• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Forgotten Nutrient-The Role of Nitrogen in Permafrost Soils of Northern China

    2020-08-06 12:07:36ElisabethRAMMChunyanLIUXianweiWANGHongyuYUEWeiZHANGYuepengPANMichaelSCHLOTERSilviaGSCHWENDTNERCarstenMUELLERBinHUHeinzRENNENBERGandMichaelDANNENMANN
    Advances in Atmospheric Sciences 2020年8期

    Elisabeth RAMM, Chunyan LIU, Xianwei WANG, Hongyu YUE, Wei ZHANG, Yuepeng PAN,Michael SCHLOTER, Silvia GSCHWENDTNER, Carsten W. MUELLER, Bin HU,Heinz RENNENBERG, and Michael DANNENMANN*

    1Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU),Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen 82467, Germany

    2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC),Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    3Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, Changchun 130102, China

    4Chair of Soil Science, Science Center Weihenstephan, Department of Ecology and Ecosystem Management,Technical University Munich, Freising 85354, Germany

    5Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München,Oberschleissheim 85764, Germany

    6Center of Molecular Ecophysiology (CMEP), College of Resources and Environment,Southwest University, Chongqing 400715, China

    7Department of Geosciences and Natural Resource Management, University of Copenhagen,Copenhagen DK-1350, Denmark

    1.Introduction: permafrost carbon and nitrogen feedback to climate change

    Permafrost refers to any ground, including soils, sediments and rocks, with a temperature at or below the freezing point of water (0°C) for two or more consecutive years (Biskaborn et al., 2019). Permafrost soils of the Northern Hemisphere store vast amounts of both organic carbon (C) and nitrogen (N) (Tarnocai et al., 2009; Harden et al., 2012; Mueller et al.,2015). Only in the uppermost 3 m, soils in the northern permafrost zone contain 1035 ± 150 Pg C, corresponding to around one third of the C stocks in the uppermost 3 m of soils worldwide (Hugelius et al., 2013, 2014; Schuur et al., 2015). Due to global warming and permafrost degradation, large amounts of C previously stored in frozen organic matter have been released to the atmosphere in the forms of carbon dioxide (CO2) and methane (CH4) (Zimov et al., 2006; Schuur et al.,2009). The total C release resulting from permafrost degradation might be as high as 92 ± 17 Pg C from now to 2100, with an estimated contribution by CO2and CH4of 97.7% and 2.3%, respectively (Schuur et al., 2015). The feedbacks between climate change and permafrost C release are accelerated by the extraordinarily fast warming in arctic regions, occurring at a more than doubled pace compared to the global average (IPCC, 2014). Permafrost degradation with associated C release is thus assumed to be a key driver of global temperature increase in the 21st century (Schuur et al., 2013).

    In contrast to the intensive levels of research having been carried out to address the permafrost C climate feedback(e.g., the Permafrost Carbon Network; http://www.permafrostcarbon.org/), research on permafrost soil N biogeochemistry and the associated release of the potent greenhouse gas (GHG) nitrous oxide (N2O) under a changing climate is strongly lagging behind. Thus far, little is known about the fate of formerly protected organic N during thawing of permafrost soils that store as much as 67 Pg N (Harden et al., 2012). Until recently, the soil N cycle in cold and pristine ecosystems was thought to be largely confined to organic N cycling due to the scarcity of N inputs, slow decomposition at low temperatures and high competition for bioavailable N between biota (van Cleve and Alexander, 1981; Schimel and Bennett, 2004). Thus, it has been postulated for a long time that N2O emissions from permafrost soils are low as a result of limited amounts of inorganic N (Rodionow et al., 2006; Chapin et al., 2011). However, over the last decade, a growing number of studies have reported very high N2O emissions from permafrost soils, which are in a comparable range as observed for tropical forests or agricultural ecosystems (e.g., Repo et al., 2009; Elberling et al., 2010; Marushchak et al., 2011; Palmer et al., 2012; Abbott and Jones, 2015; Voigt et al., 2017a; Liu et al., 2018; Wilkerson et al., 2019). In addition, the few available studies on experimental warming of permafrost soils hint at a stimulation of N2O emissions by temperature (Chen et al., 2017; Voigt et al.,2017a, b; Cui et al., 2018). The potential significance of inorganic N cycling and N2O release in permafrost soils can be illustrated by a simple calculation. If 10% of the organic N stored in permafrost soils (i.e., 6.7 Pg N) is released between the present day and the year 2100, as it has been estimated for C release (Schuur et al., 2015), and only 1% is emitted as N2O(67 Tg N2O-N), just like the IPCC’s default N2O emission factor for N mineralized from mineral soils (IPCC, 2006), this would be equivalent to 10 times the global annual rate of N2O emissions from soils under natural vegetation [6.6 Tg N2O-N yr?1(Ciais et al., 2013)]. Consequently, there is an urgent need to better understand N biogeochemistry and associated gaseous N emissions in permafrost soils under the auspices of a warming climate.

