盧亞鳳 殷梅 容偉
摘要:目的 ?探討線粒體自噬對(duì)阻塞性睡眠呼吸暫停綜合征(OSAS)大鼠海馬神經(jīng)元的影響。方法 ?將24只成年雄性SD大鼠隨機(jī)分為對(duì)照組和實(shí)驗(yàn)組,對(duì)照組6只,不進(jìn)行OSAS造模,正常條件飼養(yǎng);實(shí)驗(yàn)組18只,進(jìn)行OSAS模型制備,造模后按繼續(xù)飼養(yǎng)2、4、6周分為2周組、4周組和6周組,每組6只。比較實(shí)驗(yàn)組造模前后血氧飽和度,Western Blot檢測(cè)大鼠海馬神經(jīng)細(xì)胞線粒體自噬相關(guān)蛋白LC3(LC3Ⅱ/LC3Ⅰ)、p62、PINK1及Parkin的表達(dá);透射電子顯微鏡觀察大鼠海馬神經(jīng)細(xì)胞線粒體的變化情況,TUNEL檢測(cè)法觀察大鼠海馬CA1區(qū)神經(jīng)細(xì)胞的變化。結(jié)果 ?實(shí)驗(yàn)組大鼠造模后反應(yīng)慵懶,警覺(jué)性差,進(jìn)食減少,進(jìn)食量不規(guī)律,偶有呼吸節(jié)律不規(guī)則等,且血氧飽和度低于造模前,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);2、4、6周組大鼠海馬 CA1區(qū)LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表達(dá)均高于對(duì)照組,p62表達(dá)低于對(duì)照組,且2、4、6周組LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表達(dá)呈依次升高,p62 表達(dá)依次降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。2、4、6周組大鼠海馬 CA1區(qū)線粒體自噬小體及凋亡細(xì)胞數(shù)均多于對(duì)照組,且2、4、6周組呈依次升高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論 ?OSAS大鼠海馬神經(jīng)細(xì)胞發(fā)生線粒體自噬可能會(huì)加重OSAS大鼠海馬神經(jīng)元的凋亡。
關(guān)鍵詞:阻塞性睡眠呼吸暫停綜合征;線粒體自噬;海馬神經(jīng)元
中圖分類號(hào):R742;R741.02 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2020.11.022
文章編號(hào):1006-1959(2020)11-0072-04
Abstract:Objective ?To investigate the effect of mitochondrial autophagy on hippocampal neurons in rats with obstructive sleep apnea syndrome (OSAS).Methods ?24 adult male SD rats were randomly divided into a control group and an experimental group, with 6 rats in the control group without OSAS modeling and fed under normal conditions;In the experimental group, 18 animals were prepared for the OSAS model. After the model was established, they were divided into 2 week groups, 4 week groups, and 6 week groups according to 2, 4, and 6 weeks of continuous feeding. The blood oxygen saturation of the experimental group before and after modeling was compared. Western Blot was used to detect the expression of mitochondrial autophagy-related proteins LC3 (LC3Ⅱ/LC3Ⅰ), p62, PINK1 and Parkin in rat hippocampus neurons. Changes, TUNEL detection method to observe the changes of neurons in hippocampal CA1 area of rats.Results ?The rats in the experimental group had lazy reaction, poor alertness, decreased food intake, irregular food intake, and occasional irregular breathing rhythm, etc., and the blood oxygen saturation was lower than before the model, the difference was statistically significant (P<0.05 ); The protein expressions of LC3 (LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin in hippocampal CA1 area of rats in the 2, 4, and 6-week groups were higher than that in the control group, and the expression of p62 was lower than that in the control group, and LC3 in the 2, 4, and 6-week groups LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin protein expression increased sequentially, p62 expression decreased sequentially, the differences were statistically significant (P<0.05). The number of mitochondrial autophagosomes and apoptotic cells in the hippocampal CA1 area of rats in the 2, 4 and 6 week groups were more than those in the control group, and the 2,4, and 6 week groups were sequentially increased,the differences were statistically significant (P<0.05).Conclusion ?The occurrence of mitochondrial autophagy in hippocampal neurons of OSAS rats may increase the apoptosis of hippocampal neurons in OSAS rats.
