• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2

    2023-02-20 13:16:24SiwenYou游思雯ZiyiShao邵子依XiaoGuo郭曉JunjieJiang蔣俊杰JinxinLiu劉金鑫KaiWang王凱MingjunLi李明君FangpingOuyang歐陽方平ChuyunDeng鄧楚蕓FeiSong宋飛JiataoSun孫家濤andHanHuang黃寒
    Chinese Physics B 2023年1期
    關鍵詞:方平王凱

    Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭曉), Junjie Jiang(蔣俊杰), Jinxin Liu(劉金鑫),Kai Wang(王凱), Mingjun Li(李明君), Fangping Ouyang(歐陽方平), Chuyun Deng(鄧楚蕓),Fei Song(宋飛), Jiatao Sun(孫家濤), and Han Huang(黃寒),?

    1Hunan Key Laboratory of Super-Microstructure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2College of Arts and Science,National University of Defense Technology,Changsha 410073,China

    3Key Laboratory of Interfacial Physics and Technology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201000,China

    4School of Information and Electronics,MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices,Beijing Institute of Technology,Beijing 100081,China

    Keywords: MAPbI3/MoS2 heterostructure, Co-deposition, temperature-dependent photoluminescence,growth behavior

    1. Introduction

    Perovskites (PVKs) have raised much attention in semiconductor applications, such as solar cells, light emitting diodes,and photodetectors,due to their exceptional optoelectronic properties.[1–5]Among them, MAPbI3is a representative one due to its simple structure,suitable bandgap for solar absorption, and long-range balanced electron–hole transport lengths.[6,7]Properties of elementary excitation of MAPbI3,such as the values of exciton binding energy and the strength of electron-phonon coupling,are essential for development of high-efficiency devices. According to the temperature dependence of integrated intensity of the photoluminescence (PL)emission peak, the exciton binding energy of MAPbI3has been extracted to be 15–60 meV,[8–10]which is so small that separation and migration of electrons and holes in MAPbI3thin films(300 nm)can be facilitated. Electron–phonon coupling sets a basic intrinsic limit to charge carrier mobility in non-intrinsic scattering without impurities and has been proved to generate homogeneous emission linewidth broadening in semiconductors.[11]Especially,it has comparable effects on temperature-induced renormalization of bandgap with thermal expansion in MAPbI3bulk or thin films, but enhanced contribution in MAPbI3nanocrystals in size of several nanometers because of the strong quantum confinement effects.[12]

    Accompanied with the miniaturization of devices, the functional material films become thinner and thinner.MAPbI3thin films prepared by the solution spin coating method are usually several hundreds of nm in thickness and their properties are close to their bulk counterparts.[13]Methylammonium lead tribromide nanocrystals in different sizes (1.5–3 nm)formed in metal oxide porous scaffolds show a wavelengthtunable emission from green to blue due to the quantum confinement effects.[14]Highquality MAPbI3nanosheets as thin as 1.3 nm have been fabricated by converting solutionprocessed PbI2in MAI vapor, but the preparation process and their thicknesses are not controllable.[15]Transition-metal dichalcogenides (TMDCs) are good templates to realize van der Waals epitaxial growth of MAPbI3due to the dangling bond-free surfaces.[16–19]In previous reports,thicknesscontrollable MAPbI3ultrathin layers are successfully fabricated on chemical vapor deposition(CVD)-grown or mechanical exfoliation monolayer TMDCs using a two-step sequential deposition method.[20,21]However, such a method has some shortcomings, such as the volume expansion and structure damage in MAI intercalation process. The Co-deposition method is superior for preparing MAPbI3thin films with a wide range of clean interfaces,homogeneous morphology,and better stability.[22–25]However, it is still of challenge to prepare and investigate properties of ultrathin MAPbI3thin films with high quality.

    In this work, we systematically investigate the growth behaviors of MAPbI3films via co-deposition of PbI2and MAI on CVD-grown monolayer MoS2as well as the corresponding photoluminescence properties and emission behaviors at different growing stages using atomic force microscopy (AFM), scanning electron microscopy (SEM), PL,and Kelvin probe force microscopy (KPFM) measurements.Temperature-dependent PL measurements reveal thicknessdependent trends of emission photon energy in MAPbI3/MoS2heterostructures from 300 K to 80 K.