    2.The Sino-German NIFROCLIM project

    The NIFROCLIM project (Soil nitrogen turnover and nitrous oxide emissions in permafrost landscapes of northern China in a changing climate; www.nifroclim.de) tackles the lack of research concerning soil N turnover and N2O emissions in permafrost landscapes. NIFROCLIM is a Sino-German project funded by the German Science Foundation (DFG) and the National Science Foundation of China (NSFC). The central goal of NIFROCLIM is to gain a process-based and functional understanding of (1) gross N turnover as well as associated N2O formation and consumption (i.e., reduction to dinitrogen gas) in the vertical soil profile; (2) differences in soil gross N turnover and N2O emissions across ecosystem transects in typical permafrost landscapes; and (3) the effects of warming and permafrost degradation on (1) and (2). Thus, NIFROCLIM aims at a strong contribution towards closing knowledge gaps on permafrost N biogeochemistry.

    Therefore, NIFROCLIM combines (1) research on the quality and quantity of N in soil organic matter; (2) molecular measurements of the abundance and activity of soil microbes involved in the N cycle; (3) isotope-based quantitative biogeochemical process studies; and (4) measurements of N gas (NO, N2O, N2) production in soil and the exchange at the soil-atmosphere interface in an interdisciplinary approach.

    NIFROCLIM was launched with a kickoff meeting and a first campaign in the target region of Mohe County, Northeast China, in July 2019. The sampling concept in the research area encompasses (1) high-resolution soil and gas sampling in vertical soil profiles from the soil surface to the active layer and into the upper layers of the permafrost; (2) soil and vegetation sampling as well as GHG flux measurements across topographic landscape transects covering different upland forests and lowland bogs; and (3) investigations of climate change effects by using open top chambers (OTCs) to simulate warming.

    3.Study area and key scientific infrastructures

    Besides high-altitude and alpine permafrost on the Tibetan Plateau and in Northwest China (1.35 × 106km2), there is a subarctic discontinuous permafrost region with an area of 0.24 × 106km2at the very northern end of China (Cheng and Jin,2013). The latter permafrost region in Northeast China is part of the Eurasian permafrost complex-the world’s largest permafrost area (Fig. 1a). Being located at the southern edge of the Eurasian permafrost complex, this region is sensitive to ongoing climate change, making it an ideal study area for research targeted at constraining predictions of GHG release from permafrost soils under global warming. The study sites of the NIFROCLIM project are located in the Fukuqi River catchment on the northern slope of the Great Hing’an Mountains (~105 km2; Fig. 1b). The annual mean temperature and precipitation in this catchment are ?4.2°C and 425 mm, respectively [1959?2013 (Guo et al., 2018)]. Bogs are distributed along the river valley and surrounded by birch (Betula platyphyllaSuk.) or alder (Alnus sibiricaFisch. ex Turcz) groves. Dominant plant species in the ombrotrophic bogs include dwarf shrubs [B. fruticosaPall.,Ledum palustreL.,Vaccinium uliginosumLinn., andRhododendron lapponicum(L.) Wahl.), sedges (Eriophorum vaginatumL., andCarex globularisL.] and mosses (Sphagnumspp.). Most of the upland coniferous forests were destroyed during a forest fire in 1987 and hence replaced in the course of natural succession by secondary broad-leaved forests (B. platyphyllaSuk.; 64% of the upland forest area) and via planting of coniferous forests [Larix gmelinii(Rupr.) Kuzen. andPinus sylvestrisLinn. var.mongolicaLitv.]. The flat(bogs and lowland groves) and hilly (upland forests) lands account for 29% and 71% of the catchment area, respectively.The growing season typically starts in mid-April to early May and ends in late September. The soils are classified as Cryic Histosols with a peat layer of 30 to 50 cm in bogs, and as Gelic Umbrisols with a thin soil layer of 10 to 30 cm in upland forests (IUSS Working Group WRB, 2015). Maximum active layer depths appear at the end of August to the beginning of September, and range from 50 to 100 cm in bogs and from 80 to 150 cm in upland forests.