Key words:Obstructive sleep apnea syndrome;Mitochondrial autophagy;Hippocampal neurons
阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea syndrome,OSAS)是一種睡眠障礙性性疾病,患者易出現(xiàn)高血壓、心臟病、認(rèn)知功能障礙等并發(fā)癥,尤以認(rèn)知障礙為著[1,2]。有研究顯示,缺氧能誘發(fā)細(xì)胞產(chǎn)生線粒體自噬[3],而慢性間歇性缺氧是OSAS最主要的病理生理機(jī)制,同時(shí)大腦海馬對(duì)缺氧高度敏感[4],目前國(guó)內(nèi)外關(guān)于線粒體自噬與OSAS大鼠海馬神經(jīng)細(xì)胞的相關(guān)性研究較少。故本研究擬檢測(cè)OSAS大鼠海馬神經(jīng)細(xì)胞線粒體自噬相關(guān)蛋白的表達(dá),觀察大鼠海馬神經(jīng)細(xì)胞線粒體以及海馬神經(jīng)元的變化情況,探討線粒體自噬對(duì)OSAS大鼠海馬神經(jīng)元的影響,報(bào)道如下。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物 ?選擇3月齡SPF級(jí)雄性SD大鼠24只[昆明醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物學(xué)部,SCXK(滇)K2015-0002)],顆粒飼料喂養(yǎng),自由飲水。本實(shí)驗(yàn)已獲得昆明醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)。將24只SD大鼠按照隨機(jī)數(shù)字表法分為對(duì)照組(6只)和實(shí)驗(yàn)組(18只),實(shí)驗(yàn)組通過(guò)咽腔注射透明質(zhì)酸鈉凝膠的方法進(jìn)行OSAS造模,造模成功后按繼續(xù)飼養(yǎng)2周、4周和6周的時(shí)長(zhǎng)分為2周組、4周組和6周組,每組6只;對(duì)照組6只不進(jìn)行造模,正常條件下飼養(yǎng)。
1.2儀器與試藥 ?玻璃酸透明質(zhì)酸鈉凝膠(上海其勝生物制劑公司,批號(hào):3640336);β-actin(abmart,批號(hào):P30002);LC3、p62、Pink1、Parkin抗體(CST,批號(hào):18725-1-AP、18420-1-AP、A11435、14060-1-AP);多參數(shù)神經(jīng)監(jiān)護(hù)儀(上海諾誠(chéng)醫(yī)療器械公司,NTS-3000A);光學(xué)顯微鏡(Nikon,ECLIPSE Ci-L);透射電子顯微鏡(JEOL,JEM-1011)。
1.3 OSAS大鼠造模 ?參照周趙德等[5]研究,造模前,用多參數(shù)神經(jīng)監(jiān)護(hù)儀監(jiān)測(cè)大鼠血氧飽和度,腹腔麻醉后,于大鼠舌根、咽腭弓、舌腭弓處,多點(diǎn)注射透明質(zhì)酸鈉凝膠;造模后,繼續(xù)觀察4周。造模成功的標(biāo)準(zhǔn):造模后大鼠反應(yīng)慢,進(jìn)食減少,偶有呼吸不規(guī)則;對(duì)比造模前后血氧飽和度,差異有統(tǒng)計(jì)學(xué)意義可判定造模成功。
1.4實(shí)驗(yàn)取材 ?分別于2、4、6周時(shí)處死大鼠。每組3只新鮮取材,脫頸處死消毒后,暴露并剔除顱骨,取腦后在冰面上快速分離出海馬組織,一半置于EP管中放入-80℃冰箱中,以備進(jìn)行Western Blot檢測(cè),一半置于2.5%戊二醛中,用錫箔紙包裹避光后放入4℃冰箱中,以備進(jìn)行透射電子顯微鏡觀察。另3只用4%的多聚甲醛灌注取材后用于TUNEL染色。
1.5 Western Blot檢測(cè) ?將海馬組織修剪,冰浴下勻漿、靜置裂解20 min,12000 r/min轉(zhuǎn)速在4 ℃下離心10 min后收集上清液;經(jīng)蛋白濃度測(cè)定(按BCA試劑盒說(shuō)明書操作),然后灌膠與上樣,進(jìn)行SDS-PAGE電泳,將電泳分離的蛋白轉(zhuǎn)移到PVDF膜上,用濕轉(zhuǎn)膜法轉(zhuǎn)膜,然后免疫反應(yīng)、化學(xué)發(fā)光、顯影、定影后采集圖像。
