柳平增,王 雪,2,宋成寶,張 超,奧寶平,呂 濤,張立欣
基于大數(shù)據(jù)的西藏荒漠化治理植物優(yōu)選與驗(yàn)證
柳平增1,王 雪1,2,宋成寶3,張 超1,奧寶平2,4,呂 濤2,4,張立欣2,4
(1. 山東農(nóng)業(yè)大學(xué)信息科學(xué)與工程學(xué)院,泰安 271018; 2. 億利綠土地科技有限公司,北京 100067;3. 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271018; 4. 內(nèi)蒙古庫(kù)布其沙漠技術(shù)研究院,杭錦旗 017418)
植物種植作為荒漠化治理的重要方式之一,關(guān)系到荒漠化區(qū)域的高效可持續(xù)發(fā)展。為提高植物選擇的科學(xué)性與合理性,在項(xiàng)目前期已建成荒漠生態(tài)治理大數(shù)據(jù)平臺(tái)并實(shí)現(xiàn)中國(guó)主要荒漠化區(qū)域生態(tài)信息全方位采集的基礎(chǔ)上,進(jìn)行基于大數(shù)據(jù)的植物優(yōu)選研究與試驗(yàn)驗(yàn)證。研究運(yùn)用相關(guān)性分析、聚類分析等大數(shù)據(jù)分析方法對(duì)荒漠植物種質(zhì)資源庫(kù)中植物進(jìn)行類別劃分,初步篩選適應(yīng)該地區(qū)氣象條件的植物;進(jìn)一步運(yùn)用層次分析法、專家打分法等決策方法從土壤、地形、生態(tài)效益、經(jīng)濟(jì)效益和其他等5個(gè)方面進(jìn)行綜合分析與評(píng)價(jià),以優(yōu)化初選結(jié)果。將該方法應(yīng)用于西藏地區(qū)荒漠化治理植物的選擇,經(jīng)大數(shù)據(jù)挖掘分析,初步篩選出了核桃、黑果枸杞、鹽生草和花花柴等適宜植物;進(jìn)一步優(yōu)化分析得出,核桃具有經(jīng)濟(jì)效益高、耐儲(chǔ)運(yùn)、前期投入相對(duì)較少等優(yōu)勢(shì),是該區(qū)域荒漠化治理中生態(tài)適應(yīng)性與綜合效益俱佳的植物。優(yōu)選結(jié)果在西藏山南市扎囊縣桑耶鎮(zhèn)的荒漠化治理中得到了驗(yàn)證,目前核桃長(zhǎng)勢(shì)良好,預(yù)期生態(tài)與經(jīng)濟(jì)效益顯著?;诖髷?shù)據(jù)進(jìn)行荒漠治理植物的優(yōu)選可為荒漠化區(qū)域科學(xué)規(guī)劃及高效治理提供堅(jiān)實(shí)的理論與數(shù)據(jù)支撐。
植物;聚類分析;相關(guān)性分析;大數(shù)據(jù);植物優(yōu)選;荒漠化治理;生態(tài)適應(yīng)性
土地荒漠化是當(dāng)今全球面臨的最為嚴(yán)重的社會(huì)、經(jīng)濟(jì)和生態(tài)問(wèn)題[1-2],荒漠化的科學(xué)治理對(duì)于改善人類生存環(huán)境,保障經(jīng)濟(jì)社會(huì)可持續(xù)發(fā)展至關(guān)重要。植物種植是荒漠化治理的有效手段之一。針對(duì)具體的宜種區(qū)域,基于荒漠化類型、成因、生態(tài)環(huán)境及社會(huì)人文環(huán)境等影響因素的復(fù)雜多樣性,運(yùn)用科學(xué)的分析方法分析不同植物的生態(tài)適應(yīng)性,最大限度發(fā)揮植物的生態(tài)、經(jīng)濟(jì)效益,對(duì)于提高我國(guó)荒漠治理的成功率、效率與效益來(lái)說(shuō)具有重要意義。
國(guó)內(nèi)外許多學(xué)者在荒漠化治理植物的選擇方面開展了大量研究[3-7]。朱巖峰等以常見固沙植物為研究對(duì)象,優(yōu)選抗逆性強(qiáng)的植物品種進(jìn)行區(qū)域的生態(tài)治理[8-10];李衛(wèi)平等通過(guò)實(shí)際調(diào)研,為不同立地區(qū)域選擇了合適的生態(tài)恢復(fù)植物類型[11];嚴(yán)慧玲等對(duì)不同海拔、不同沙化退耕地的植物種類進(jìn)行分析并通過(guò)對(duì)比植物的生長(zhǎng)狀況實(shí)現(xiàn)了物種的篩選[12-13]。上述研究通過(guò)經(jīng)驗(yàn)判斷、實(shí)際調(diào)研和對(duì)比分析等方法對(duì)荒漠治理植物的選擇進(jìn)行了重要探索,但植物的選擇范圍易受傳統(tǒng)種植經(jīng)驗(yàn)的影響而具有局限性;植物的選擇過(guò)程缺乏數(shù)據(jù)分析結(jié)果的支撐,存在一定主觀性。王樂(lè)等通過(guò)實(shí)際種植試驗(yàn)驗(yàn)證植物的生長(zhǎng)適應(yīng)性并實(shí)現(xiàn)了植物引種[14-15],但大規(guī)模的試種需要投入巨大的人力、物力、財(cái)力,種植成本高、試驗(yàn)周期長(zhǎng)且時(shí)間效率低。部分研究通過(guò)模式借鑒法對(duì)荒漠化治理成功地區(qū)優(yōu)良植物的引種工作展開探討[16-19],但從區(qū)域可持續(xù)發(fā)展的長(zhǎng)遠(yuǎn)角度考慮,還需要從荒漠化地區(qū)生態(tài)環(huán)境、地理?xiàng)l件以及植物種植的生態(tài)、經(jīng)濟(jì)效益等方面進(jìn)行綜合考量。因此,傳統(tǒng)的植物選擇方法已不能滿足荒漠化地區(qū)生態(tài)、高效、綠色及可持續(xù)治理的需要。應(yīng)用科學(xué)的數(shù)據(jù)分析方法,綜合荒漠化地區(qū)實(shí)際環(huán)境、植物種植效益等多方面因素進(jìn)行治理植物的優(yōu)選尤為必要。