    2. Experimental methods

    Monolayer MoS2was prepared by the conventional CVD method with two temperature zone systems on the c-sapphire substrate. S (aladdin 99.999%) and MoO3(aladdin 99.99%)powders were used as precursors,as well as nitrogen(N2)carries the reactants as an inert gas.[26,27]A previously reported co-deposition method was adopted to fabricate MAPbI3ultrathin films on c-sapphire substrates partially covered with monolayer MoS2in a high-vacuum system with base pressure better than 5.0×10-5Pa.[22,28]There are two temperaturecontrolled K-cells at the bottom of the system, loaded with the precursor materials of PbI2(aldrich, 98+%) and MAI(polymer, 99.5%), respectively. The deposition temperatures of PbI2and MAI are 573 K and 415 K, respectively, and the deposition rates of the precursor at 6 ?A/min for PbI2and 15 ?A/min for MAI are monitored by quartz crystal microbalance. The deposition times are 2 min, 4 min, and 6 min.The corresponding samples with a nominal thickness~2 nm,4 nm,and 8 nm are named as samples I,II,and III,respectively.

    AFM measurements were carried out in a tapping mode(Agilent 5500, USA).[29]SEM was obtained with an MIRA3 LMH(TESCAN Chech)field emission scanning electron microscope. PL spectra were collected in a confocal Raman microscope system(Renishaw inVia Qontor,UK)using a 532 nm laser and 1800 lines/mm grating,where a sample stage(THMS 600) with the temperature varying from 78 K to 873 K is equipped.[30,31]All spectra were taken at laser power density 1 mW/μm2for 1 s and were fitted by Gaussian and Lorentzian mixed deconvolution. X-ray diffraction(XRD)patterns were measured by a PANalytical Empyren system with CuKαradiation(λ=0.154 nm). KPFM images were recorded using an NTEGRA spectra system(NT-MDT,Russia).

    3. Results and discussion

    Figure 1(a) shows a typical AFM image of a triangular CVD-grown MoS2flake, whose thickness is~0.9 nm, as shown in the profile along the red line, indicating a monolayer MoS2.[32]Upon 2 nm MAPbI3deposition (sample I),dispersed bright protrusions with a height up to 8 nm appeared on the bare c-sapphire surface, as shown in Fig. 1(b). On the contrary,the MoS2flake appears as atomically smooth as the pristine one except for some features on its edges. The corresponding line profile displays that the thickness in the triangular MoS2region is almost doubled (~1.6 nm), and the dim features have an additional height of~0.8 nm, indicating that a monolayer MAPbI3is grown on MoS2, and new nuclei start at the edges. Upon 4-nm MAPbI3deposition (sample II), the bright protrusions on c-sapphire (region B)became denser and higher(~30 nm)as shown in Fig.1(c),indicating a nucleation-limited growth. The triangular MoS2region(region A)has no apparent change except that its thickness increases to 4 nm. We speculate that at the beginning,MAPbI3grows in a Frank–van der Merwe mode on MoS2and in a Volmer–Weber mode on c-sapphire. Different growth behaviors of MAPbI3on two substrates may be attributed to their different hydrophilicity and lower nucleation energy on MoS2.[16,33]Therefore, MoS2is a good template to realize van der Waals epitaxial growth of MAPbI3due to the dangling bondfree surface. Upon 8-nm MAPbI3deposition(sample III),although the triangular shape of MoS2is still observable, the entire surface is covered by clusters (up to 60 nm high) as shown in Fig. 1(d), indicating that the growth mode of MAPbI3on MoS2changes to the Stranski–Krastanov(S-K)mode. It reveals the limited influence of MoS2on the growth of MAPbI3. The SEM image in Fig. 1(e) shows the grainy features in more details than the AFM image due to no tip effect.The averaged grain size of MAPbI3on MoS2(~500 nm)is larger than that on the c-sapphire substrate(~200 nm)because the dangling-bond-free surface of MoS2could motivate the migration of atoms precursor molecules (MAI and PbI2)and promote the growth of MAPbI3grains,which is in agreement with the previous reports.[16,17]The corresponding XRD pattern in Fig.1(e)shows the peaks at 14.2°,28.3°,and 33.1°,assigned to the (110), (220), and (310) planes of crystalline MAPbI3in the tetragonal phase, respectively.[34]The grain dimension in the perpendicular direction is estimated to be~33 nm according to the Scherrer equation. No PbI2related peaks can be detected,confirming the high quality of the prepared sample. Figure 1(f) schematically demonstrates the growth modes of MAPbI3on MoS2. The x-ray photoelectron spectra(XPS)full spectra of samples are shown in Fig.S1 in the supporting information, where Pb, I, N, and C elements are detected. In the future, atomically resolved methods like high resolution transmission electron microscopy (HRTEM)and scanning tunneling microscopy(STM)can be used to investigate the detailed structure or the quality of MAPbI3/MoS2heterostructures.

    Fig.1. Typical AFM images of CVD-grown MoS2 on c-sapphire(a),and co-deposited MAPbI3 ultrathin films in various nominal thicknesses[(b)2 nm,(c) 4 nm, (d) 8 nm)] on top, named as sample I, II, and III. The corresponding scan profiles are given. (e) Representative SEM image of 8-nm-thick MAPbI3 (sample-III).The corresponding XRD pattern is inserted. (f)Schematic illustration of different growth modes of MAPbI3 on c-sapphire with and without MoS2.