    Fig. 1. (a) Map of permafrost-affected areas in China (Cheng and Jin, 2013) showing the Eurasian permafrost in the northeast. (b) Geographical location of the experimental region.

    Scientific infrastructure has been established at four sites in the upper, middle and lower reaches of Fukuqi River to investigate permafrost N biogeochemistry and soil-atmosphere gas exchange (Fig. 1b). At the most extensively equipped Site 2, the effects of long-term warming are studied in situ, using OTC warming platforms in different habitats (B. fruticosaandL. palustrecommunities of ombrotrophic bogs) against controls outside the OTCs. The OTCs increase the soil temperature (5 cm depth) and active layer depth on average by 2°C and 7 cm, respectively, during the growing seasons (Cui et al., 2018). At the same site, fully automated static chamber measuring systems with 12 chambers and an eddy covariance system allow for online quantification of CO2, CH4and N2O fluxes at hourly temporal resolution [Figs. 2a and b (Liu and Zheng, 2019)] from March to November. To further address landscape-scale flux variations, manual static and dynamic chamber measuring systems are used to detect the soil-atmosphere CO2, CH4, N2O and NOxfluxes at daily to sub-weekly temporal resolution at all sites in the catchment (overall > 100 flux chambers) (Figs. 2c and d) (Valente et al., 1995; Zhang et al., 2014).

    Air samples from manual chamber measurements are analyzed by gas chromatography and a chemoluminescence NONO2-NOxanalyzer in the field laboratories at Tuqiang-a town at the outlet of the catchment (Fig. 1b). The laboratories at Tuqiang also offer basic equipment for extraction and stabilization of DNA from soils, which is needed to analyze the soil microbiome and to track soil microbial N transformations via molecular microbiological approaches. Moreover, at Tuqiang,soil samples including intact frozen soil cores are processed and labeled for stable isotope studies (Fig. 3) in order to quantify soil gross N turnover rates [protein depolymerization, ammonification, nitrification, microbial immobilization, biological N fixation (BNF)].

    Topography, climate, land use, soil (e.g., soil texture, bulk density, pH, total N and organic C contents), vegetation and management information are collected at the site or catchment scale to run the process-oriented hydrobiogeochemical model CNMM-DNDC [Fig. 4 (Zhang et al., 2018)]. Soil variables (e.g., temperature, moisture, dissolved organic C and inorganic N concentrations), soil-atmosphere gas fluxes, stream discharge and related dissolved C and N losses during runoff processes are measured to validate the model at the grid (150 m × 150 m) or catchment scale. The hydrobiogeochemical model CNMM-DNDC will finally be used to upscale gaseous and dissolved C and N losses at the catchment scale, as well as to conduct scenario analyses of climate change to evaluate the influences of permafrost thawing on vegetation succession, permafrost N cycling and N2O emissions under the Representative Concentration Pathways.

    4.Supportive studies by other co-operation partners

    The presence ofAlnus sibiricaat the study sites urges the question of the role of BNF by symbiosis between the roots of this tree species and the N2-fixing bacteriaFrankiaspp. This is of particular significance for N cycling in permafrost soils, becauseAlnusis relatively deep-rooting and BNF requires large amounts of energy (Anand et al., 2012), which may enhance temperatures in the rhizosphere. These features might constitute an important N input into the ecosystem and could contribute significantly to below-ground CO2fixation by the phosphoenolpyruvate carboxylase of alder roots (Fotelli et al.,2011). However, the relevance of BNF by theAlnus-Frankiacomplex for N cycling in permafrost soils, its temperature dependency, as well as the phosphoenolpyruvate carboxylase activity ofAlnusroots, are largely unknown and require both basic research in the laboratory and extensive field studies. It is envisaged that such investigations will be performed in a cooperation with the Center of Molecular Ecophysiology (CMEP) of Southwest University, Chongqing, China.