“大數(shù)據(jù)”是繼物聯(lián)網(wǎng)、云計(jì)算之后信息技術(shù)的又一次重大技術(shù)變革,其發(fā)展為人類認(rèn)識(shí)世界和改造世界提供了新視野和新方法[20-21]。利用大數(shù)據(jù)技術(shù),將使得傳統(tǒng)主要依靠經(jīng)驗(yàn)或感覺的以“人”為核心的決策模式,逐漸向以“數(shù)據(jù)”為核心的科學(xué)決策模式轉(zhuǎn)變。其中,數(shù)據(jù)的全面采集為荒漠化治理植物的優(yōu)選提供全方位數(shù)據(jù)支撐,大數(shù)據(jù)挖掘分析為植物優(yōu)選提供決策工具和手段。本文在總結(jié)傳統(tǒng)荒漠化治理中植物選擇方法的基礎(chǔ)上,以西藏山南市扎囊縣桑耶鎮(zhèn)為例開展基于大數(shù)據(jù)的植物優(yōu)選方法研究,以期為荒漠化治理提供一種新思路。
西藏是青藏高原的主體部分,區(qū)內(nèi)面積廣闊、土地類型多樣,但自然條件較為嚴(yán)酷,生態(tài)環(huán)境相對(duì)脆弱,是中國(guó)荒漠化狀況比較嚴(yán)重的地區(qū)之一。山南市扎囊縣是西藏荒漠化地區(qū)的典型代表,地處于藏南中南部(90°03′~90°38′E、28°27′~29°34′N),平均海拔3 680 m,境內(nèi)總面積2 163 km2,幅員遼闊。受高原溫帶季風(fēng)半干旱氣候的影響,該地山地巖石風(fēng)化嚴(yán)重;加之雅魯藏布江自西向東橫貫區(qū)內(nèi),其谷地經(jīng)江水沖刷堆積了大量泥沙,生態(tài)條件較差;耕地面積僅約44.67 km2,有大面積連片的荒地灘涂有待科學(xué)治理和開發(fā)。通過(guò)實(shí)地調(diào)研發(fā)現(xiàn),桑耶鎮(zhèn)屬輕度沙化土地,沙化時(shí)間較短,如何因地制宜的選擇適宜植物是該區(qū)域荒漠化治理面臨的難題。
1)物聯(lián)網(wǎng)感知數(shù)據(jù):物聯(lián)網(wǎng)采集是大數(shù)據(jù)的重要數(shù)據(jù)來(lái)源,研究所用物聯(lián)網(wǎng)數(shù)據(jù)來(lái)自于山東農(nóng)業(yè)大學(xué)農(nóng)業(yè)大數(shù)據(jù)研究中心與億利資源集團(tuán)的合作項(xiàng)目“億利生態(tài)沙漠大數(shù)據(jù)平臺(tái)”。依托該項(xiàng)目,項(xiàng)目團(tuán)隊(duì)已研究并布設(shè)涵蓋全國(guó)八大沙漠、四大沙地以及青藏高原地區(qū)的物聯(lián)網(wǎng)信息感知網(wǎng)絡(luò),自主研發(fā)的“神農(nóng)物聯(lián)”荒漠信息采集專用物聯(lián)網(wǎng)設(shè)備實(shí)現(xiàn)了荒漠化區(qū)域信息的不間斷自動(dòng)采集。采集數(shù)據(jù)包括氣象、土壤、地下水位以及現(xiàn)場(chǎng)植物長(zhǎng)勢(shì)等信息,數(shù)據(jù)類型豐富、指標(biāo)全面;數(shù)據(jù)采集頻率高、連續(xù)性和實(shí)效性強(qiáng),為后續(xù)數(shù)據(jù)挖掘分析奠定了堅(jiān)實(shí)基礎(chǔ)。
2)氣象網(wǎng)統(tǒng)計(jì)數(shù)據(jù):統(tǒng)計(jì)數(shù)據(jù)選取主要結(jié)合植物的生物學(xué)特征,選擇影響植物生長(zhǎng)發(fā)育的主要?dú)夂蛞蜃?,包括氣溫、降水量、日照時(shí)數(shù)、相對(duì)濕度、風(fēng)速、風(fēng)向等15項(xiàng)指標(biāo)。
3)大數(shù)據(jù)平臺(tái)荒漠植物種質(zhì)資源數(shù)據(jù):數(shù)據(jù)主要來(lái)源于億利資源集團(tuán)積累數(shù)據(jù)、中國(guó)植物志、中國(guó)數(shù)字植物標(biāo)本館、植物通等網(wǎng)站以及一些公開發(fā)表的文獻(xiàn)資料等,主要包括植物名稱與科屬、生長(zhǎng)習(xí)性與生長(zhǎng)條件、植物分布與價(jià)值、生態(tài)功能以及相對(duì)應(yīng)的圖片等信息,主要用于荒漠化地區(qū)植物種質(zhì)資源數(shù)據(jù)庫(kù)的建設(shè)。
4)調(diào)查數(shù)據(jù):主要由現(xiàn)場(chǎng)調(diào)研、經(jīng)驗(yàn)豐富的專家和沙漠治理企業(yè)提供等方式獲取,用于對(duì)試驗(yàn)結(jié)果的補(bǔ)充說(shuō)明與驗(yàn)證。
數(shù)據(jù)采集、數(shù)據(jù)預(yù)處理與集成、數(shù)據(jù)挖掘分析與數(shù)據(jù)服務(wù)是大數(shù)據(jù)研究的基本流程。利用大數(shù)據(jù)進(jìn)行荒漠化治理植物優(yōu)選,以已研發(fā)的荒漠大數(shù)據(jù)平臺(tái)為依托,充分利用荒漠化地區(qū)生態(tài)數(shù)據(jù)資源對(duì)植物進(jìn)行科學(xué)、全面的分析與引種試驗(yàn)驗(yàn)證。在數(shù)據(jù)挖掘分析過(guò)程中,不僅要考慮植物的生態(tài)適應(yīng)性,還要充分考慮植物種植帶來(lái)的生態(tài)效益、經(jīng)濟(jì)效益以及能否促進(jìn)地區(qū)的可持續(xù)發(fā)展。
具體步驟如下:首先,在明確研究區(qū)荒漠化特征的基礎(chǔ)上,分析研究區(qū)氣象條件的變化特點(diǎn)與規(guī)律,結(jié)合荒漠化治理植物的適生指標(biāo),通過(guò)聚類分析、相關(guān)性分析等大數(shù)據(jù)分析方法分析植物對(duì)氣象條件的適應(yīng)性,初步篩選適宜性高的植物。由于研究區(qū)水資源短缺且因海拔高導(dǎo)致的光照強(qiáng)度大、積溫少等問(wèn)題相對(duì)嚴(yán)峻,因此需要充分考慮“光、溫、水”等主導(dǎo)氣象因素的限制。然后,將初步篩選出的植物作為評(píng)價(jià)對(duì)象,綜合考慮地形、土壤、生態(tài)效益、經(jīng)濟(jì)效益以及種植偏好、相關(guān)政策等其他因素,通過(guò)專家打分法和層次分析法對(duì)植物進(jìn)行橫向比較與綜合排序。最后,對(duì)篩選結(jié)果進(jìn)行引種試驗(yàn),通過(guò)實(shí)地種植效果驗(yàn)證基于大數(shù)據(jù)的植物優(yōu)選方法的可行性。