    Fig.2.Characterizations of MAPbI3/MoS2 heterostructure(sample II):(a)PL spectra collected from CVD-grown MoS2,MAPbI3 on c-sapphire with and without MoS2 regions, (b) PL mapping of a CVD-grown MoS2 flake, (c) PL mapping and (d) KPFM image of the MAPbI3/MoS2 heterostructure. Scale bar: 5 μm. (e)Schematic illustration of the type-II energy level alignment of MAPbI3/MoS2 heterostructure.

    PL measurements were performed to investigate the optical properties of sample II, as shown in Fig. 2(a). The peak intensities were normalized by the bottom panel. The PL spectrum of CVD-grown MoS2exhibits three peaks(fitted)at 1.76 eV,1.84 eV,and 1.99 eV,corresponding to the free exciton of c-sapphire substrate(blue plot), exciton A and exciton B of MoS2(red plot),respectively. The better distribution and uniformity of MoS2can be reflected by the PL mapping of exciton A,as shown in Fig.2(b). For sample II,two representative PL spectra from regions A and B are shown in Fig.2(a).Besides the original emission peaks of MoS2and sapphire,an additional emission peak centered at 1.68 eV with a full width at half maximum(FWHM)of 0.11 eV can be observed,which belongs to the MAPbI3(green plot). It is worth noting that the emission peak intensity of MoS2is higher than that of sapphire without MAPbI3,while they are almost equal after deposition of MAPbI3, revealing the quenching of MoS2emission peak intensity. Moreover,the PL intensity of MAPbI3on MoS2(region A)is quenched by a factor of 3 times compared to that on c-sapphire(region B).As shown in Fig.2(c),the PL intensity mapping at 1.68 eV was measured. It was observed that the PL intensity in region A was significantly lower than that in region B, indicating the PL quenching of MAPbI3on MoS2.For sample III, the PL emission peak of MAPbI3is located at 1.64 eV and there is no MoS2signal anymore because of strong luminescence properties of thicker MAPbI3, as shown in Fig. S2(a). The clear redshift of the emission peak can be ascribed to the thickness-dependent quantum confinement effect of MAPbI3layer.[20]Moreover,the intensity of emission peak is still quenched in the heterostructure.

    To further investigate the surface charge distribution in heterostructures,KPFM measurements were carried out. The contact potential difference(CPD)is defined as the work function difference between the sample surface and the cantilever tip. As shown in Fig. 2(d), the CPD difference between MAPbI3/MoS2and pure MAPbI3regions is determined to be about 250 mV,which indicates that the work function of pure MAPbI3is 250 meV smaller than that of MAPbI3/MoS2. It reveals the formation of electric dipoles pointing out of the plane in the MAPbI3/MoS2heterostructure region,due to the interfacial electron transfer from MAPbI3into MoS2, resulting in separation of holes and electrons distributions on two sides.[18,35,36]Taking the PL quenching at the heterostructure interface into consideration, we can get a conclusion that a representative type-II band alignment of MAPbI3/MoS2heterostructure is formed as shown in Fig. 2(e), which is in agreement with the previous reports.[17,21,37,38]Taking the transport gaps of MAPbI3and monolayer MoS2as 1.65 eV and 2.11 eV,[39]respectively,both conduction band minimum(CBM)and valence band maximum(VBM)levels of MAPbI3are higher than those of MoS2.[40,41]For sample III, the CPD difference is~20 mV [see Fig. S2(b)], which may be attributed to the different morphologies of the heterostructures.The work function of MAPbI3changes as the surface becomes rougher. Profiting from the effective interfacial charge carrier separation in ultrathin type-II MAPbI3/MoS2heterostructure,they are excellent candidates for designing high-performance photodetector devices.

    To better understand the thickness-dependent photophysical properties of MAPbI3/MoS2, temperature-dependent PL measurements from 300 K to 80 K are carried out. Figure 3(a) shows the temperature evolutions of PL spectra of sample III.There is a dominant and symmetric emission peak located at around 1.64 eV(peak I),belonging to the tetragonal-I phase (I4/mcmgroup) MAPbI3.[9]Below 150 K, a new emission peak appears at 1.69 eV (peak II), arising from the orthorhombic phase MAPbI3. These emission peaks of tetragonal and orthorhombic phase are ascribed to the free exciton recombination.[41]The atomic models of tetragonal and orthorhombic phases are shown in the insets of Fig. 3(a).[42]In order to understand the evolution of fitting emission peak,PL spectra at six representative temperatures are shown in Fig. S3. As the temperature decreases to 100 K, a newemerging emission component occurs at the low-energy side centered at 1.56 eV (peak III), which can be attributed to the trap-mediated exciton radiative recombination.[43]Figure 3(b)shows the photon energy evolution of the fitted three emission peaks of MAPbI3with temperature according to the experimental spectra. Peak I has a redshift from 1.64 eV to 1.59 eV in the temperature range from 300 K to 150 K. This trend is consistent with the previous report on pure MAPbI3.[9]The phase transition from tetragonal to orthorhombic for such MAPbI3/MoS2starts to take place at 150 K, which is higher than that for pure MAPbI3(~120 K),close to that of bulk.[12]From 150 K to 100 K, peak I (tetragonal) displays a slight blueshift while peak II(orthorhombic)keeps the trend of redshift. According to the integrated intensity of the fitted three emission peaks, the relative percentage evolution as a function of temperature is shown in Fig.3(c). As the temperature decreases, the ratio of the tetragonal phase goes down continuously while that of orthorhombic increases. It is worth noting that the ratio of trapped exciton peak keeps growing at low temperatures, attributed to the smaller binding energy of trapped excitons and surface state transitions.[41]

