吳瀅
摘要:基質(zhì)細(xì)胞衍生因子-1(SDF-1)是由骨髓基質(zhì)細(xì)胞產(chǎn)生的CXC類趨化蛋白。CXCR4和CXCR7是已知的兩個(gè)由SDF-1激活的兩個(gè)G蛋白偶聯(lián)受體,在發(fā)育和成熟的中樞神經(jīng)系統(tǒng)中均表達(dá),并參與中樞神經(jīng)系統(tǒng)中多種病理生理過(guò)程,包括腦發(fā)育、血管生成、神經(jīng)變性和神經(jīng)發(fā)生。腦缺血性損傷后,缺血半暗帶內(nèi)SDF-1水平顯著增加并誘導(dǎo)神經(jīng)功能修復(fù),SDF-1/CXCR4/CXCR7信號(hào)傳導(dǎo)通路可能為卒中的治療提供新的靶點(diǎn)。本文主要就SDF-1/CXCR4/CXCR7的結(jié)構(gòu)、在中樞神經(jīng)系統(tǒng)中的表達(dá)、相互作用以及其在腦缺血中的作用進(jìn)行綜述,旨在為缺血性腦卒中的治療提供理論參考。
關(guān)鍵詞:基質(zhì)細(xì)胞衍生因子-1;缺血性卒中;CXCR4;CXCR7
中圖分類號(hào):R743.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2020.11.012
文章編號(hào):1006-1959(2020)11-0034-04
Abstract:Stromal cell-derived factor-1 (SDF-1) is a CXC-like chemotactic protein produced by bone marrow stromal cells. CXCR4 and CXCR7 are two known G protein-coupled receptors activated by SDF-1, which are both expressed in the developing and mature central nervous system and participate in various pathophysiological processes in the central nervous system, including the brain Development, angiogenesis, neurodegeneration and neurogenesis. After cerebral ischemic injury, the level of SDF-1 in the ischemic penumbra significantly increased and induced neurological function repair. The SDF-1 / CXCR4 / CXCR7 signaling pathway may provide a new target for the treatment of stroke. This article mainly reviews the structure of SDF-1 / CXCR4 / CXCR7, its expression and interaction in the central nervous system, and its role in cerebral ischemia, aiming to provide a theoretical reference for the treatment of ischemic stroke.
Key words:Stromal cell-derived factor-1;Ischemic stroke;CXCR4;CXCR7
趨化因子是一類能夠吸引免疫細(xì)胞并具有趨化性的小細(xì)胞因子或信號(hào)蛋白,根據(jù)氨基端半胱氨酸的排列方式,將它們分為CXC、CC、C和CX3C四個(gè)亞家族。基質(zhì)細(xì)胞衍生因子-1(stromal cell-derived factor-1,SDF-1)來(lái)源骨髓基質(zhì)細(xì)胞屬于CXC超家族,系統(tǒng)命名為CXCL12。SDF-1α在所有器官中都有豐富且廣泛的表達(dá),過(guò)去認(rèn)為趨化因子受體4(chemokine receptor 4,CXCR4)是SDF-1唯一的受體。然而近年來(lái)的研究發(fā)現(xiàn)趨化因子受體7(chemokine receptor 7,CXCR7)也屬于SDF-1的受體。目前研究認(rèn)為[1],SDF-1及其受體形成的SDF-1/CXCR4/CXCR7通路參與中樞神經(jīng)系統(tǒng)的各種生理和病理過(guò)程,包括神經(jīng)系統(tǒng)的發(fā)育、炎癥反應(yīng)、神經(jīng)發(fā)生和血管發(fā)生。本文主要就SDF-1/CXCR4/CXCR7信號(hào)軸在缺血性腦損傷中的作用進(jìn)行綜述,旨在為臨床治療缺血性腦損傷提供理論依據(jù)。