2.2.1 植物類別劃分
聚類分析是對(duì)樣本或指標(biāo)進(jìn)行分類的一種多元統(tǒng)計(jì)分析方法,它可以將物理或抽象對(duì)象的集合分組為多個(gè)由相似對(duì)象組成的類或簇。聚類是大數(shù)據(jù)分析中的常用方法,在植物類別劃分方面具有廣泛應(yīng)用[22-25]。在聚類方法的選擇上,本研究綜合考慮荒漠化治理植物樣本數(shù)據(jù)的數(shù)據(jù)量大小、數(shù)據(jù)類型差異和樣本間的離散程度等,對(duì)比了k-均值聚類、層次聚類、DBSCAN等常用方法的聚類效果;對(duì)比結(jié)果表明,層次聚類法每次將距離最近的樣本點(diǎn)合并到同一個(gè)類,再計(jì)算類與類之間的距離并將距離最近的類進(jìn)行組合,該方法不需預(yù)先確定聚類數(shù)目且易于發(fā)現(xiàn)簇間的層次關(guān)系,更適合植物閾值數(shù)據(jù)間的相似性分析。此外,對(duì)比層次聚類中的距離度量方法,發(fā)現(xiàn)采用單調(diào)性與空間濃縮、擴(kuò)張性良好的類平均法實(shí)現(xiàn)的聚類效果最優(yōu),簇間距離公式如式(1)所示:
利用該方法,本文對(duì)適宜植物生長(zhǎng)的氣象閾值數(shù)據(jù)進(jìn)行聚類,按照上限值和下限值分別劃分出氣候適宜范圍相似的植物類別;其中,同一類中植物的生長(zhǎng)習(xí)性具有明顯的相似性,而不同類別間植物對(duì)氣象因素的適宜程度差異較大。該研究為后續(xù)篩選適宜研究區(qū)氣象條件的植物類別奠定了基礎(chǔ)。
2.2.2 適宜植物初步篩選
大數(shù)據(jù)相關(guān)分析能夠研究2個(gè)或2個(gè)以上隨機(jī)變量間存在的某種規(guī)律性,具有快捷、高效地發(fā)現(xiàn)事物間內(nèi)在關(guān)聯(lián)的優(yōu)勢(shì),方便探尋數(shù)據(jù)集里所隱藏的相關(guān)關(guān)系網(wǎng)[26]??紤]到在各類植物生長(zhǎng)過(guò)程中,各種氣象因素適宜范圍值的劃定在不同地域、年份等條件下會(huì)存在一定差異,因此在分析時(shí)主要關(guān)注研究區(qū)的區(qū)域氣象特征與植物最適氣象條件間的相似性。研究選擇Pearson相關(guān)系數(shù)用來(lái)衡量?jī)勺兞恐g的相關(guān)關(guān)系[27]。
2.2.3 綜合評(píng)價(jià)指標(biāo)體系與權(quán)重的確定
在初步篩選適宜植物基礎(chǔ)上,為進(jìn)一步優(yōu)化植物初選結(jié)果,本文構(gòu)建了基于大數(shù)據(jù)的植物優(yōu)選綜合評(píng)價(jià)指標(biāo)體系。其中,土壤是影響植物生長(zhǎng)的重要因素,不同植物對(duì)土壤類型、土壤質(zhì)地和土壤養(yǎng)分的要求是重要的評(píng)價(jià)因子。地形地勢(shì)條件對(duì)水熱等資源再分配和物質(zhì)遷移發(fā)揮著重要作用,并在很大程度上決定了生態(tài)開發(fā)的難易程度、投入產(chǎn)出比以及生態(tài)風(fēng)險(xiǎn)等問(wèn)題,也是植物優(yōu)選的重要評(píng)價(jià)因子。生態(tài)效益關(guān)系到荒漠化區(qū)域的全局發(fā)展與長(zhǎng)遠(yuǎn)效益,因此,植物對(duì)土壤養(yǎng)分、結(jié)構(gòu)和鹽堿化的改良效果,以及對(duì)風(fēng)沙的抑制和對(duì)大氣環(huán)境的改善作用等是植物篩選的重要評(píng)價(jià)因子。經(jīng)濟(jì)效益直接影響荒漠治理參與者的動(dòng)機(jī)和積極性,對(duì)治理區(qū)域的經(jīng)濟(jì)發(fā)展也有著非常重要的影響,因此,植物種植的生產(chǎn)成本、產(chǎn)出品的產(chǎn)量、價(jià)格、品質(zhì)及耐儲(chǔ)耐運(yùn)性等也是重要的評(píng)價(jià)因子。此外,還包括農(nóng)戶的種植偏好和地方政策等其他評(píng)價(jià)因子。
綜上分析,植物優(yōu)選綜合評(píng)價(jià)指標(biāo)體系的一級(jí)指標(biāo)包括土壤、地形、生態(tài)效益、經(jīng)濟(jì)效益及其他等5個(gè)方面,二級(jí)指標(biāo)包括植物對(duì)土壤類型、質(zhì)地、養(yǎng)分和地形、地勢(shì)等的要求,以及植物種植的成本、產(chǎn)量、品質(zhì)、價(jià)格、耐儲(chǔ)耐運(yùn)性和種植偏好、相關(guān)政策等17個(gè)因子。指標(biāo)權(quán)重參照專家打分法和文獻(xiàn)查閱法[28-31]進(jìn)行分級(jí)賦值與量化(見表1)。
表1 綜合評(píng)價(jià)指標(biāo)與權(quán)重
3.1.1 溫度特征分析