    Fig.3. Optical transition properties of sample III in the temperature range of 300–80 K.(a)Temperature-dependent PL spectra. (b)Experimental data and fitting curve of photon energy as a function of temperature. Red: tetragonal phase. Blue: orthorhombic phase. Purple: the defect peak. (c)Relative percentage of three peaks in MAPbI3/MoS2 heterostructure.

    For MAPbI3on MoS2in sample II (region A), the evolution of PL spectra as a function of temperature looks rather different, as shown in Fig. 4(a). The intensity of the main peak located at 1.68 eV (peak IV) increases as the temperature decreases from 300 K to 120 K. It results from the enhanced optical matrix elements on account of the reinforced Coulomb attraction, and is a representative behavior of freeexciton radiative recombination.[41]Although the PL signal of MoS2is weak,a blueshift of photon energy is still observable,consistent with the trend of traditional semiconductors.[44]See Fig.S4 for more details. No trapped exciton peak can be detected,suggesting less defect density in sample II.

    Figure 4(b)displays the evolution of the extracted photon energy as a function of temperature.There is a turning point at 260 K for peak IV(red plot). Its photon energy exhibits a linear redshift from room temperature to 260 K,then a non-linear blue-shift from 26 K to 120 K. It is obviously different from that of sample III and previous results.[9,12,21]Below 120 K,a new peak appears at 1.72 eV (peak V, blue plot), which belongs to the orthorhombic phase MAPbI3. More details about the peak fitting are shown in Fig. S5. For comparison,temperature-dependent PL measurements were carried out on region B in sample II(black plot). The evolution of the main peak’s photon energy coincides with that in region A except for that in the range from 300 K to 260 K(peak VI).It is wellknown that the photon energy evolution as a function of temperature in either single crystalline bulk or thin films[45]keeps a linear redshift in the stable tetragonal phase and a secondorder phase transition from tetragonal to orthorhombic occurs at low temperature.[46]Moreover, MAPbI3nanocrystals with a size less than 8 nm have no apparent phase transition even at a temperature as low as 80 K.[12]Although MAPbI3on sapphire in sample II is nanocrystals, their sizes are significantly larger, close to those in the thin-film phase. The different photon energy evolutions in sample II may show a special crystal/electronic-structure relationship. A similar trend to that of MAPbI3on MoS2is observed in MAxFA1-xPbI3films accompanied by a different phase transition,[45]where a turning point in the photon energy evolution is attributed to the occurrence of a second-order transition from cubic to tetragonal phase. Here, MAPbI3was co-deposited on the monolayer MoS2and growing in van der Waals epitaxy, forming a clean and molecular sharp interface. We propose that MAPbI3in cubic phase may be formed at room temperature on MoS2and a second-order phase transition from cubic to another different tetragonal phase occurs at 260 K, called tetragonal-II.Below 120 K,a transition from tetragonal-II to the orthorhombic phase starts to take place. For MAPbI3on sapphire, one phase transition from tetragonal-II to orthorhombic starts to take place at 100 K. The atomic mode of tetragonal-II phase belonging to theI4cmspace group is shown in the inset of Fig. 4(a),[47]where the disordered organic cations may rotate in increments along thec-axis and affect the tilting of the corner-shared PbI6octahedron.Moreover,the tilting increases with the temperature decreasing. It gives rise to an opposite effect to the electron-phonon coupling induced gap renormalization, leading to the non-monotonic change of the photon energy.[48]

    Figure 4(c)shows the evolution of the extracted FWHM of peak IV with temperature.The broadening behaviors can be described by the one-oscillator model of the electron–phonon interaction:[49]

    Here,Γ0is the inhomogeneous broadening contribution depending on the crystal quality,which is a constant and does not change with temperature;σandΓopare the exciton-acoustic phonon interaction and the exciton-optical phonon contribution to the FWHM broadening; ˉhωopis the efficient opticalphonon energy, corresponding to the torsion mode of the organic cations.[45,50]Due to the main emission peak belonging to the free-exciton recombination,σ=0 is reasonable for ignoring the acoustic-phonon contribution.In the best fitting,the parameters areΓ0=30.0±2.3 meV,Γop=144.7±7.5 meV,and ˉhωop=25.1±5.0 meV, in agreement with the previous report.[21]Molecularly thin film of MAPbI3prepared by codeposition on monolayer MoS2has better crystalline and novel exciton behavior,which could be beneficial for getting atomically clean interfaces and investigating related properties.