    Fig. 2. The measuring systems used to quantify biosphere-atmosphere gas fluxes. (a) Automated static translucent chambers for measuring CO2, CH4 and N2O fluxes. (b) Eddy covariance system for measuring CH4, CO2 and water vapor exchanges. (c) Manual static opaque chambers for measuring soil respiration, CH4 and N2O fluxes. (d) Manual dynamic opaque chambers for measuring NOx fluxes.

    Fig. 3. Permafrost soil sampling. (a) Frozen ground at ~20 cm depth in July 2019 at a wetland site with soil temperature measurement showing 4.7°C at 6.5 cm depth and 2.0°C at 14 cm depth. (b) Intact frozen soil core. (c) Labeling of frozen soil for stable isotope studies.

    Fig. 4. The CNMM-DNDC model structure [Reprinted from Zhang et al. (2018)].

    5.Outlook

    In the near future, the NIFROCLIM consortium will focus on quantification of N inputs to permafrost ecosystems, i.e.,(1) BNF by alder trees as well asSphagnummosses in ombrotrophic bogs, and (2) dry and wet atmospheric deposition of N at a catchment scale (Pan et al., 2012). Further foci will be (3) on disentangling the importance of soil organic versus mineral N as plant N sources, (4) the contribution of tree-mediated to ecosystem-level GHG emissions from the lowland birch and alder groves, and (5) to better understand the links between soil organic matter composition and the N cycle on permafrost-affected soils. In addition, laboratory studies are planned (6) to quantify soil N2emissions and identify controls of N2:N2O emission ratios.

    By combining the expertise of the researchers involved, the project is targeted at providing a comprehensive picture of the N cycle and N balances for the main ecosystems present in the permafrost region of Northeast China. Through the interdisciplinary cooperation between atmospheric physicists, soil biogeochemists, microbiologists, plant physiologists and soil scientists, NIFROCLIM aims at a holistic understanding of the permafrost soil N cycle and associated N2O emissions at a catchment scale under the auspices of climate change, and thus at providing a significant contribution towards a better prediction of potential N to climate feedbacks of permafrost ecosystems. In this context, NIFROCLIM is also seen as a platform for international cooperation on permafrost research in China and beyond.

    Acknowledgements.Funding for the project is gratefully acknowledged and has been provided by the NSFC (Grant No.41861134029) and DFG (Grant Nos. DA1217/4-1 and SCHL446/41-1).