1.6透射電子顯微鏡觀察 ?將2.5%戊二醛4 ℃固定的樣品,反復(fù)沖洗,乙醇脫水后包埋,固化后UltracutE超薄切片機(jī)超薄切片,用醋酸雙氧鈾硝酸鉛染色后上機(jī)測(cè)試。TEM透射電子顯微鏡觀察、采集圖像。
1.7 TUNEL檢測(cè) ?將灌注取材的海馬組織石蠟包埋,切片后脫蠟、脫水,反復(fù)浸洗及固定后加TUNEL檢測(cè)液,蘇木素復(fù)染后沖洗,酒精脫水及二甲苯透明后用中性樹(shù)脂進(jìn)行封片;在光學(xué)顯微鏡下采集圖片。
1.8統(tǒng)計(jì)學(xué)方法 ?所有數(shù)據(jù)使用SPSS 24.0軟件分析包進(jìn)行分析,計(jì)量資料用(x±s)表示,其中血氧飽和度數(shù)據(jù)用自身配對(duì)設(shè)計(jì)t檢驗(yàn),各組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用q檢驗(yàn);以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1 OSAS大鼠造模結(jié)果 ?造模后大鼠反應(yīng)慵懶,警覺(jué)性差,進(jìn)食減少,進(jìn)食量不規(guī)律,偶有呼吸節(jié)律不規(guī)則等;且造模后最低血氧飽和度和平均血氧飽和度均低于造模前,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表1。
2.2各組大鼠海馬CA1區(qū)線粒體自噬相關(guān)蛋白表達(dá)比較 ?2周組、4周組和6周組大鼠海馬 CA1區(qū)LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表達(dá)均高于對(duì)照組,p62表達(dá)均低于對(duì)照組,且2周組、4周組和6周組間兩兩比較顯示,造模后飼養(yǎng)時(shí)間越長(zhǎng),LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表達(dá)越高,p62 表達(dá)越低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.050.05),見(jiàn)圖1、表2。
2.3透射電子顯微鏡觀察結(jié)果比較 ?2周組、4周組和6周組大鼠海馬CA1區(qū)線粒體自噬小體數(shù)量均多于對(duì)照組,且2周組、4周組和6周組間兩兩比較發(fā)現(xiàn),造模后飼養(yǎng)時(shí)間的越長(zhǎng)線粒體自噬小體數(shù)量越多,見(jiàn)圖2。
2.4各組大鼠海馬CA1區(qū)TUNEL檢測(cè)結(jié)果比較 ? ?2周組、4周組和6周組大鼠海馬 CA1區(qū)出現(xiàn)神經(jīng)細(xì)胞凋亡,凋亡細(xì)胞均多于對(duì)照組,且2周組、4周組和6周組間兩兩比較發(fā)現(xiàn),隨著造模后飼養(yǎng)時(shí)間越長(zhǎng)的凋亡細(xì)胞數(shù)越多,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)圖3、表3。
3討論
慢性間歇性缺氧能損傷海馬神經(jīng)[6],而海馬與大腦認(rèn)知功能有關(guān)[7]。本課題組前期研究[5]證實(shí),咽腔注射透明質(zhì)酸鈉凝膠的方法可制備OSAS大鼠模型,且OSAS大鼠認(rèn)知損害與海馬神經(jīng)元凋亡有關(guān)。本研究參照同樣的方法造模后,發(fā)現(xiàn)大鼠反應(yīng)變慢,進(jìn)食減少,偶有呼吸不規(guī)則,且血氧飽和度下降,這說(shuō)明造模成功;同時(shí),用TUNEL檢測(cè)法發(fā)現(xiàn)OSAS大鼠海馬CA1區(qū)神經(jīng)細(xì)胞出現(xiàn)凋亡,且凋亡細(xì)胞數(shù)量隨著繼續(xù)飼養(yǎng)時(shí)間的延長(zhǎng)增多,這與前期研究結(jié)果存在一致性。