    Fig.4. Optical transition properties of sample II in the temperature range of 300–80 K. (a) Temperature-dependent PL spectra. Inset: atomic model of tetragonal-II phase. (b) Experimental data of photon energy of MAPbI3/MoS2 (red: tetragonal phase,blue: orthorhombic phase)and pure MAPbI3 (black). (c) Experimental data (black) and fitting curve (blue) of FWHM of tetragonal phase as a function of temperature on MAPbI3/MoS2 heterostructure.

    4. Conclusion

    In summary, while MAPbI3grows in a Volmer–Weber mode on sapphire,it can appear in a Stranski–Krastanov mode on single layer MoS2, which gives an opportunity to prepare molecularly thin MAPbI3/MoS2heterojunction. Such heterojunctions have a type-II energy level alignment and are good candidates for optoelectronic devices.Temperature-dependent PL measurements reveal that such molecularly thin MAPbI3has a different emission property compared with thin films of either nanocrystals or bigger grains. The second-order phase transitions are observed at 120 K and 150 K.Our research creates more potential to fabricate molecularly thin heterostructures and provides a platform to study novel applications.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874427 and 11804395)and the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts377).

    猜你喜歡
    方平王凱
    春雪
    王凱室內(nèi)設計作品選登
    改姓
    一種輕量化自卸半掛車結(jié)構設計
    智富時代(2019年2期)2019-04-18 07:44:42
    春雪
    王凱:我現(xiàn)在準備好了,歡迎隨時來撲
    意林繪閱讀(2016年2期)2016-03-09 07:23:24
    “靖王”王凱:我自己看《瑯琊榜》也會哭
    金色年華(2016年2期)2016-02-28 01:38:42
    由一道習題錯解想到的
    女友有求于我
    小小說月刊(2014年8期)2014-08-29 03:36:08
    女友有求于我
    国产欧美亚洲国产| 日韩精品免费视频一区二区三区| 国产有黄有色有爽视频| 午夜福利乱码中文字幕| 午夜福利乱码中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产最新在线播放| av在线播放精品| 一本大道久久a久久精品| 一本大道久久a久久精品| 女性被躁到高潮视频| 黄色视频在线播放观看不卡| 国产1区2区3区精品| 国产极品粉嫩免费观看在线| 少妇被粗大猛烈的视频| 日产精品乱码卡一卡2卡三| 女人久久www免费人成看片| 久久这里有精品视频免费| 青春草视频在线免费观看| 九九爱精品视频在线观看| 九九爱精品视频在线观看| 丝袜喷水一区| a 毛片基地| 国语对白做爰xxxⅹ性视频网站| 夜夜骑夜夜射夜夜干| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 丝袜脚勾引网站| 婷婷色av中文字幕| 国产爽快片一区二区三区| 日韩 亚洲 欧美在线| 精品久久久精品久久久| 久久 成人 亚洲| 欧美日韩国产mv在线观看视频| 伦理电影免费视频| 亚洲情色 制服丝袜| 国产极品天堂在线| 成人毛片a级毛片在线播放| 国产福利在线免费观看视频| freevideosex欧美| 一区二区三区精品91| 2022亚洲国产成人精品| 国产黄频视频在线观看| 国产极品天堂在线| 国产国语露脸激情在线看| 成人国产麻豆网| 亚洲精品自拍成人| 国产色婷婷99| 久久狼人影院| 两个人免费观看高清视频| 精品人妻熟女毛片av久久网站| 欧美黄色片欧美黄色片| av不卡在线播放| 又黄又粗又硬又大视频| 美女国产高潮福利片在线看| 国产免费一区二区三区四区乱码| 午夜日韩欧美国产| 男人爽女人下面视频在线观看| 久久精品久久久久久久性| 国产一级毛片在线| 美女午夜性视频免费| av视频免费观看在线观看| 国产成人午夜福利电影在线观看| 女人久久www免费人成看片| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 