    91精品三级在线观看| 久久精品久久久久久久性| 日韩 亚洲 欧美在线| 精品国产一区二区久久| 男人舔女人的私密视频| 欧美少妇被猛烈插入视频| 岛国毛片在线播放| 亚洲国产欧美日韩在线播放| 女性被躁到高潮视频| 美女福利国产在线| 爱豆传媒免费全集在线观看| 成人黄色视频免费在线看| 这个男人来自地球电影免费观看 | 国产探花极品一区二区| 久久国产精品男人的天堂亚洲| 久久精品国产a三级三级三级| 精品午夜福利在线看| 国产成人91sexporn| av免费观看日本| 欧美在线一区亚洲| 精品少妇黑人巨大在线播放| 国产精品蜜桃在线观看| 在线 av 中文字幕| www.熟女人妻精品国产| av在线观看视频网站免费| 欧美亚洲日本最大视频资源| 精品午夜福利在线看| 亚洲欧美精品自产自拍| 久久久国产欧美日韩av| 卡戴珊不雅视频在线播放| 欧美日韩一级在线毛片| 久久鲁丝午夜福利片| 一级黄片播放器| 美女扒开内裤让男人捅视频| 精品国产乱码久久久久久男人| 男人舔女人的私密视频| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 国产精品蜜桃在线观看| 精品一区二区三区av网在线观看 | 日韩成人av中文字幕在线观看| 亚洲熟女精品中文字幕| 午夜福利免费观看在线| 精品视频人人做人人爽| 老汉色∧v一级毛片| 亚洲 欧美一区二区三区| 一本色道久久久久久精品综合| 制服丝袜香蕉在线| 1024香蕉在线观看| 久久久国产欧美日韩av| 久久人人爽人人片av| 嫩草影院入口| 亚洲精品乱久久久久久| 伊人亚洲综合成人网| 黄片小视频在线播放| 国产日韩欧美亚洲二区| av女优亚洲男人天堂| 黑人欧美特级aaaaaa片| 99热网站在线观看| 又大又爽又粗| 黑丝袜美女国产一区| 考比视频在线观看| 男女床上黄色一级片免费看| 国产免费又黄又爽又色| 久久久久久人妻| 超碰成人久久| 人人妻人人添人人爽欧美一区卜| 99久久精品国产亚洲精品| 亚洲一码二码三码区别大吗| 国产一区二区三区av在线| 亚洲天堂av无毛| 亚洲国产欧美一区二区综合| 亚洲国产日韩一区二区| 国产成人系列免费观看| 97精品久久久久久久久久精品| 国产成人a∨麻豆精品| 一级毛片 在线播放| 人成视频在线观看免费观看| 中文字幕人妻丝袜一区二区 | 日韩av免费高清视频| 一级爰片在线观看| 高清不卡的av网站| 搡老乐熟女国产| 精品福利永久在线观看| 免费黄网站久久成人精品| 97人妻天天添夜夜摸| 观看av在线不卡| 久久婷婷青草| 国产高清国产精品国产三级| 日韩一卡2卡3卡4卡2021年| 街头女战士在线观看网站| 永久免费av网站大全| 伦理电影大哥的女人| 久久亚洲国产成人精品v| 日韩免费高清中文字幕av| 伊人亚洲综合成人网| 涩涩av久久男人的天堂| 秋霞在线观看毛片| 看非洲黑人一级黄片| 亚洲视频免费观看视频| 婷婷色综合www| 最近中文字幕高清免费大全6| 国产视频首页在线观看| av在线播放精品| 老司机亚洲免费影院| 超碰97精品在线观看| 精品一品国产午夜福利视频| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 女人精品久久久久毛片| 人人澡人人妻人| 亚洲欧美精品综合一区二区三区| 一级爰片在线观看| 日韩电影二区| 人体艺术视频欧美日本| 看非洲黑人一级黄片| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 国产精品一区二区精品视频观看| av线在线观看网站| 国产午夜精品一二区理论片| 大香蕉久久网| 国产成人精品无人区| 国产 一区精品| bbb黄色大片| 99久久精品国产亚洲精品| 欧美另类一区| 亚洲色图综合在线观看| 亚洲成人手机| av国产久精品久网站免费入址| 国产1区2区3区精品| 精品午夜福利在线看| 天美传媒精品一区二区| 美女国产高潮福利片在线看| 久久久久久久大尺度免费视频| 久久婷婷青草| 99精国产麻豆久久婷婷| 日韩一本色道免费dvd| 又大又爽又粗| 制服诱惑二区| av福利片在线| 亚洲美女视频黄频| 夫妻午夜视频| 卡戴珊不雅视频在线播放| 午夜福利影视在线免费观看| a级毛片黄视频| 精品少妇一区二区三区视频日本电影 | 欧美日本中文国产一区发布| 国产毛片在线视频| 国产一区二区激情短视频 | 水蜜桃什么品种好| 嫩草影视91久久| 国产精品国产av在线观看| 午夜免费男女啪啪视频观看| 黄色视频不卡| 狠狠婷婷综合久久久久久88av| 美女大奶头黄色视频| 免费女性裸体啪啪无遮挡网站| 国产av码专区亚洲av| 色网站视频免费| 天天添夜夜摸| 男女下面插进去视频免费观看| 大陆偷拍与自拍| 亚洲欧美精品自产自拍| 亚洲中文av在线| 日本黄色日本黄色录像| 