1 SDF-1/CXCR4/CXCR7結(jié)構(gòu)及其在中樞神經(jīng)系統(tǒng)中的表達(dá)
SDF-1的核苷酸和氨基酸為高度保守序列,編碼基因位于10號(hào)染色體長(zhǎng)臂,其cDNA全長(zhǎng)1776 bp,編碼區(qū)含有1個(gè)267 bp核苷酸序列的開放讀碼框,編碼89個(gè)氨基酸堿基多肽[2]。SDF-1能夠在多種細(xì)胞和組織中表達(dá),人體內(nèi)含有六種SDF-1異構(gòu)體(α、β、γ、δ、ε、φ),其中以α亞型為主。大鼠/小鼠含有3種異構(gòu)體(α、β、γ),所有異構(gòu)體具有一個(gè)共同的mRNA前體分子的選擇性剪接產(chǎn)物。胚胎時(shí)期,SDF-1在發(fā)育中的皮層、心室周圍區(qū)域表達(dá),腦膜中的表達(dá)水平很高。出生后,SDF-1在腦干、嗅球、海馬、下丘腦、小腦和腦血管中組成性表達(dá),且SDF-1在海馬中的高水平表達(dá)貫穿整個(gè)生物體的一生。在成熟的中樞神經(jīng)系統(tǒng)中,已知SDF-1在神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞、內(nèi)皮細(xì)胞和腦膜細(xì)胞中組成性表達(dá)[3]。
CXCR4曾被認(rèn)為是SDF-1唯一的受體,編碼基因位于4號(hào)染色體,有7個(gè)跨膜α螺旋,由352個(gè)氨基酸組成[4]。SDF-1能夠與其相應(yīng)的G蛋白偶聯(lián)受體CXCR4特異性結(jié)合,組成SDF-1/CXCR4生物學(xué)軸,在白細(xì)胞、CD34+造血干細(xì)胞及CD34+祖細(xì)胞表面都有廣泛表達(dá)[5],其信號(hào)通路對(duì)細(xì)胞增殖、促進(jìn)趨化、粘附和遷移、骨髓動(dòng)員造血等多種生物學(xué)過(guò)程中有著重要的作用。與SDF-1的表達(dá)相似,CXCR4的表達(dá)可以在胚胎早期8.5 d時(shí)檢測(cè)到,主要在心室區(qū)和邊緣區(qū)表達(dá)。出生后,CXCR4在上述區(qū)域的表達(dá)逐漸降低,但在齒狀回亞顆粒區(qū)(SGZ)和嗅球中終生持續(xù)存在。CXCR4在成熟的神經(jīng)元、星形膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞和室管膜細(xì)胞中組成性表達(dá)[3]。
CXCR7是SDF-1的第二種受體,屬于七次跨膜GPCR的超家族,能與CXCR4在細(xì)胞膜形成異二聚體,協(xié)同介導(dǎo)SDF-1的生物學(xué)效應(yīng),其在腫瘤的發(fā)病機(jī)制中起著重要的作用[6]。不同于CXCR4,SDF-1結(jié)合CXCR7不激活Gai信號(hào)傳導(dǎo)途徑,CXCR7可介導(dǎo)非經(jīng)典β-arrestin的信號(hào)通路,在SDF-1誘導(dǎo)的干細(xì)胞增殖、存活和抗凋亡方面有重要作用[2]。通常認(rèn)為,CXCR7的表達(dá)與細(xì)胞的生長(zhǎng)、存活和黏附有關(guān),而CXCR4的活化則有利于細(xì)胞增殖和遷移。CXCR7 mRNA最早可在胚胎期11.5 d上檢測(cè)到。在胚胎期,CXCR7主要分布在發(fā)育中的皮層、心室區(qū)、腦室下區(qū)、小腦的顆粒細(xì)胞層、齒狀回、尾狀核和神經(jīng)節(jié)突觸。出生后,CXCR7的表達(dá)迅速下降,在成年大腦中,CXCR7的表達(dá)通常維持在相對(duì)較低的水平,可在皮層、海馬、嗅球、邊緣區(qū)、腦室下區(qū)、小腦、下丘腦、丘腦中檢測(cè)到。利用細(xì)胞類型標(biāo)記,CXCR7 mRNA可在神經(jīng)元、內(nèi)皮細(xì)胞、腦膜細(xì)胞、星形膠質(zhì)細(xì)胞和少突膠質(zhì)祖細(xì)胞中表達(dá)[7]。
2 SDF-1/CXCR4/CXCR7信號(hào)傳輸通路