另外,線粒體自噬是細(xì)胞自身選擇性的清除受損或功能障礙線粒體的過(guò)程,對(duì)細(xì)胞的自我修護(hù)至關(guān)重要。在線粒體自噬的過(guò)程中,微管相關(guān)蛋白輕鏈3(LC3)及LC3Ⅱ/ LC3Ⅰ的蛋白水平可以表達(dá)其自噬活性,p62與自噬活性成反比[8,9]。PINK1-Parkin是線粒體自噬主要的分子機(jī)制[10,11],有研究指出[12],缺氧能誘導(dǎo)細(xì)胞線粒體自噬。本研究通過(guò)檢測(cè)上述線粒體自噬相關(guān)蛋白發(fā)現(xiàn),OSAS大鼠海馬CA1區(qū)LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表達(dá)升高,p62 表達(dá)下降,這說(shuō)明OSAS大鼠海馬神經(jīng)細(xì)胞自噬活性增加,自噬體生成增多,且透射電鏡下觀察OSAS大鼠海馬神經(jīng)元可見(jiàn)線粒體自噬小體形成;說(shuō)明OSAS大鼠海馬神經(jīng)元可出現(xiàn)線粒體自噬,與缺氧誘導(dǎo)細(xì)胞產(chǎn)生線粒體自噬存在一致性。
另外,缺氧誘導(dǎo)細(xì)胞產(chǎn)生線粒體自噬的同時(shí),可產(chǎn)生大量的活性氧,這可能損傷線粒體網(wǎng)絡(luò)[13],而神經(jīng)細(xì)胞突觸的部分能量來(lái)源于此[14],進(jìn)而可能損傷神經(jīng)細(xì)胞。本研究顯示,造模后繼續(xù)飼養(yǎng)時(shí)間越長(zhǎng),LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin表達(dá)越高,p62 表達(dá)越低;OSAS大鼠海馬神經(jīng)元線粒體自噬體及凋亡細(xì)胞數(shù)量也越多,這表明線粒體自噬程度與OSAS大鼠海馬神經(jīng)元凋亡程度成正比,且可能損傷海馬神經(jīng)元,這都可能與造模后隨著飼養(yǎng)時(shí)間的延長(zhǎng),缺氧程度越重引起的活性氧過(guò)度積累有關(guān)。此外,已有研究證實(shí),人體內(nèi)細(xì)胞線粒體損傷可在缺氧等條件下發(fā)生[8],說(shuō)明缺氧可以誘導(dǎo)產(chǎn)生線粒體自噬的同時(shí),也可以導(dǎo)致線粒體損傷。而線粒體自噬異常(過(guò)度自噬或缺失)會(huì)導(dǎo)致神經(jīng)細(xì)胞凋亡,損害神經(jīng)系統(tǒng)[15]。因此,本研究中OSAS大鼠海馬神經(jīng)元線粒體自噬小體的增多存在線粒體損傷或過(guò)度自噬的可能,而線粒體自噬也被稱為自噬-溶酶體途徑[16],自噬體的明顯增多也有可能是損害了自噬-溶酶體途徑。故OSAS大鼠海馬神經(jīng)細(xì)胞產(chǎn)生線粒體自噬,可能加重其海馬神經(jīng)元凋亡,但是否存在線粒體自噬異常尚且無(wú)法準(zhǔn)確評(píng)判。目前,有多種自噬機(jī)制及自噬相關(guān)蛋白的研究相繼報(bào)導(dǎo)[17,18],而本研究檢測(cè)指標(biāo)有限,存在些許不足,但也證實(shí)了OSAS大鼠可能存在認(rèn)知障礙,而檢測(cè)線粒體自噬異常與否有待進(jìn)一步研究。
綜上所述,OSAS大鼠海馬神經(jīng)細(xì)胞發(fā)生線粒體自噬可能會(huì)加重OSAS大鼠海馬神經(jīng)元的凋亡,該過(guò)程可能會(huì)影響大鼠認(rèn)知功能。
參考文獻(xiàn):
[1]Lai S,Mordenti M,Mangiulli M,et al.Resistant hypertension and obstructive sleep apnea syndrome in therapy with continuous positive airway pressure:evaluation of blood pressure,cardiovascular risk markers and exercise tolerance[J].Eur Rev Med Pharmacol Sci,2019,23(21):9612-9624.