該區(qū)常年溫度較低,四季不分明,年平均溫度為9.03 ℃,全年月平均氣溫呈現(xiàn)單峰值變化。以2018年1月1日—12月31日采集數(shù)據(jù)為例(見圖1),溫度年變化相對(duì)較小,從1月開始溫度逐漸升高,4月下旬到5月中上旬,受早春氣候變化的影響,日平均溫度穩(wěn)定在9 ℃以上,日最低溫度均保持在0 ℃以上。5月氣溫可達(dá)12 ℃以上,6—9月,月平均溫度均保持在16 ℃以上,10月份氣溫開始逐漸下降。全年最高溫度出現(xiàn)在7月份,為28.43 ℃;最冷月出現(xiàn)在12月,最低溫度?17.16 ℃。全年無(wú)霜期從4月上旬到10月下旬,約180d左右。晝夜溫差較大,夏季最高溫度出現(xiàn)在15:00-18:00左右,最低溫度出現(xiàn)在06:00-08:00左右。地區(qū)全年大于10 ℃的積溫約為2 410 ℃,熱量條件相對(duì)平原地區(qū)低很多。
圖1 2018年研究區(qū)溫度變化
3.1.2 光照特征分析
以2018年1月1日-12月31日采集數(shù)據(jù)為例,2018年全年大于11.5 klx的日照時(shí)間為3382h,年平均光照強(qiáng)度為19 klx(見圖2)。如圖中所示,1月、2月、12月平均光照強(qiáng)度較低;5-8月平均光照強(qiáng)度較高,日照時(shí)間為980h,占全年28%,日平均光照強(qiáng)度在22.76 klx左右,日最高光照強(qiáng)度可達(dá)100 klx以上。冬季光照強(qiáng)度一般從早上09:00開始增加,在15:00左右達(dá)到最大值,21:00左右逐漸趨近于0;夏季白晝時(shí)間長(zhǎng),光照強(qiáng)度從08:00開始逐漸增加,晚上22:00趨近于0??傮w來(lái)看,該地日照時(shí)間相對(duì)較長(zhǎng),光照資源相當(dāng)豐富。
圖2 2018年研究區(qū)光照強(qiáng)度變化
3.1.3 降水特征分析
以2018年1月1日-12月31日采集數(shù)據(jù)為例(見圖3),研究區(qū)全年降水量約550.5mm,降水天數(shù)為27d。冬春季降水較少,普遍干燥,且主要集中在5月,約為29.3 mm;夏秋季節(jié)降水相對(duì)較多,主要集中在6-9月,約為492mm,占全年降水量的89.37%。年內(nèi)降水時(shí)空分布不均,且蒸發(fā)量大是該地區(qū)水資源變化的主要特征。
圖3 2018年研究區(qū)降水量變化
3.2.1 基于閾值下限的植物類別劃分
對(duì)常見荒漠化治理植物的日照時(shí)數(shù)、>10 ℃積溫、降水等指標(biāo)的閾值下限進(jìn)行聚類分析,按照聚類分析結(jié)果將植物大致劃分為5類(見表2)。第Ⅰ類植物耐高溫、抗旱性能相對(duì)較強(qiáng)。第Ⅱ類植物對(duì)降雨的要求較低,抗干旱能力較強(qiáng);植物類型大多為灌木,分枝多而密集且根系發(fā)達(dá),具有很強(qiáng)的固沙阻沙能力。第Ⅲ類植物植株相對(duì)其他幾類較高大,對(duì)降水的要求較高;耐瘠薄土壤,對(duì)風(fēng)蝕沙埋的生態(tài)適應(yīng)性強(qiáng),防風(fēng)固沙、改良土壤等生態(tài)作用良好。第Ⅳ類植物對(duì)日照時(shí)數(shù)的要求較低,大多為多年生草本或喬木,喜沙質(zhì)土壤,抗風(fēng)沙、抗逆性能較好,對(duì)干旱氣候同樣具有很強(qiáng)的適應(yīng)能力。第Ⅴ類植物大多為草本或者灌木,植株相對(duì)較小,喜光,對(duì)積溫的要求較低,對(duì)溫度大幅度變化的適應(yīng)能力強(qiáng),在荒漠地區(qū)的種植較為廣泛;植物在極端溫度條件下也能生存,對(duì)于高海拔積溫較少的地區(qū)來(lái)說(shuō)有較大的存活概率。
表2 基于閾值下限的荒漠化治理植物類別劃分
3.2.2 基于閾值上限的植物類別劃分
對(duì)常見荒漠化治理植物的日照時(shí)數(shù)、>10 ℃積溫、降水等指標(biāo)的閾值上限進(jìn)行聚類分析,按聚類分析結(jié)果可將植物大致劃分為4類(見表3)。第Ⅰ類植物對(duì)溫度的耐受程度較高、耐鹽堿性強(qiáng),植物類型大多為灌木或喬木,樹形較大且根系發(fā)達(dá),在降水量極少的地區(qū)也能生存,固沙效果顯著。第Ⅱ類植物大多為多年生草本或灌木,喜光、耐旱,對(duì)降水的要求較低,是進(jìn)行防沙固沙、綠化造林、保持水土的優(yōu)良樹種。第Ⅲ類植物對(duì)積溫的要求較低,適合干旱或半干旱地區(qū)種植;對(duì)土壤要求不嚴(yán),耐貧瘠、抗風(fēng)沙特點(diǎn)突出,多生于流動(dòng)沙丘、沙地、河床或山坡等地。第Ⅳ類植物喜干燥,耐嚴(yán)寒、高溫和瘠薄,多生長(zhǎng)于沙丘、鹽堿土、荒漠等地。
表3 基于閾值上限的荒漠化治理植物類別劃分
通過(guò)數(shù)據(jù)統(tǒng)計(jì)與分析,將研究區(qū)>10 ℃積溫、日照時(shí)數(shù)、降水量等數(shù)據(jù)抽象成一個(gè)3維向量,將最適宜各荒漠化治理植物生長(zhǎng)的氣象條件對(duì)應(yīng)的閾值轉(zhuǎn)換成多個(gè)3維向量構(gòu)成的向量組,故將研究區(qū)氣候特征與植物氣象條件閾值之間的相似性轉(zhuǎn)化成了向量之間的相似性。依據(jù)2.2.2節(jié)中的適宜植物初步篩選方法,計(jì)算各植物與地區(qū)氣象條件間的相關(guān)系數(shù),并按聚類分析劃分的類別分別求取平均值(見表4)。
表4 研究區(qū)氣候條件與植物類別間的平均相關(guān)系數(shù)
數(shù)據(jù)結(jié)果表明,在閾值下限約束下,第Ⅳ類和第Ⅴ類植物所對(duì)應(yīng)的相關(guān)系數(shù)均在0.95以上,說(shuō)明植物的適生條件與地區(qū)氣象條件之間存在顯著相關(guān)性,即植物對(duì)積溫、日照時(shí)數(shù)和降水量等的要求與研究區(qū)的氣象條件較為相似;而在上限閾值的約束下,第Ⅱ類植物對(duì)積溫、日照和降水等的需求與研究區(qū)的氣象條件較為相符。將第Ⅳ、Ⅴ類與第Ⅱ類植物取交集,篩選適宜在研究區(qū)氣象條件下生長(zhǎng)的植物。篩選結(jié)果顯示,符合條件的植物主要有鹽生草、黑果枸杞、核桃、花花柴等。