SDF-1與CXCR4結(jié)合可激活多個(gè)G蛋白偶聯(lián)途徑。如Gαi和Gβγ亞基均可觸發(fā)PI3K、MAPK以及NF-kB途徑,從而引起一系列細(xì)胞效應(yīng)。Gβγ亞基可以通過(guò)磷脂酶C(PLC)和Ca2+觸發(fā)磷脂酰肌醇-4,5-雙磷酸酯(PIP2)、二?;视停―AG)和肌醇三磷酸酯(IP3)的活化[8]。MAPK通路是信號(hào)從細(xì)胞表面?zhèn)鲗?dǎo)到細(xì)胞核內(nèi)部的重要中樞,調(diào)節(jié)細(xì)胞的增值、存活和分化,與內(nèi)源性神經(jīng)發(fā)生密切相關(guān)。鈣激活富含脯氨酸的酪氨酸激酶(PYK2)的水平升高,可以進(jìn)一步誘導(dǎo)ERK1/2的激活。此外,SDF-1與CXCR4結(jié)合后,還能通過(guò)Gαi蛋白誘導(dǎo)Janus激酶JAK2和JAK3的激活以及STAT信號(hào)通路的啟動(dòng)[9]。已知所有這些信號(hào)通路均與細(xì)胞增殖、分化、遷移、存活和凋亡相關(guān)。SDF-1和CXCR4之間的相互作用可以被AMD3100抑制[10]。其他一些新型拮抗劑,如人β-防御素3、CX549、T140等,也能起到競(jìng)爭(zhēng)性抑制SDF-1與CXCR4結(jié)合的作用[11]。
盡管CXCR7也是G蛋白偶聯(lián)受體,但它不會(huì)觸發(fā)經(jīng)典的G蛋白介導(dǎo)的信號(hào)傳導(dǎo)和典型的趨化因子誘導(dǎo)的Ca2+釋放[12]。CXCR7作為其同源配體的清除劑受體,調(diào)節(jié)SDF-1的細(xì)胞外利用率。CXCR7可以與CXCR4形成異源二聚體,從而形成下游信號(hào)通路的結(jié)構(gòu)觸發(fā)點(diǎn)[13]。CXCR7和CXCR4異二聚體激活細(xì)胞外信號(hào)調(diào)節(jié)激酶MAPK,包括ERK1/2、p38和SAPK途徑[14]。這些途徑的激活可能參與細(xì)胞的存活和遷移。
3 SDF-1/CXCR4/CXCR7之間的相互作用
3.1 CXCR7通過(guò)介導(dǎo)SDF-1內(nèi)在化控制SDF-1的濃度 ?研究顯示[15],SDF-1對(duì)CXCR7的親和力幾乎比對(duì)CXCR4的親和力高10倍。CXCR7可以負(fù)調(diào)節(jié)SDF-1的功能,并降低細(xì)胞對(duì)SDF-1的敏感性,是SDF-1的清除劑。CXCR7可以介導(dǎo)SDF-1的內(nèi)在化,然后通過(guò)溶酶體降解從而降低SDF-1的細(xì)胞外濃度[16]。這種現(xiàn)象清除了細(xì)胞外過(guò)量的SDF-1分子,使SDF-1濃度維持在最佳水平,從而形成細(xì)胞遷移所需的趨化因子梯度。
3.2 CXCR7調(diào)節(jié)CXCR4的表達(dá)及其下游途徑 ?CXCR7可以通過(guò)與CXCR4形成異二聚體來(lái)促進(jìn)CXCR4的內(nèi)在化,大多數(shù)CXCR4在細(xì)胞內(nèi)降解,而CXCR7被循環(huán)回到細(xì)胞膜。CXCR7激動(dòng)劑能夠降低CXCR4的水平,從而導(dǎo)致細(xì)胞對(duì)SDF-1的敏感性降低[17]。然而,中和CXCR7可導(dǎo)致細(xì)胞外SDF-1的水平顯著增加,進(jìn)而觸發(fā)了近70%的CXCR4內(nèi)吞和降解[16]。這表明CXCR7的存在可以維持CXCR4的穩(wěn)定表達(dá)并確保其對(duì)SDF-1的敏感性。CXCR7通過(guò)與CXCR4形成異二聚體調(diào)節(jié)SDF-1/CXCR4下游信號(hào)傳導(dǎo)過(guò)程。如CXCR7和CXCR4異二聚體可以增強(qiáng)β-arrestin依賴的信號(hào)傳導(dǎo)途徑(即ERK1/2、P38MAPK、SAPK)并抑制Gi信號(hào)傳導(dǎo)途徑,從而降低了SDF-1對(duì)cAMP的抑制作用[18]。Levoye A等[19]報(bào)道CXCR7減弱了由CXCR4介導(dǎo)的Gai激活和鈣信號(hào)傳導(dǎo)。因此,CXCR7既可以調(diào)節(jié)CXCR4的水平,也可以調(diào)節(jié)通常由SDF-1/CXCR4激活的下游途徑。