免费高清在线观看日韩| 电影成人av| 欧美bdsm另类| 欧美中文综合在线视频| 亚洲情色 制服丝袜| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区 | 九色亚洲精品在线播放| 欧美日韩精品网址| 老熟女久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 两性夫妻黄色片| 国产成人免费观看mmmm| 美女xxoo啪啪120秒动态图| 久久热在线av| 国产免费一区二区三区四区乱码| 男人爽女人下面视频在线观看| 老汉色∧v一级毛片| 男人舔女人的私密视频| 欧美精品高潮呻吟av久久| 黄片小视频在线播放| 亚洲人成77777在线视频| 天天躁夜夜躁狠狠久久av| 黄片无遮挡物在线观看| av免费在线看不卡| av天堂久久9| videossex国产| 精品少妇一区二区三区视频日本电影 | 亚洲美女搞黄在线观看| 男女无遮挡免费网站观看| 久久av网站| 精品福利永久在线观看| 久久精品亚洲av国产电影网| 精品一区二区免费观看| 黑人猛操日本美女一级片| 啦啦啦中文免费视频观看日本| 一本大道久久a久久精品| 国产片特级美女逼逼视频| 国产一级毛片在线| 少妇的逼水好多| 免费女性裸体啪啪无遮挡网站| av在线观看视频网站免费| av免费在线看不卡| 国产视频首页在线观看| 亚洲成人手机| www日本在线高清视频| 国产精品蜜桃在线观看| 精品亚洲乱码少妇综合久久| 免费看不卡的av| 大香蕉久久网| 天天躁夜夜躁狠狠久久av| 视频区图区小说| 久久影院123| 亚洲,一卡二卡三卡| 久久人人爽人人片av| 免费黄频网站在线观看国产| 国产日韩欧美在线精品| 亚洲成av片中文字幕在线观看 | 最新的欧美精品一区二区| freevideosex欧美| 中国三级夫妇交换| 天堂8中文在线网| 久久国内精品自在自线图片| 亚洲图色成人| 大香蕉久久网| 1024视频免费在线观看| 亚洲欧洲国产日韩| 男女国产视频网站| 丰满少妇做爰视频| 国产精品免费视频内射| 日日啪夜夜爽| 乱人伦中国视频| 亚洲人成网站在线观看播放| 久久久久国产网址| 丝袜美腿诱惑在线| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 美女福利国产在线| 亚洲欧美日韩另类电影网站| 女人被躁到高潮嗷嗷叫费观| 美女午夜性视频免费| 性高湖久久久久久久久免费观看| 亚洲精品日韩在线中文字幕| 在线观看三级黄色| 熟女av电影| 女人高潮潮喷娇喘18禁视频| av视频免费观看在线观看| 叶爱在线成人免费视频播放| 黄片无遮挡物在线观看| 多毛熟女@视频| 9191精品国产免费久久| 老司机影院毛片| 亚洲精品久久久久久婷婷小说| 日韩一卡2卡3卡4卡2021年| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 欧美亚洲日本最大视频资源| 在线观看人妻少妇| av有码第一页| 肉色欧美久久久久久久蜜桃| 日韩中字成人| 午夜久久久在线观看| 91精品国产国语对白视频| 曰老女人黄片| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 五月开心婷婷网| 成人毛片a级毛片在线播放| 国产精品成人在线| 国产精品三级大全| 2021少妇久久久久久久久久久| 亚洲欧美日韩另类电影网站| 亚洲国产欧美日韩在线播放| 热99久久久久精品小说推荐| 狠狠婷婷综合久久久久久88av| av福利片在线| 色视频在线一区二区三区| 三级国产精品片| 亚洲欧美成人精品一区二区| 人成视频在线观看免费观看| 久久精品久久久久久噜噜老黄| 中国国产av一级| a 毛片基地| 91成人精品电影| 捣出白浆h1v1| 两性夫妻黄色片| 男女高潮啪啪啪动态图| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 国产免费又黄又爽又色| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 美女国产视频在线观看| 国产人伦9x9x在线观看 | 免费看不卡的av| 精品福利永久在线观看| 亚洲精品乱久久久久久| 欧美另类一区| 2021少妇久久久久久久久久久| 亚洲伊人色综图| 欧美激情 高清一区二区三区| 国产成人精品久久久久久| 色婷婷av一区二区三区视频| 丝袜美足系列| 国产在线一区二区三区精| 亚洲男人天堂网一区| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到 | 亚洲欧洲国产日韩| 免费观看性生交大片5| 丰满饥渴人妻一区二区三| 国产成人午夜福利电影在线观看| 交换朋友夫妻互换小说| 免费不卡的大黄色大毛片视频在线观看| 精品久久久精品久久久| 精品人妻一区二区三区麻豆| 黄色一级大片看看| 国产精品无大码| 一级毛片电影观看| 亚洲精品国产av成人精品| 18禁观看日本| 久久av网站| 久久精品国产亚洲av高清一级| 观看av在线不卡| 亚洲精品久久午夜乱码| 久久精品夜色国产| 精品一区二区三卡| 免费女性裸体啪啪无遮挡网站| 日本vs欧美在线观看视频| 国产成人精品婷婷| 一区二区三区乱码不卡18| 久久精品夜色国产| 国产伦理片在线播放av一区| 欧美激情高清一区二区三区 | 亚洲成色77777| 18在线观看网站| 精品午夜福利在线看| 99久国产av精品国产电影| 丝袜在线中文字幕| 欧美97在线视频| 老司机影院毛片| 中国三级夫妇交换| 久久精品国产综合久久久| 超碰97精品在线观看| 尾随美女入室| 亚洲精品日韩在线中文字幕| 日韩制服骚丝袜av| 咕卡用的链子| 国产野战对白在线观看| 