為了進(jìn)一步優(yōu)化初步篩選結(jié)果,依據(jù)綜合評(píng)價(jià)指標(biāo)體系與權(quán)重的確定方法,將地形、土壤、生態(tài)效益、經(jīng)濟(jì)效益和其他等5個(gè)評(píng)價(jià)指標(biāo)權(quán)重依次賦值為0.2、0.2、0.3、0.2、0.1,通過(guò)專家咨詢和分級(jí)賦值法對(duì)4種植物的適應(yīng)性進(jìn)行單項(xiàng)打分與量化,然后通過(guò)加權(quán)指數(shù)求和法計(jì)算最終結(jié)果與綜合排名?;哪卫碇参锏木C合適宜性評(píng)價(jià)結(jié)果見表5。
表5 荒漠化治理植物的綜合適宜性評(píng)價(jià)結(jié)果
由表5可知,4種植物綜合得分由高到低依次為核桃、黑果枸杞、花花柴、鹽生草。結(jié)果表明,4種植物均具有良好的防風(fēng)固沙、土壤改良效果,生態(tài)效益顯著;但鹽生草和花花柴無(wú)果實(shí),種植的經(jīng)濟(jì)效益相對(duì)較低,不利于帶動(dòng)當(dāng)?shù)亟?jīng)濟(jì)的發(fā)展;黑果枸杞的經(jīng)濟(jì)效益顯著,但種植與采摘人工成本較高,對(duì)土壤的要求也較為嚴(yán)格。相比之下,核桃的種植投入成本相對(duì)較低,果實(shí)耐儲(chǔ)存且易于遠(yuǎn)距離運(yùn)輸,滿足該地區(qū)對(duì)植物經(jīng)濟(jì)效益和生態(tài)效益的綜合需求,且西藏自治區(qū)多次出臺(tái)相關(guān)政策加大對(duì)經(jīng)濟(jì)林發(fā)展的投入和扶持,大力發(fā)展特色經(jīng)濟(jì)林產(chǎn)業(yè),因此,綜合各方面因素,優(yōu)選出核桃為最適宜引種的荒漠化治理植物。
以西藏山南市荒漠化治理項(xiàng)目為背景,基于荒漠化治理植物的優(yōu)選結(jié)果,項(xiàng)目組在億利資源集團(tuán)大力協(xié)助下開展核桃的試種試驗(yàn)。試驗(yàn)區(qū)位于扎囊縣桑耶鎮(zhèn)向北約2 km處,長(zhǎng)期以來(lái)該區(qū)域土地荒漠化現(xiàn)象嚴(yán)峻,植被類型以草本植物為主且植物存活期短,無(wú)成活樹木。但該區(qū)地勢(shì)平坦,周圍三面環(huán)山,因此,風(fēng)沙相對(duì)較少,立地條件相對(duì)較好,較適合初期核桃苗木的生長(zhǎng)。自2017年6月開始種植核桃,至今種植時(shí)間已超過(guò)2 a。在科學(xué)的人工干預(yù)與管理下,目前核桃苗木生長(zhǎng)發(fā)育正常,長(zhǎng)勢(shì)良好且發(fā)枝力強(qiáng),對(duì)該地區(qū)的自然環(huán)境表現(xiàn)出了較好的生態(tài)適應(yīng)性;與同期種植的蘋果苗木相比,核桃的抗高溫、抗光照和抗旱性均有較好表現(xiàn);此外,在試種的2 a多時(shí)間里,核桃苗木周圍的草本植物數(shù)量明顯增多,預(yù)期生態(tài)、經(jīng)濟(jì)效益顯著。依據(jù)安裝在試驗(yàn)區(qū)的“神農(nóng)物聯(lián)”沙漠專用物聯(lián)網(wǎng)自動(dòng)采集設(shè)備對(duì)現(xiàn)場(chǎng)苗情信息進(jìn)行監(jiān)測(cè),核桃苗木試種前后試驗(yàn)區(qū)的對(duì)比如圖4所示,試驗(yàn)結(jié)果驗(yàn)證了大數(shù)據(jù)分析方法的可行性和有效性。利用大數(shù)據(jù)進(jìn)行植物優(yōu)選可顯著提高荒漠化治理的成功率、效率和效益,研究結(jié)果更具有科學(xué)性和發(fā)展的可持續(xù)性。
圖4 核桃苗木試種前后的區(qū)域?qū)Ρ?/p>
本文以項(xiàng)目組研發(fā)的荒漠大數(shù)據(jù)平臺(tái)為依托,基于荒漠化地區(qū)的生態(tài)數(shù)據(jù)和植物種質(zhì)資源數(shù)據(jù),以西藏山南市扎囊縣桑耶鎮(zhèn)為例,運(yùn)用大數(shù)據(jù)挖掘分析方法對(duì)不同類別植物的生態(tài)適應(yīng)性進(jìn)行了分析;從氣象、土壤、地形、生態(tài)效益、經(jīng)濟(jì)效益以及種植偏好、相關(guān)政策等方面對(duì)植物的綜合效益進(jìn)行了評(píng)價(jià),依據(jù)最終排序結(jié)果實(shí)現(xiàn)了植物的優(yōu)選;并通過(guò)實(shí)際試種試驗(yàn)驗(yàn)證了植物優(yōu)選結(jié)果的可行性?;诖髷?shù)據(jù)的西藏荒漠化治理植物的優(yōu)選方法克服了傳統(tǒng)植物優(yōu)選中以試種為主、通過(guò)規(guī)律摸索或經(jīng)驗(yàn)積累再推廣種植等方法的盲目性,降低了治理過(guò)程中人、財(cái)、物的投入,提高了治理的成功率、效率和效益,為荒漠化治理中植物的優(yōu)選提供了一種新的思路和解決方法,這對(duì)荒漠化區(qū)域的高效治理及可持續(xù)發(fā)展具有十分重要的意義。
本研究已取得階段性成果,但在綜合評(píng)價(jià)過(guò)程中所采納的評(píng)價(jià)指標(biāo)以及指標(biāo)權(quán)重還有待進(jìn)一步優(yōu)化。另外,荒漠化地區(qū)數(shù)據(jù)的積累需要一個(gè)長(zhǎng)期的過(guò)程,目前的研究還受數(shù)據(jù)累積量的制約,隨著數(shù)據(jù)量的進(jìn)一步增加,分析內(nèi)容和結(jié)果還會(huì)進(jìn)一步深化。
[1] 徐馳,姜琦剛,李遠(yuǎn)華,等. 呼倫貝爾地區(qū)土地荒漠化動(dòng)態(tài)變化[J]. 世界地質(zhì),2010,29(1):160-167.
