教师在线视频| 午夜影院日韩av| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 最后的刺客免费高清国语| 韩国av一区二区三区四区| 国产91精品成人一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| 国产熟女欧美一区二区| 欧美激情在线99| 搞女人的毛片| 我要看日韩黄色一级片| 看片在线看免费视频| 亚洲精品色激情综合| 国内精品久久久久久久电影| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| 97碰自拍视频| 毛片女人毛片| 尾随美女入室| 国产精品久久久久久精品电影| 在线免费十八禁| 色综合色国产| 琪琪午夜伦伦电影理论片6080| 在线播放国产精品三级| 男女做爰动态图高潮gif福利片| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 欧美精品国产亚洲| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 亚洲四区av| 12—13女人毛片做爰片一| 国产美女午夜福利| 国产 一区精品| 欧美国产日韩亚洲一区| 十八禁网站免费在线| 18+在线观看网站| 我要搜黄色片| 国产老妇女一区| 国产精品嫩草影院av在线观看 | 国产精品日韩av在线免费观看| 91在线观看av| av在线天堂中文字幕| 男女那种视频在线观看| 美女免费视频网站| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜老司机福利剧场| 麻豆久久精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| 我的老师免费观看完整版| 欧美成人a在线观看| 国产亚洲精品av在线| 校园人妻丝袜中文字幕| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器| 午夜福利18| 久久精品国产亚洲av天美| 97超视频在线观看视频| 亚洲成av人片在线播放无| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 午夜精品在线福利| 午夜免费成人在线视频| 别揉我奶头 嗯啊视频| 国产高清视频在线观看网站| 久久久久免费精品人妻一区二区| 一个人观看的视频www高清免费观看| 久久精品91蜜桃| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久亚洲中文字幕| 噜噜噜噜噜久久久久久91| 日韩精品中文字幕看吧| 久久久色成人| 婷婷精品国产亚洲av在线| 看黄色毛片网站| 日本免费a在线| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 国产真实伦视频高清在线观看 | 女生性感内裤真人,穿戴方法视频| 91狼人影院| 亚洲五月天丁香| 99久久久亚洲精品蜜臀av| 麻豆精品久久久久久蜜桃| 色噜噜av男人的天堂激情| 淫妇啪啪啪对白视频| 国产精品自产拍在线观看55亚洲| 免费无遮挡裸体视频| 久久午夜亚洲精品久久| 午夜福利18| 天堂影院成人在线观看| 亚洲最大成人av| 看十八女毛片水多多多| 国产精品一区www在线观看 | 成人美女网站在线观看视频| 日韩欧美免费精品| 国产熟女欧美一区二区| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片| 欧美最黄视频在线播放免费| 男女之事视频高清在线观看| 成年女人看的毛片在线观看| 亚洲成a人片在线一区二区| 久久久成人免费电影| 免费在线观看日本一区| av视频在线观看入口| 精品一区二区三区人妻视频| 性欧美人与动物交配| 99久久中文字幕三级久久日本| 亚洲中文日韩欧美视频| 精品久久久久久久末码| 此物有八面人人有两片| 别揉我奶头 嗯啊视频| 精品久久国产蜜桃| 成年版毛片免费区| 熟女人妻精品中文字幕| avwww免费| 99久久精品一区二区三区| 国产高清有码在线观看视频| 动漫黄色视频在线观看| 女人被狂操c到高潮| 99久久中文字幕三级久久日本| 啦啦啦观看免费观看视频高清| 校园人妻丝袜中文字幕| 国产一区二区三区视频了| 久久久国产成人精品二区| 丰满人妻一区二区三区视频av| 中文资源天堂在线| 日本一二三区视频观看| 午夜免费成人在线视频| 老女人水多毛片| 亚洲性夜色夜夜综合| 国产亚洲精品久久久久久毛片| aaaaa片日本免费| 日日撸夜夜添| 亚洲无线观看免费| 毛片女人毛片| www日本黄色视频网| 中文字幕久久专区| 69av精品久久久久久| 在线天堂最新版资源| 亚洲一区高清亚洲精品| 久久久久久久久久黄片| 久久精品国产亚洲av涩爱 | 午夜老司机福利剧场| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| 超碰av人人做人人爽久久| 999久久久精品免费观看国产| 干丝袜人妻中文字幕| 国产精品一区二区三区四区久久| 日韩,欧美,国产一区二区三区 | 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 白带黄色成豆腐渣| 最新中文字幕久久久久| 成熟少妇高潮喷水视频| 欧美bdsm另类| 欧美成人免费av一区二区三区| 少妇被粗大猛烈的视频| 亚洲久久久久久中文字幕| 99久久中文字幕三级久久日本| 久久久精品大字幕| 亚洲av日韩精品久久久久久密| 亚洲性久久影院| 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 国产单亲对白刺激| 国产黄a三级三级三级人| h日本视频在线播放| 久久精品国产亚洲网站| 亚洲av免费在线观看| 欧美精品啪啪一区二区三区| bbb黄色大片| 国产精品一及| 一个人看视频在线观看www免费| 别揉我奶头~嗯~啊~动态视频| 一区福利在线观看| 在线播放无遮挡| 亚洲av免费高清在线观看| 色噜噜av男人的天堂激情| 午夜日韩欧美国产| 久久九九热精品免费| 少妇被粗大猛烈的视频| 日韩一区二区视频免费看| 97热精品久久久久久| 深夜a级毛片| 日日夜夜操网爽| 成人无遮挡网站| 国产 一区精品| 国产激情偷乱视频一区二区| 日韩高清综合在线| 精华霜和精华液先用哪个| 麻豆一二三区av精品| 高清毛片免费观看视频网站| 亚洲精品成人久久久久久| 成人精品一区二区免费| 嫁个100分男人电影在线观看| 国产一区二区在线观看日韩| 亚洲中文日韩欧美视频| 给我免费播放毛片高清在线观看| 男女下面进入的视频免费午夜| 国产亚洲精品综合一区在线观看| 久久午夜亚洲精品久久| 久久亚洲精品不卡| 成人永久免费在线观看视频| 成人性生交大片免费视频hd| 国产私拍福利视频在线观看| 欧美激情久久久久久爽电影| 韩国av在线不卡|