国产高清不卡午夜福利| 99热国产这里只有精品6| 电影成人av| 中文字幕人妻熟女乱码| 人人妻人人添人人爽欧美一区卜| 久久久久国产精品人妻一区二区| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 亚洲情色 制服丝袜| 激情视频va一区二区三区| 在线天堂中文资源库| 欧美亚洲 丝袜 人妻 在线| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频| 国产日韩欧美亚洲二区| 在线天堂最新版资源| 国产97色在线日韩免费| 天天躁日日躁夜夜躁夜夜| 日日啪夜夜爽| 丝袜美腿诱惑在线| 国产男人的电影天堂91| 欧美人与性动交α欧美软件| 女人高潮潮喷娇喘18禁视频| 人体艺术视频欧美日本| 大码成人一级视频| 亚洲欧美精品综合一区二区三区 | 亚洲人成电影观看| 中国国产av一级| 婷婷色av中文字幕| 久久久久精品人妻al黑| 青草久久国产| 午夜日韩欧美国产| 美女午夜性视频免费| 国产精品 国内视频| 欧美精品av麻豆av| 麻豆乱淫一区二区| 两个人免费观看高清视频| 丝袜人妻中文字幕| 久久久国产一区二区| 国产精品久久久久成人av| 亚洲国产看品久久| 午夜日本视频在线| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 亚洲,欧美,日韩| 91国产中文字幕| 久久韩国三级中文字幕| 美女视频免费永久观看网站| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到 | 国产人伦9x9x在线观看 | 91国产中文字幕| 9色porny在线观看| 超碰97精品在线观看| 国产在线免费精品| 美女国产视频在线观看| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 久久久久久免费高清国产稀缺| 色94色欧美一区二区| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 精品国产乱码久久久久久男人| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 香蕉丝袜av| 国产激情久久老熟女| 久久久精品区二区三区| 免费看不卡的av| av.在线天堂| 一级毛片电影观看| 成年人午夜在线观看视频| 午夜福利视频在线观看免费| 成人毛片a级毛片在线播放| av在线播放精品| videos熟女内射| 国产精品国产三级专区第一集| 啦啦啦中文免费视频观看日本| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 黄片播放在线免费| av线在线观看网站| 成人毛片a级毛片在线播放| 观看美女的网站| 狂野欧美激情性bbbbbb| 9热在线视频观看99| 亚洲欧洲日产国产| 只有这里有精品99| 如何舔出高潮| 超色免费av| 欧美最新免费一区二区三区| av网站免费在线观看视频| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 成年人免费黄色播放视频| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 亚洲成人一二三区av| 人体艺术视频欧美日本| 男女国产视频网站| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| xxxhd国产人妻xxx| 中文字幕制服av| 成年美女黄网站色视频大全免费| av一本久久久久| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 高清不卡的av网站| 精品人妻在线不人妻| 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 亚洲图色成人| 电影成人av| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| 波多野结衣一区麻豆| 日韩欧美精品免费久久| 18+在线观看网站| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲美女黄色视频免费看| 不卡av一区二区三区| 1024香蕉在线观看| 女人精品久久久久毛片| 午夜日韩欧美国产| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 在线 av 中文字幕| 国产午夜精品一二区理论片| 国产精品成人在线| 我要看黄色一级片免费的| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 午夜91福利影院| 国产成人午夜福利电影在线观看| 久久久精品国产亚洲av高清涩受| 九色亚洲精品在线播放| 夫妻性生交免费视频一级片| 激情五月婷婷亚洲| 国产精品久久久久久久久免| 天堂中文最新版在线下载| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 亚洲精品,欧美精品| 咕卡用的链子| 欧美人与善性xxx| av网站在线播放免费| 久久精品国产a三级三级三级| 一级,二级,三级黄色视频| videossex国产| 宅男免费午夜| 一本色道久久久久久精品综合| 蜜桃国产av成人99| 永久免费av网站大全| 男男h啪啪无遮挡| 日韩视频在线欧美| 国产国语露脸激情在线看| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| 国语对白做爰xxxⅹ性视频网站| 亚洲精品美女久久久久99蜜臀 | 中文字幕制服av| 婷婷色麻豆天堂久久| 