3.3 CXCR4的共表達(dá)降低CXCR7的表達(dá)及其與SDF-1的親和力 ?有研究發(fā)現(xiàn),當(dāng)在細(xì)胞表面表達(dá)CXCR4時(shí),SDF-1對(duì)CXCR7的親和力降低。CXCR4和CXCR7的共表達(dá)增強(qiáng)了CXCR7的β-arrestin募集Décaillot FM[20]。SDF-1/CXCR4/CXCR7相互作用的詳細(xì)機(jī)制很復(fù)雜,可能涉及以下兩個(gè)過(guò)程:①CXCR7去除了SDF-1的過(guò)量細(xì)胞外分子并促進(jìn)CXCR4的內(nèi)在化,這降低了細(xì)胞對(duì)SDF-1的反應(yīng)性。CXCR7和CXCR4的共表達(dá)減弱了CXCR4與G蛋白相互作用的能力。②CXCR4的共表達(dá)增強(qiáng)了β-arrestin對(duì)CXCR7的募集,并降低了SDF-1對(duì)CXCR7的親和力。因此,CXCR4和CXCR7似乎通過(guò)相互調(diào)節(jié)它們的表達(dá)和信號(hào)通路來(lái)保持平衡。
4 SDF-1/CXCR4/CXCR7在腦缺血中的作用
4.1誘導(dǎo)干細(xì)胞的遷移和歸巢 ?SDF-1/CXCR4軸在調(diào)節(jié)干細(xì)胞遷移過(guò)程中具有重要的作用。干細(xì)胞的遷移能力可以通過(guò)增加的梗死周圍的趨化因子SDF-1和表達(dá)CXCR4來(lái)介導(dǎo),這種SDF-1的上調(diào)和細(xì)胞遷移導(dǎo)致各種被動(dòng)員的干細(xì)胞和內(nèi)源性細(xì)胞上調(diào)營(yíng)養(yǎng)因子[21]。局灶性腦缺血后,受損區(qū)域中的星形膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞和血管內(nèi)皮細(xì)胞會(huì)在局灶性腦缺血后24 h內(nèi)上調(diào)SDF-1的表達(dá)。在腦缺血模型大鼠中,缺血半球趨化因子SDF-1含量顯著高于對(duì)側(cè)未受損半球[22]。SDF-1的上調(diào)主要是位于缺血半暗帶,在損傷后7 d達(dá)到高峰,且能維持至損傷后30 d[23]。此外,移植的干細(xì)胞中也可以檢測(cè)出CXCR4,因此,SDF-1和CXCR4之間的相互作用導(dǎo)致干細(xì)胞向受損部位遷移。在嚙齒類動(dòng)物中,受傷后2周,新產(chǎn)生的神經(jīng)祖細(xì)胞(neuroprogenitor cells,NPC)從腦室下區(qū)遷移到缺血邊界區(qū)域[24]。發(fā)生卒中后這種遷移可持續(xù)數(shù)月。這些SVZ衍生的成神經(jīng)細(xì)胞可以分化為神經(jīng)元、少突膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞,并替換受損的神經(jīng)元。值得注意的是,CXCR4在NPC中表達(dá),SDF-1/CXCR4復(fù)合物的作用對(duì)于腦缺血后NPC向富含SDF-1的損傷部位的遷移至關(guān)重要。阻斷CXCR4并不會(huì)減少NPC的數(shù)量,但破壞了NPC的遷移,導(dǎo)致新生神經(jīng)元無(wú)法定位到缺血組織[20]。在一般情況下,腦損傷后一個(gè)顯著信號(hào)是SDF-1的表達(dá),吸引骨髓來(lái)源的干細(xì)胞遷移到受損區(qū)域,是卒中后功能恢復(fù)的關(guān)鍵。
目前已有多項(xiàng)證據(jù)顯示[25,26],CXCR7參與了NPC的遷移。體外研究表明,缺氧后24 hCXCR7的表達(dá)增加。在缺血半暗帶,CXCR7的表達(dá)迅速增加,而缺血中心區(qū)域則很少。CXCR7的分布表明它可能介導(dǎo)SDF-1的內(nèi)化。通過(guò)這種方式,它可以建立從腦缺血邊界到損傷核心的從低到高的SDF-1濃度梯度,以引導(dǎo)NPC遷移到受損區(qū)域。有研究報(bào)道[27],CXCR7的過(guò)表達(dá)增加了骨髓間充質(zhì)干細(xì)胞分泌的CXCL12、VCAM-1、CD44和基質(zhì)金屬蛋白酶2的水平,這有助于促進(jìn)骨髓間充質(zhì)干細(xì)胞的增殖和遷移。