[2]Sener YZ,Oksul M,Akkaya F.Effects of obstructive sleep apnea and atrial fibrillation on blood pressure variability[J].Anatol J Cardiol,2019,22(6):338.
[3]Anzell AR,Maizy R,Przyklenk K,et al.Mitochondrial Quality Control and Disease:Insights into Ischemia-Reperfusion Injury[J].Mol Neurobiol,2018,55(3):2547-2564.
[4]Qaid E,Zakaria R,Sulaiman SF,et al.Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit-lessons from rat studies[J].Hum Exp Toxicol,2017,6(3):1315-1325.
[5]周趙德,容偉,李春艷.阻塞性睡眠呼吸暫停綜合征致大鼠認(rèn)知障礙及其機(jī)制研究[J].中華老年心腦血管病雜志,2019,21(9):976-980.
[6]Gao X,Wu S,Dong Y,et al.Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats[J].International Journal of Neuroscience,2018,128(9):797-804.
[7]Wang B,Xu X,Liang G,et al.Correlative study of the metabolic disorder of hippocampus and cerebral cortex and cognitive impairment in moderate to severe OSAHS patients[J].Lin Chung Er,2015,29(7):607-611.
[8]Springer MZ,Macleod KF.In Brief:Mitophagy:mechanisms and role in human disease[J].J Pathol,2016,240(3):253-255.
[9]Kirkin V.History of the Selective Autophagy Research:How Did It Begin and Where Does It Stand Today[J].J Mol Biol,2020,432(1):3-27.
[10]Wei L,Wang J,Chen A,et al.Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells[J].Int J Nanomedicine,2017,12(3):1891-1903.
[11]Evans CS,Holzbaur ELF.Quality Control in Neurons:Mitophagy and Other Selective Autophagy Mechanisms[J].J Mol Biol,2020,432(1):240-260.
[12]Lemasters JJ.Selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J].Rejuvenation Res,2005,8(1):3-5.
[13]Liochev SI.Reactive oxygen species and the free radical theory of aging[J].Free Radic Biol Med,2013,60(10):1-4.
[14]Misgeld T,Schwarz TL.Mitostasis in Neurons:Maintaining Mitochondria in an Extended Cellular Architecture[J].Neuron,2017,96(3):651-666.
[15]Bellou V,Belbasis L,Tzoulaki I,et al.Environmental risk factors and Parkinson's disease:An umbrella review of meta-analyses[J].Parkinsonism Relat Disord,2016,23(4):1-9.
[16]Bowling JL,Skolfield MC,Riley WA,et al.Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway[J].BMC Mol Cell Biol,2019,20(1):33.
[17]Bayne AN,Trempe JF.Mechanisms of PINK1,ubiquitin and Parkin interactions in mitochondrial quality control and beyond[J].Cell Mol Life Sci,2019,76(23):4589-4611.
[18]Wang R,Wang G.Autophagy in Mitochondrial Quality Control[J].Adv Exp Med Biol,2019,12(6):421-434.
收稿日期:2020-03-27;修回日期:2020-04-06
編輯/成森