Xu Chi, Jiang Qigang, Li Yuanhua, et al. Dynamic change of desertification in Hulunbeier[J]. Global Geology, 2010, 29(1): 160-167. (in Chinese with English abstract)
[2] 張鈦仁,張玉峰,柴秀梅,等. 人類活動(dòng)對(duì)我國(guó)西北地區(qū)沙質(zhì)荒漠化影響與對(duì)策研究[J]. 中國(guó)沙漠,2010,30(2):228-234.
Zhang Tairen,Zhang Yufeng,Chai Xiumei,et al. Impact of human activities on sandy desertification of Northwest China and countermeasures analysis[J]. Journal of Desert Research, 2010, 30(2): 228-234. (in Chinese with English abstract)
[3] 孫艷茹,石屹,陳國(guó)軍,等. PEG模擬干旱脅迫下8種綠肥作物萌發(fā)特性與抗旱性評(píng)價(jià)[J]. 草業(yè)學(xué)報(bào),2015,24(3):89-98.
Sun Yanru, Shi Yi, Chen Guojun, et al. Evaluation of the germination characteristics and drought resistance of green manure crops under PEG stress[J]. Acta Prataculturae Sinica, 2015, 24(3): 89-98. (in Chinese with English abstract)
[4] 高永,丁延龍,汪季,等. 不同植物灌叢沙丘表面沉積物粒度變化及其固沙能力[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):135-142.
Gao Yong, Ding Yanlong, Wang Ji, et al. Sediments particle size changes and its sand fixation ability for different shrub dunes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 135-142. (in Chinese with English abstract)
[5] 羅維成,曾凡江,劉波,等. 綠洲—沙漠過(guò)渡帶引種植物光合生理特征研究[J]. 草業(yè)學(xué)報(bào),2013,22(2):273-280.
Luo Weicheng, Zeng Fanjiang, Liu Bo, et al. Photosynthetic and physiological characteristics of introduced plants at the desert-oasis ecotone[J]. Acta Prataculturae Sinica, 2013, 22(2): 273-280. (in Chinese with English abstract)
[6] 李生宇,谷峰,雷加強(qiáng),等. 塔克拉瑪干沙漠主要灌木光合器官滯塵能力與表面特性的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):223-229.
Li Shengyu, Gu Feng, Lei Jiaqiang, et al. Relationship between dust-retaining capabilities of photosynthetic organs and their surface properties of main shrubs species in Central Taklimakan Desert[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2012, 28(20): 223-229. (in Chinese with English abstract)
[7] 茍小林,劉文輝,陳有軍,等. 植物沙障不同種植模式對(duì)川西北沙地的恢復(fù)效應(yīng)[J]. 草業(yè)學(xué)報(bào),2019,28(6):33-44.
Gou Xiaolin, Liu Wenhui, Chen Youjun, et al. Effect of different vegetation planting patterns in restoration of degraded sandy land in northwest Sichuan[J]. Acta Prataculturae Sinica, 2019, 28(6): 33-44. (in Chinese with English abstract)
[8] 朱巖峰,張林濤,梁立民,等. 基于競(jìng)爭(zhēng)態(tài)勢(shì)矩陣的毛烏素沙地西南緣植被恢復(fù)樹種選擇[J]. 西北林學(xué)院學(xué)報(bào),2016,31(1):114-118.
Zhu Yanfeng, Zhang Lintao, Liang Limin, et al. Species selection based on competition matrix in southwest of Mu Us Sandyland[J]. Journal of Northwest Forestry University, 2016, 31(1): 114-118. (in Chinese with English abstract)
[9] 王歡. 典型固沙植物根系暴露后生長(zhǎng)生理的特征及其抗逆性評(píng)價(jià)[D]. 銀川寧夏大學(xué),2019.
Wang Huan. Characteristics of Growth Physiology and Evaluation of Stress Resistance of Typical Sand-Fixing Plant Roots After Exposure[D]. Yinchuan Ningxia University, 2019. (in Chinese with English abstract)
[10] 趙瑞. 沙漠修復(fù)植物生態(tài)適應(yīng)性評(píng)價(jià)及系統(tǒng)研發(fā)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2018.
Zhao Rui. Ecological Adaptability Evaluation of Desert Restoration Plants and System Development[D]. Taian: Shandong Agricultural University, 2018. (in Chinese with English abstract)
[11] 李衛(wèi)平,劉建龍,鮑交琦,等. 包頭黃河濕地生態(tài)恢復(fù)植物類型的選擇[J]. 濕地科學(xué),2015,13(2):211-216.
Li Weiping, Liu Jianlong, Bao Jiaoqi, et al. Selection of plants for ecological restoration of Yellow River wetlands in Baotou city[J]. Wetland Science, 2015, 13(2): 211-216. (in Chinese with English abstract)
[12] 嚴(yán)慧玲,劉東明,李作恒,等. 層次分析法在河北省太行山區(qū)植被恢復(fù)植物種類篩選中的運(yùn)用[J]. 植物研究,2015,35(5):751-758.
Yan Huiling, Liu Dongming, Li Zuoheng, et al. Analytic hierarchy process in plant species selection of revegetation in the Taihang mountains in Hebei province[J]. Bulletin of Botanical Research, 2015, 35(5): 751-758. (in Chinese with English abstract)
[13] 來(lái)錫福,焦旭東,趙明,等. 民勤沙化退耕地整治技術(shù)及造林模式選擇研究[J]. 水土保持研究,2015,22(1):269-273.
Lai Xifu, Jiao Xudong, Zhao Ming, et al. Study on remediation technology and afforestation model decision of desertification woodland in Minqin[J]. Research of Soil and Water Conservation, 2015, 22(1): 269-273. (in Chinese with English abstract)
[14] 王樂(lè),李亞光. 中新天津生態(tài)城河岸帶鹽堿地造林樹種選擇[J]. 水土保持通報(bào),2015,35(4):248-253.