4.2促進(jìn)血管新生 ?腦梗死后血管再生有利于側(cè)支循環(huán)的建立以及缺血腦組織血液供應(yīng)的改善。新生血管能夠?yàn)槟X梗死后新生的神經(jīng)干細(xì)胞提供必要的營(yíng)養(yǎng)和微環(huán)境支持。腦缺血可激活并動(dòng)員骨髓內(nèi)的內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPC)進(jìn)入外周循環(huán)系統(tǒng)。血漿中SDF-1表達(dá)的增加與中風(fēng)后EPC數(shù)量的增加明顯相關(guān)Bogoslovsky[28]。SDF-1通過(guò)與EPC的細(xì)胞表面CXCR4受體結(jié)合而參與了EPC的募集[29]。SDF-1能夠增加局灶性腦梗死大鼠梗死灶周圍血管密度和新生血管內(nèi)皮數(shù)量,說(shuō)明外源性SDF-1具有促進(jìn)腦梗死后血管發(fā)生的作用。同時(shí),在給予CXCR4特異性拮抗劑AMD3100后會(huì)顯著降低血管密度和新生血管內(nèi)皮細(xì)胞數(shù)量,進(jìn)一步證實(shí)SDF-1的促血管發(fā)生作用可能通過(guò)SDF-1/CXCR4信號(hào)通路來(lái)實(shí)現(xiàn)的。外源性SDF-1能夠進(jìn)一步激活SDF-1/CXCR4信號(hào)通路,募集更多骨髓來(lái)源的表達(dá)CXCR4的內(nèi)皮祖細(xì)胞向梗死灶周圍歸巢并分化為成熟的血管內(nèi)皮細(xì)胞,促進(jìn)局部缺血腦組織的血管發(fā)生而發(fā)揮神經(jīng)保護(hù)作用。這些結(jié)果表明,SDF-1在缺血性中風(fēng)后具有促進(jìn)血管生成和改善預(yù)后的潛力,因此可以看作是治療腦缺血的新治療靶標(biāo)。
4.3 參與神經(jīng)元新生 ?對(duì)患有局部缺血、癲癇的大鼠的研究表明,SDF-1/CXCR4既參與了神經(jīng)祖細(xì)胞增殖,也參與了其在海馬齒狀回中的樹突發(fā)育[30,31]。有數(shù)據(jù)表明,持續(xù)給予CXCR7中和有利于齒狀回的神經(jīng)發(fā)生和腦缺血晚期的認(rèn)知恢復(fù)。有學(xué)者的研究發(fā)現(xiàn),缺血誘導(dǎo)后1周施用其他藥物不僅調(diào)節(jié)神經(jīng)發(fā)生,而且調(diào)節(jié)由ET-1誘導(dǎo)的局部缺血后慢性期的軸突再生[32-34]。最近的一項(xiàng)研究表明,慢性腦缺血的大鼠在給予腦室注射CXCR7中和抗體治療后,可以促進(jìn)樹突狀細(xì)胞中未成熟神經(jīng)元的增殖,樹突狀生長(zhǎng)顯著增加,缺血大鼠認(rèn)知功能顯著改善[35]。然而,也有研究表明,SDF-1/CXCR7為體外神經(jīng)祖細(xì)胞提供了增殖、遷移和存活的優(yōu)勢(shì)[36]。這種矛盾的結(jié)果可以用細(xì)胞培養(yǎng)基和腦組織中的微環(huán)境的差異來(lái)解釋,其中SDF-1/CXCR4的水平和它們的功能也可能不同。
5總結(jié)
SDF-1/CXCR4/CXCR7信號(hào)通路不僅與胚胎發(fā)育中神經(jīng)前體細(xì)胞的遷移有關(guān),還與成體SVZ、SGZ的神經(jīng)發(fā)生有關(guān),特別是腦缺血損傷后SVZ神經(jīng)前體細(xì)胞和未成熟神經(jīng)元向缺血灶的遷移密切相關(guān)。目前已有明確的證據(jù)表明SDF-1/CXCR4/CXCR7可以促進(jìn)神經(jīng)發(fā)生和血管生成,這是中風(fēng)后恢復(fù)所需的兩個(gè)相互依賴的過(guò)程。盡管對(duì)SDF-1的了解很多,但仍然有許多尚未解決的問題,SDF-1/CXCR4/CXCR7在調(diào)節(jié)腦缺血后的神經(jīng)再生信號(hào)通路機(jī)制尚未完全清楚,需要更多的體外研究來(lái)闡明SDF-1的復(fù)雜作用??梢酝茰y(cè),SDF-1/CXCR4/CXCR7信號(hào)通路可能成為中風(fēng)后促進(jìn)功能恢復(fù)的新的治療靶標(biāo)。
參考文獻(xiàn):
[1]Thomas MN,Kalnins A,Andrassy M,et al.SDF-1/CXCR4/CXCR7 is pivotal for vascular smooth muscle cell proliferation and chronic allograft vasculopathy[J].Transpl Int,2015,28(12):1426-1435.