色94色欧美一区二区| 亚洲第一青青草原| 欧美黑人精品巨大| 考比视频在线观看| 考比视频在线观看| 国产欧美亚洲国产| 51午夜福利影视在线观看| 这个男人来自地球电影免费观看 | 校园人妻丝袜中文字幕| 中文字幕av电影在线播放| av天堂久久9| 日韩成人av中文字幕在线观看| 国产av国产精品国产| 亚洲av电影在线观看一区二区三区| 制服人妻中文乱码| 男男h啪啪无遮挡| 亚洲精品国产av成人精品| 亚洲婷婷狠狠爱综合网| 亚洲婷婷狠狠爱综合网| 丰满迷人的少妇在线观看| 免费久久久久久久精品成人欧美视频| 男女高潮啪啪啪动态图| 亚洲综合色网址| 国产高清国产精品国产三级| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 精品少妇一区二区三区视频日本电影 | 热re99久久国产66热| 久久青草综合色| 亚洲成人手机| 婷婷色综合www| 国产老妇伦熟女老妇高清| 日韩免费高清中文字幕av| 97人妻天天添夜夜摸| 性色av一级| 久久久久久人人人人人| 自线自在国产av| 一级爰片在线观看| 91成人精品电影| 国产日韩欧美亚洲二区| 涩涩av久久男人的天堂| 日韩一区二区视频免费看| 啦啦啦 在线观看视频| 色精品久久人妻99蜜桃| 一区在线观看完整版| 爱豆传媒免费全集在线观看| 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕在线视频| 国产成人系列免费观看| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 丰满乱子伦码专区| 亚洲一区中文字幕在线| 国产野战对白在线观看| 亚洲av电影在线进入| 人人妻人人澡人人看| 国产av国产精品国产| 国产成人欧美| 男女床上黄色一级片免费看| 国产极品天堂在线| 丰满乱子伦码专区| 亚洲欧美精品综合一区二区三区| 国产日韩欧美在线精品| 亚洲成色77777| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 日韩中文字幕欧美一区二区 | 黑人猛操日本美女一级片| 91老司机精品| 老司机亚洲免费影院| 国产精品久久久久久精品古装| 天天影视国产精品| 大陆偷拍与自拍| 如日韩欧美国产精品一区二区三区| 国产97色在线日韩免费| 成人漫画全彩无遮挡| 咕卡用的链子| 飞空精品影院首页| 蜜桃在线观看..| 成年人免费黄色播放视频| 久久99一区二区三区| 国产 一区精品| 成年女人毛片免费观看观看9 | 亚洲av电影在线观看一区二区三区| 色播在线永久视频| 国产精品久久久久久精品电影小说| 最近的中文字幕免费完整| 伊人久久国产一区二区| 巨乳人妻的诱惑在线观看| 十八禁网站网址无遮挡| 永久免费av网站大全| 麻豆av在线久日| 久久这里只有精品19| 中文字幕色久视频| 搡老乐熟女国产| 日韩成人av中文字幕在线观看| 精品久久久精品久久久| 日韩中文字幕欧美一区二区 | 亚洲欧美精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 韩国精品一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲av电影在线进入| 欧美激情高清一区二区三区 | 日本爱情动作片www.在线观看| 制服人妻中文乱码| 久久精品国产综合久久久| 女人被躁到高潮嗷嗷叫费观| 欧美日本中文国产一区发布| 一区二区三区精品91| 亚洲av男天堂| 欧美精品av麻豆av| 日本欧美国产在线视频| 少妇精品久久久久久久| 国产免费现黄频在线看| 一区在线观看完整版| 国产日韩一区二区三区精品不卡| 国产精品一区二区精品视频观看| 黑人巨大精品欧美一区二区蜜桃| 19禁男女啪啪无遮挡网站| 在线观看免费日韩欧美大片| 中国三级夫妇交换| 午夜福利视频精品| 老汉色∧v一级毛片| 免费在线观看完整版高清| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 免费在线观看黄色视频的| 中文字幕最新亚洲高清| 超碰成人久久| 日日啪夜夜爽| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| 天美传媒精品一区二区| 丝袜脚勾引网站| 久久久精品免费免费高清| 永久免费av网站大全| 精品午夜福利在线看| 一区二区三区乱码不卡18| 人人妻,人人澡人人爽秒播 | 国产精品久久久久久精品电影小说| 日本91视频免费播放| 99国产综合亚洲精品| 别揉我奶头~嗯~啊~动态视频 | 久久精品国产亚洲av涩爱| 精品国产一区二区三区久久久樱花| 亚洲精品,欧美精品| 午夜激情久久久久久久| 毛片一级片免费看久久久久| 另类精品久久| 