Wang Le, Li Yaguang. Primary selection of plant species for afforestation in salinized soil in Sino-Singapore Tianjin Eco-city riparian[J]. Bulletin of Soil and Water Conservation, 2015, 35(4): 248-253. (in Chinese with English abstract)
[15] 李許文,劉文,陳紅鋒,等. 廣州適宜的植物引種來(lái)源地與氣候區(qū)選擇研究[J]. 中國(guó)園林,2016,32(4):96-100.
Li Xuwen, Liu Wen, Chen Hongfeng, et al. A study on the selection of appropriate source regions and climatic zones for Guangzhou to introduce plants[J]. Chinese Landscape Architecture, 2016, 32(4): 96-100. (in Chinese with English abstract)
[16] 郭彩贇,韓致文,李愛敏,等. 庫(kù)布齊沙漠生態(tài)治理與開發(fā)利用的典型模式[J]. 西北師范大學(xué)學(xué)報(bào):自然科學(xué)版,2017,53(1):112-118.
Guo Caiyun, Han Zhiwen, Li Aimin, et al. The typical models of ecological management and development and utilization in the Kobq Desert[J]. Journal of Northwest Normal University: Natural Science, 2017, 53(1): 112-118. (in Chinese with English abstract)
[17] 王濤. 荒漠化治理中生態(tài)系統(tǒng)、社會(huì)經(jīng)濟(jì)系統(tǒng)協(xié)調(diào)發(fā)展問(wèn)題探析:以中國(guó)北方半干旱荒漠區(qū)沙漠化防治為例[J]. 生態(tài)學(xué)報(bào),2016,36(22):7045-7048.
Wang Tao. Study on the coordinated development of ecosystem and socio-economic system in desertification control: A case study of desertification control in semiarid area in north China[J]. Acta Ecologica Sinica, 2016, 36(22): 7045-7048. (in Chinese with English abstract)
[18] Zhang Daoyuan, Liu HuiLiang, Shi Xiang, et al. Limitations on the recruitment of the rare sand shrubby legume Eremosparton songoricum (Fabaceae) in Gurbantunggut Desert, China[J]. Journal of Arid Land, 2011, 3(2): 75-84.
[19] 喻陽(yáng)華,余楊,楊蘇茂,等. 植物生態(tài)適應(yīng)性特征及關(guān)鍵種選擇研究進(jìn)展[J]. 世界林業(yè)研究,2016,29(6):38-42.
Yu Yanghua, Yu Yang, Yang Sumao, et al. Research progress in characteristics of plant ecological adaptability and selection of keynote species[J]. World Forestry Research, 2016, 29(6): 38-42. (in Chinese with English abstract)
[20] 程春明,李蔚,宋旭. 生態(tài)環(huán)境大數(shù)據(jù)建設(shè)的思考[J]. 中國(guó)環(huán)境管理,2015,7(6):9-13.
Cheng Chunming, Li Wei, Song Xu. Thinking on the big data construction for ecological environment[J]. Chinese Journal of Environmental Management, 2015, 7(6): 9-13. (in Chinese with English abstract)
[21] 李文彥. 基于大數(shù)據(jù)的荒漠化治理對(duì)策研究[J]. 甘肅科技,2016,32(15):38-40.
[22] 楊曉,李錦華,朱新強(qiáng),等. 21種紫花苜蓿在西藏“一江兩河”地區(qū)引種試驗(yàn)研究[J]. 中國(guó)草食動(dòng)物科學(xué),2014,34(3):35-37.
Yang Xiao, Li Jinhua, Zhu Xinqiang, et al. Study on introduction of 21 alfalfa varieties in the “Three Rivers” region of Tibet[J]. Chinese Herbivore Science, 2014, 34(3): 35-37. (in Chinese with English abstract)
[23] 朱慶平,周力,李開,等. 西昌引種栽培油橄欖果中5種金屬元素主成分及聚類分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),2017,36(1):362-369.
Zhu Qingping, Zhou Li, Li Kai, et al. Principal component and cluster analysis of 5 metal elements in fruits of olive cultivars introduced to Xichang[J]. Genomics and Applied Biology, 2017, 36(1): 362-369. (in Chinese with English abstract)
[24] 孫浩元,續(xù)九如,王玉柱,等. 應(yīng)用灰色聚類和灰色關(guān)聯(lián)分析對(duì)臺(tái)灣青棗引種適宜區(qū)的選擇[J]. 中國(guó)農(nóng)學(xué)通報(bào),2006, 22(4):143-146.
Sun Haoyuan, Xu Jiuru, Wang Yuzhu, et al. Selection of suitable climatic regions for introduction ofLam. using the methods of gray clustering and gray correlation analysis[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 143-146. (in Chinese with English abstract)
[25] 熊新武,李俊南,劉恒鵬,等. 10個(gè)引種核桃品種嫁接成活率及苗期生長(zhǎng)性狀研究[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2015,35(3):36-42.
Xiong Xinwu, Li Junnan, Liu Hengpeng, et al. Study on grafting survival rate and seedling stage growth traits of ten introduced walnut varieties[J]. Journal of Central South University of Forestry & Technology, 2015, 35(3): 36-42. (in Chinese with English abstract)
[26] 李國(guó)杰,程學(xué)旗. 大數(shù)據(jù)研究:未來(lái)科技及經(jīng)濟(jì)社會(huì)發(fā)展的重大戰(zhàn)略領(lǐng)域:大數(shù)據(jù)的研究現(xiàn)狀與科學(xué)思考[J]. 中國(guó)科學(xué)院院刊,2012,27(6):647-657.
Li Guojie, Cheng Xueqi. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(6): 647-657. (in Chinese with English abstract)
[27] 王合玲,呂光輝,楊曉東. 新疆艾比湖濕地主要植物的種間關(guān)聯(lián)分析[J]. 生態(tài)學(xué)雜志,2011,30(12):2713-2718.
Wang Heling, Lu Guanghui, Yang Xiaodong. Interspecific associations of main plants in Ebinur Lake wetland of Xinjiang, Northwest China[J]. Chinese Journal of Ecology, 2011, 30(12): 2713-2718. (in Chinese with English abstract)
[28] Carolyn Howes Keiffer, Irwin A. Ungar. Germination and establishment of halophytes on brine-affected soils[J]. Journal of Applied Ecology, 2002, 39(3): 402-415.