[2]Zhang Y,Zhang H,Lin S,et al.SDF-1/CXCR7 Chemokine Signaling is Induced in the Peri-Infarct Regions in Patients with Ischemic Stroke[J].Aging Dis,2018,9(2):287-295.
[3]Cheng X,Wang H,Zhang X,et al.The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia[J].Front Neurosci,2017(11):590.
[4]Pozzobon T,Goldoni G,Viola A,et al.CXCR4 signaling in health and disease[J].Immunol Lett,2016(177):6-15.
[5]Nagasawa T.CXCL12/SDF-1 and CXCR4[J].Front Immunol,2015(6):301.
[6]Nazari A,Khorramdelazad H,Hassanshahi G.Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer[J].Int J Clin Oncol,2017,22(6):991-1000.
[7]Banisadr G,Podojil JR,Miller SD,et al.Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions[J].J Neuroimmune Pharmacol,2016,11(1):26-35.
[8]Qiao N,Wang L,Wang T,et al.Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells[J].Tumour Biol,2016,37(6):8169-8179.
[9]Ding Q,Sun J,Xie W,et al.Stemona alkaloids suppress the positive feedback loop between M2 polarization and fibroblast differentiation by inhibiting JAK2/STAT3 pathway in fibroblasts and CXCR4/PI3K/AKT1 pathway in macrophages[J].Int Immunopharmacol,2019(72):385-394.
[10]Hitchinson B,Eby JM,Gao X,et al.Biased antagonism of CXCR4 avoids antagonist tolerance[J].Sci Signal,2018,11(552):eaat2214.
[11]Wu KJ,Yu SJ,Shia KS,et al.A Novel CXCR4 Antagonist CX549 Induces Neuroprotection in Stroke Brain[J].Cell Transplant,2017,26(4):571-583.
[12]Xu D,Li R,Wu J,et al.Drug Design Targeting the CXCR4/CXCR7/CXCL12 Pathway[J].Curr Top Med Chem,2016,16(13):1441-1451.
[13]Puchert M,Engele J.The peculiarities of the SDF-1/CXCL12 system:in some cells,CXCR4 and CXCR7 sing solos,in others,they sing duets[J].Cell Tissue Res,2014,355(2):239-253.
[14]Feng YF,Guo H,Yuan F,et al.Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell[J].PLoS One,2015,10(8):e0136175.
[15]Zhu Y,Murakami F.Chemokine CXCL12 and its receptors in the developing central nervous system:emerging themes and future perspectives[J].Dev Neurobiol,2012,72(10):1349-1362.