亚洲视频免费观看视频| 国产精品久久久久久人妻精品电影 | 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 男女国产视频网站| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 日韩av不卡免费在线播放| 欧美另类一区| 欧美成人午夜精品| 尾随美女入室| 日本av免费视频播放| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 亚洲久久久国产精品| av免费观看日本| av在线播放精品| 婷婷色综合www| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 两个人看的免费小视频| 高清在线视频一区二区三区| 亚洲av日韩在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲色图综合在线观看| 在线观看www视频免费| www.av在线官网国产| av福利片在线| 美国免费a级毛片| 秋霞伦理黄片| 欧美精品人与动牲交sv欧美| 亚洲国产中文字幕在线视频| av女优亚洲男人天堂| 国产午夜精品一二区理论片| 只有这里有精品99| 亚洲精品久久午夜乱码| 91成人精品电影| 亚洲欧美一区二区三区黑人| 欧美另类一区| av电影中文网址| 男女午夜视频在线观看| 欧美日韩综合久久久久久| 免费在线观看黄色视频的| 日本av手机在线免费观看| 老司机在亚洲福利影院| avwww免费| 又大又爽又粗| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 亚洲第一青青草原| 免费人妻精品一区二区三区视频| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区 | 亚洲国产最新在线播放| 十八禁高潮呻吟视频| 国产女主播在线喷水免费视频网站| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 新久久久久国产一级毛片| 久久99一区二区三区| 亚洲av福利一区| 美女国产高潮福利片在线看| 国产精品国产av在线观看| 男人操女人黄网站| 一本久久精品| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 精品一区二区三区av网在线观看 | 国产高清国产精品国产三级| 亚洲精品国产区一区二| 在线天堂中文资源库| 精品一区二区三区四区五区乱码 | 色播在线永久视频| 国产爽快片一区二区三区| 精品人妻熟女毛片av久久网站| 观看av在线不卡| 最近中文字幕高清免费大全6| 欧美日韩亚洲高清精品| 天天添夜夜摸| 高清av免费在线| 韩国高清视频一区二区三区| 夫妻性生交免费视频一级片| av网站在线播放免费| 少妇 在线观看| 不卡视频在线观看欧美| 日韩不卡一区二区三区视频在线| www日本在线高清视频| 在线精品无人区一区二区三| 日本色播在线视频| 欧美乱码精品一区二区三区| 精品一品国产午夜福利视频| 制服诱惑二区| 我要看黄色一级片免费的| 亚洲精品一二三| 别揉我奶头~嗯~啊~动态视频 | 午夜福利在线免费观看网站| 男女边吃奶边做爰视频| 婷婷成人精品国产| 国产高清不卡午夜福利| 日韩av免费高清视频| 亚洲三区欧美一区| 国产精品二区激情视频| 视频区图区小说| 国产在视频线精品| 青春草视频在线免费观看| 超色免费av| 大片免费播放器 马上看| 天天影视国产精品| 一级片免费观看大全| 久久久久久久精品精品| av线在线观看网站| av网站免费在线观看视频| 91老司机精品| 搡老岳熟女国产| 久久性视频一级片| 无限看片的www在线观看| 男人添女人高潮全过程视频| 欧美日韩成人在线一区二区| 精品少妇内射三级| 日韩一区二区视频免费看| 美女主播在线视频| 2021少妇久久久久久久久久久| 国产一卡二卡三卡精品 | 天美传媒精品一区二区| 91成人精品电影| 一区二区三区精品91| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| h视频一区二区三区| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲专区中文字幕在线 | 黄片播放在线免费| 久久人人97超碰香蕉20202| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 亚洲精品国产区一区二| 肉色欧美久久久久久久蜜桃| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 