[29] 張建鋒. 鹽堿地的生態(tài)修復(fù)研究[J]. 水土保持研究,2008,15(4):74-78.
Zhang Jianfeng. Discussion on ecological rehabilitation of salt-affected soils[J]. Research of Soil and Water Conservation, 2008, 15(4): 74-78. (in Chinese with English abstract)
[30] 聶彎,于法穩(wěn),和月月. 核桃種植的生態(tài)效益評(píng)價(jià):以云南省大姚縣為例[J]. 安徽農(nóng)業(yè)科學(xué),2016,44(29):156-160.
Nie Wan, Yu Fawen, He Yueyue. Evaluation of ecological benefit of walnut planting: A case of Dayao County of Yunnan Province[J]. Journal of Anhui Agricultural Sciences, 2016, 44(29): 156-160. (in Chinese with English abstract)
[31] 馬洋,王雪芹,韓章勇,等. 風(fēng)蝕沙埋對(duì)疏葉駱駝刺()和花花柴()幼苗的生理影響[J]. 中國(guó)沙漠,2015,35(5):1254-1261.
Ma Yang, Wang Xueqin, Han Zhangyong, et al. Effect of wind erosion and sand burial on physiological characters inandseedlings in the Southern Margin of the Taklimakan Desert[J]. Journal of Desert Research, 2015, 35(5): 1254-1261. (in Chinese with English abstract)
Optimal selection and verification of plant species for desertification control in Tibet based on big data
Liu Pingzeng1, Wang Xue1,2, Song Chengbao3, Zhang Chao1, Ao Baoping2,4, Lyu Tao2,4, Zhang Lixin2,4
(1.,,271018,; 2.100067; 3.271018; 4.017418,)
Land desertification has posed a major hazard to the society, economy, and environment in the Tibet semi-arid areas. The scientific and rational control of desertification becomes much more important to improve the living environment of human beings and the sustainable development of ecological system. Plant planting is expected to be one of the effective means of desertification control. Previous research had conducted on the selection of plant species for the desert governance, but it is necessary to accurately optimize the specific plant species, particularly on the range of plant selection, data analysis process and consideration of comprehensive benefits. In this study, a method of plant selection was proposed based on big data. Two steps were mainly included: one step was to optimize plants that meet the climate suitability of the study area in preliminary analysis, and another step was to verify the influence factors of the selected plants in comprehensive evaluation. A platform of big data was established for desertification ecological governance and the realization of all-round collection of major desert ecological information in China. The initial conditions were then defined according to the characteristics and direction of desertification governance in the study area. A database of germplasm resources for desert restoration plant was constructed to classify and select the subsequent plant categories. It is also necessary to consider the limitations of the dominant meteorological factors, such as “l(fā)ight, temperature, and water”, due to the relatively serious problems of water shortage, high intensity of sunshine, and low accumulated temperature in the study area. After the data was automatically collected by the Internet of Things (Iots), the meteorological characteristics and changes of the study area were used to provide theoretical support for the further matching of plant varieties with high temperature resistance, high intensity of sunlight and strong drought resistance. Plants with similar properties were classified into a group based on the threshold value of suitable meteorological conditions of plants by using cluster analysis, correlation analysis and other big data methods. The adaptability of plants was also analyzed during this time. In clustering, main plant species were grouped 5 categories based on upper limit and lower limit of threshold respectively. The correlation coefficient was calculated between the plants' own suitable environment and the meteorological conditions in the study area, and the average value was obtained by category. In the plant categories with a correlation coefficient greater than 0.95, the plants that located in both upper and lower classifications were assumed as optimum match on the meteorological conditions in the study area. The second step was to select plants with a high degree of comprehensive suitability based on the preliminary generation scheme. Taking the preliminary selected plants as the evaluation object, an expert scoring method and analytic hierarchy process were used to make a horizontal comparison and comprehensive ranking of plants, particularly on considering the influence of topography, soil, ecological benefits, economic benefits, farmers' planting preference and policy support on the growth of plants. The experimental results showed thatLscored the highest,Murrwas the second, whileandscored were the lowest. Since four plants have good wind and sand fixation, and soil improvement effects,Lplanting has the advantages of less initial investment, storage resistance, and easy long-distance transportation, indicating that it was suitable for the economic and ecological benefits for the study area. Therefore, the introduction ofLcan be the optimal option for desertification governance in the study area. The results of plant selection were also verified in the experimental areas of Sangye Town, Zhanang County, Shannan City, Tibet. In the field county, the desertification phenomenon has been severe for a long time, with the vegetation types of mainly herbaceous plants, where the survival period of plant is relatively short, even no living trees in some areas. The flat areas surrounded by mountains on three sides can be set as the site, where can be more suitable for the growth of earlyL.. Therefore,Lhas been planted for more than two years under the intervention and management of artificial science. At present, good growth and strong branching ability show an optimal ecological adaptability to the natural environment of the area. Compared with other plants grown in the same period,Lhas better performance on the resistance of high temperature, sunshine and drought. In addition, the number of herbs around walnuts has increased significantly in more than two years, to achieve the expected ecological and economic benefits. Both theoretical analysis and actual trial experiments have demonstrated that it is promising feasible to plantLin the areas of Sangye Town, Zhanang County, Shannan City, Tibet.
plants; cluster analysis; correlation analysis; big data; optimal selection for plant species; desertification control; ecological adaptability
柳平增,王雪,宋成寶,等. 基于大數(shù)據(jù)的西藏荒漠化治理植物優(yōu)選與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):166-173.doi:10.11975/j.issn.1002-6819.2020.10.020 http://www.tcsae.org
Liu Pingzeng, Wang Xue, Song Chengbao, et al. Optimal selection and verification of plant species for desertification control in Tibet based on big data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 166-173. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.020 http://www.tcsae.org
2019-10-28
2020-04-28
國(guó)家重點(diǎn)研發(fā)計(jì)劃“新能源和生物醫(yī)藥資源開發(fā)與沙化土地綜合治理技術(shù)集成及產(chǎn)業(yè)示范”(2016YFC0500906);國(guó)家863計(jì)劃(2013AA10230101)
柳平增,博士后,教授,博士生導(dǎo)師,主要從事物聯(lián)網(wǎng)與農(nóng)業(yè)大數(shù)據(jù)、智慧農(nóng)業(yè)等相關(guān)方面的研究。Email:pzliu@sdau.edu.cn
10.11975/j.issn.1002-6819.2020.10.020
S11
A
1002-6819(2020)-10-0166-08