精品卡一卡二卡四卡免费| 伦精品一区二区三区| 国产精品人妻久久久影院| 中文字幕制服av| 亚洲精品自拍成人| 高清欧美精品videossex| av有码第一页| 国产视频首页在线观看| 国产成人精品一,二区| 美女国产视频在线观看| 香蕉精品网在线| 18在线观看网站| 在线 av 中文字幕| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 亚洲欧美色中文字幕在线| 亚洲欧洲国产日韩| 妹子高潮喷水视频| 久久久亚洲精品成人影院| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 国产色婷婷99| 亚洲国产av影院在线观看| 老汉色∧v一级毛片| 永久网站在线| 精品卡一卡二卡四卡免费| 午夜福利,免费看| 国产人伦9x9x在线观看 | 欧美中文综合在线视频| 一级爰片在线观看| 中国三级夫妇交换| 99久久人妻综合| 26uuu在线亚洲综合色| 超碰97精品在线观看| 两性夫妻黄色片| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠久久av| 久久久久久久国产电影| 久久久国产一区二区| 欧美日韩精品网址| 中文字幕另类日韩欧美亚洲嫩草| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 日韩成人av中文字幕在线观看| 欧美黄色片欧美黄色片| 国产片内射在线| 18+在线观看网站| 搡老乐熟女国产| 日韩在线高清观看一区二区三区| 看非洲黑人一级黄片| 黄网站色视频无遮挡免费观看| 国产精品国产三级专区第一集| 国产精品国产三级国产专区5o| 亚洲一码二码三码区别大吗| 夜夜骑夜夜射夜夜干| 色网站视频免费| 青青草视频在线视频观看| 欧美+日韩+精品| 日本av手机在线免费观看| 99re6热这里在线精品视频| 制服人妻中文乱码| 免费看不卡的av| 中文字幕最新亚洲高清| 久久这里有精品视频免费| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av | 久久久久久伊人网av| 精品亚洲成a人片在线观看| 成人国产av品久久久| 如何舔出高潮| 午夜福利网站1000一区二区三区| 欧美国产精品va在线观看不卡| 捣出白浆h1v1| 国产精品 欧美亚洲| 亚洲美女搞黄在线观看| 免费播放大片免费观看视频在线观看| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 午夜精品国产一区二区电影| 免费黄网站久久成人精品| 亚洲av国产av综合av卡| 午夜老司机福利剧场| 久久久久久久久久久免费av| 99九九在线精品视频| 亚洲成人av在线免费| 大片免费播放器 马上看| 国产精品av久久久久免费| 天美传媒精品一区二区| 久久久久精品人妻al黑| 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 久久久久久久精品精品| 黄色一级大片看看| 丝袜美足系列| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 成人亚洲欧美一区二区av| 午夜日韩欧美国产| 久久久久久久久久人人人人人人| 丝袜美足系列| 国产av精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品久久成人aⅴ小说| 男女边吃奶边做爰视频| 1024香蕉在线观看| 我的亚洲天堂| 亚洲经典国产精华液单| 亚洲,一卡二卡三卡| 午夜福利在线免费观看网站| 午夜老司机福利剧场| 永久网站在线| 日韩 亚洲 欧美在线| 麻豆av在线久日| 国产亚洲一区二区精品| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 母亲3免费完整高清在线观看 | 老女人水多毛片| 一级片'在线观看视频| 赤兔流量卡办理| 在线观看美女被高潮喷水网站| 捣出白浆h1v1| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 一区二区三区乱码不卡18| 国产免费福利视频在线观看| 老司机影院成人| 国产精品国产三级专区第一集| 欧美 日韩 精品 国产| 亚洲美女视频黄频| 一级爰片在线观看| 99香蕉大伊视频| 亚洲精品一区蜜桃| xxx大片免费视频| 久久毛片免费看一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品999| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 免费观看av网站的网址| 国产成人aa在线观看| 国产免费福利视频在线观看| 一级黄片播放器| 69精品国产乱码久久久| 秋霞在线观看毛片| 欧美bdsm另类| 涩涩av久久男人的天堂| 欧美日韩亚洲国产一区二区在线观看 | 日本欧美视频一区| 国产欧美日韩综合在线一区二区| 精品亚洲成国产av| 欧美中文综合在线视频| 久久精品国产亚洲av涩爱| av国产久精品久网站免费入址| 国产精品.久久久| 2021少妇久久久久久久久久久| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 免费在线观看黄色视频的| 国产精品久久久av美女十八| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 在线观看www视频免费| 色婷婷av一区二区三区视频| 日本91视频免费播放| 黑人猛操日本美女一级片| 亚洲久久久国产精品| 一级毛片我不卡| 久久久亚洲精品成人影院| 久久久久久人人人人人| 成人国产av品久久久|