国产精品成人在线| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 午夜福利一区二区在线看| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 中文字幕人妻丝袜一区二区 | 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | 亚洲欧洲国产日韩| 国产乱来视频区| 亚洲国产精品一区二区三区在线| 成人漫画全彩无遮挡| 美女午夜性视频免费| 免费在线观看黄色视频的| 狂野欧美激情性bbbbbb| 在线天堂最新版资源| 综合色丁香网| 精品国产一区二区三区四区第35| 99精品久久久久人妻精品| 久热爱精品视频在线9| 99国产综合亚洲精品| 黄色怎么调成土黄色| 美女中出高潮动态图| 日韩一卡2卡3卡4卡2021年| 另类精品久久| 交换朋友夫妻互换小说| 日韩欧美精品免费久久| 成人免费观看视频高清| 高清av免费在线| 久久久久久久大尺度免费视频| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 久久婷婷青草| 精品国产一区二区久久| 少妇人妻精品综合一区二区| 国产精品一区二区在线观看99| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 免费黄色在线免费观看| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 亚洲欧美激情在线| 国产成人精品无人区| 一本久久精品| 欧美最新免费一区二区三区| 我的亚洲天堂| av视频免费观看在线观看| 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 久久免费观看电影| 日韩免费高清中文字幕av| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 一区二区日韩欧美中文字幕| 爱豆传媒免费全集在线观看| 嫩草影视91久久| 亚洲av成人精品一二三区| 自线自在国产av| 少妇人妻久久综合中文| 国产精品99久久99久久久不卡 | 日韩欧美精品免费久久| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 久久久久视频综合| 亚洲av在线观看美女高潮| 亚洲美女黄色视频免费看| 国产老妇伦熟女老妇高清| 老司机影院毛片| 日日爽夜夜爽网站| 黄片小视频在线播放| 成年女人毛片免费观看观看9 | 伊人亚洲综合成人网| 好男人视频免费观看在线| 国产成人精品福利久久| 午夜免费鲁丝| 欧美黄色片欧美黄色片| 久久ye,这里只有精品| 考比视频在线观看| 久久久国产一区二区| 在线观看人妻少妇| 欧美日韩一级在线毛片| 国产精品久久久久久久久免| 18在线观看网站| 美女国产高潮福利片在线看| 国产免费福利视频在线观看| 无限看片的www在线观看| 你懂的网址亚洲精品在线观看| 欧美乱码精品一区二区三区| 免费高清在线观看日韩| 精品国产国语对白av| 在线天堂中文资源库| 久久热在线av| 久热这里只有精品99| 国产男人的电影天堂91| 国产亚洲av片在线观看秒播厂| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区| 在线免费观看不下载黄p国产| 天天操日日干夜夜撸| 中文乱码字字幕精品一区二区三区| 免费观看人在逋| 婷婷色综合www| 国产成人精品在线电影| 国产成人a∨麻豆精品| 亚洲av电影在线进入| av卡一久久| 亚洲成色77777| 中文字幕高清在线视频| 看免费成人av毛片| av在线播放精品| 看免费成人av毛片| 亚洲精品av麻豆狂野| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 久久精品人人爽人人爽视色| 丝袜美足系列| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| av.在线天堂| 五月天丁香电影| 久久久久久久久久久久大奶| 9热在线视频观看99| 电影成人av| 最近的中文字幕免费完整| 欧美日韩成人在线一区二区| 久久精品久久久久久久性| 在线观看免费日韩欧美大片| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 亚洲成人一二三区av| 一级片免费观看大全| 国产黄色视频一区二区在线观看| 电影成人av| 久久久久国产精品人妻一区二区| 麻豆av在线久日| 欧美成人午夜精品| 国产精品成人在线| 999精品在线视频| 免费观看a级毛片全部| 男人舔女人的私密视频| 日韩制服骚丝袜av| 国产成人系列免费观看| 又粗又硬又长又爽又黄的视频| 午夜福利乱码中文字幕|