[16]Sánchez-Alcaniz JA,Haege S,Mueller W,et al.Cxcr7 controls neuronal migration by regulating chemokine responsiveness[J].Neuron,2011,69(1):77-90.
[17]Uto-Konomi A,McKibben B,Wirtz J,et al.CXCR7 agonists inhibit the function of CXCL12 by down-regulation of CXCR4[J].Biochem Biophys Res Commun,2013,431(4):772-776.
[18]Ullah TR.The role of CXCR4 in multiple myeloma:Cells' journey from bone marrow to beyond[J].J Bone Oncol,2019(17):100253.
[19]Levoye A,Balabanian K,Baleux F,et al.CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling[J].Blood,2009,113(24):6085-6093.
[20]Décaillot FM,Kazmi MA,Lin Y,et al.CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration[J].J Biol Chem,2011,286(37):32188-32197.
[21]Borlongan CV,Glover LE,Tajiri N,et al.The great migration of bone marrow-derived stem cells toward the ischemic brain:therapeutic implications for stroke and other neurological disorders[J].Prog Neurobiol,2011,95(2):213-228.
[22]Harten SK,Ashcroft M,Maxwell PH.Prolyl hydroxylase domain inhibitors:a route to HIF activation and neuroprotection[J].Antioxid Redox Signal,2010,12(4):459-480.
[23]Chang YC,Shyu WC,Lin SZ,et al.Regenerative therapy for stroke[J].Cell Transplant,2007,16(2):171-181.
[24]Williams JL,Holman DW,Klein RS.Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers[J].Front Cell Neurosci,2014(8):154.
[25]Chen Q,Zhang M,Li Y,et al.CXCR7 Mediates Neural Progenitor Cells Migration to CXCL12 Independent of CXCR4[J].Stem Cells,2015,33(8):2574-2585.
[26]Merino JJ,Bellver-Landete V,Oset-Gasque MJ,et al.CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair[J].J Cell Physiol,2015,230(1):27-42.
[27]Liu L,Chen JX,Zhang XW,et al.Chemokine receptor 7 overexpression promotes mesenchymal stem cell migration and proliferation via secreting Chemokine ligand 12[J].Sci Rep,2018,8(1):204.
[28]Bogoslovsky T,Spatz M,Chaudhry A,et al.Stromal-derived factor-1[alpha]correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients[J].Stroke,2011,42(3):618-625.
[29]Keshavarz S,Nassiri SM,Siavashi V,et al.Regulation of plasticity and biological features of endothelial progenitor cells by MSC-derived SDF-1[J].Biochim Biophys Acta Mol Cell Res,2019,1866(2):296-304.
[30]Song C,Xu W,Zhang X,et al.CXCR4 antagonist AMD3100 suppresses the long-term abnormal structural changes of newborn neurons in the intraventricular kainic acid model of epilepsy[J].Mol Neurol Biol,2015(53):1518-1532.
[31]Zhang XQ,Mu JW,Wang HB,et al.Increased protein expression levels of pCREB, BDNF and SDF-1/CXCR4 in the hippocampus may be associated with enhanced neurogenesis induced by environmental enrichment[J].Mol Med Rep,2016(14):2231-2237.
[32]Sun X,Zhou Z,Liu T,et al.Fluoxetine enhances neurogenesis in aged rats with cortical infarcts,but this is not reflected in a behavioral recovery[J].J Mol Neurosci,2016(58):233-242.
[33]Sun Y,Cheng X,Wang H,et al.dl-3-n-butylphthalide promotes neuroplasticity and motor recovery in stroke rats[J].Behav Brain Res,2017(329):67-74.
[34]Xu W,Mu X,Wang H,et al.Chloride co-transporter NKCC1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke[J].Mol Neurobiol,2017(54):2406-2414.
[35]Dong BC,Li MX,Wang XY,et al.Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia[J].Neural Regen Res,2020,15(6):1079-1085.
[36]Wang Y,Xu P,Qiu L,et al.CXCR7 participates in CXCL12-mediated cell cycle and proliferation regulation in mouse neural progenitor cells[J].Curr Mol Med,2016(16):738-746.
收稿日期:2020-03-31;修回日期:2020-04-10
編輯/成森