• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Isomorphic Classes of Small Degree Cayley Graphs over Dicyclic Groups

    2020-07-08 03:25:02ChengTaoFengLihuaLiuWeijunChenQuanguoTangLang

    Cheng Tao Feng Lihua Liu Weijun Chen Quanguo Tang Lang

    (1.School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong 250014, China;2.School of Mathematics and Statistics, HNP-LAMA, Central South University New Campus, Changsha, Hunan 410083, China;3.School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China;4.Mathematics and Computational Science, Hunan First Normal University, Changsha, Hunan 410205, China)

    Abstract In this paper, we completely classify the isomorphic classes of the small degree(quartic, quintic and sextic)Cayley graphs over the dicyclic group T4p=(for an odd prime p)by means of spectral method and the CI-group properties.Moreover, by making use of the law of quadratic reciprocity, we obtain the exact number of isomorphic classes of the small degree(quartic, quintic and sextic)Cayley graphs on T4p.

    Key words Cayley graph Dicyclic group Spectrum Isomorphic class Quadratic reciprocity

    1 Introduction

    In this paper, we are interested in Cayley graphs-a special class of regular graphs.Given a finite groupGand a subsetS?G{1} withS=S-1, the Cayley graphX(G,S)has vertex setGand two verticesa,bare adjacent ifa-1b∈S.X(G,S)is connected ifSgeneratesG.

    For a finite groupG, let Γ=Cay(G,S)for some subsetS?G{1}.Letσbe an automorphism ofG.Thenσnaturally acts on the vertex setV=G.LetT=Sσ.Then it is easily shown thatσinduces an isomorphism fromCay(G,S)to the Cayley graphCay(G,T), such an isomorphism is called a Cayley isomorphism.However, it is of course possible that two Cayley graphsCay(G,S)andCay(G,T)are isomorphic but there are no Cayley isomorphisms mappingStoT.This leads us to try to find the conditions under whichCay(G,S)?Cay(G,S)if and only ifSσ=Tfor someσ∈Aut(G).

    A Cayley graphCay(G,S)is called a CI-graph ofGif, wheneverCay(G,S)?Cay(G,T), there is an elementσ∈Aut(G)such thatT=Sσ.(CI stands for Cayley Isomorphism).A finite groupGis called a CI-group if all Cayley graphs ofGare CI-graphs.

    The problem of seeking CI-groups has received considerable amount of attention over the past fourty years, beginning with a conjecture ofdám[1]that all finite cyclic groups were CI-groups, one may refer to the surveys in[2,14,23,24].dám’s conjecture was disproved by Elspas and Turner[8].Since then, many mathematician are devoted to classifying cyclic CI-groups(see, for example, Djokovic[7], Babai[4], Alspach and Parsons[3], Palfy[22]and Godsil[10]), and finally, Muzychuk[20,21]obtained a complete classification of cyclic CI-groups.For other related results, one may refer to[19]and their references.

    The investigation of CI-graphs is also closely related to the determination of the isomorphic classes of Cayley graphs.In view of the definition, ifX(G,S)is a CI-graph, then to judgeX(G,S)is isomorphic toX(G,T), we only need to decide whether or not there exists an automorphismσsuch thatσ(S)=T.Li[16]and[26]determined the isomorphic classes of some families of Cayley graphs which are edge-transitive but not arc-transitive.For more results about CI-graphs and the isomorphic classes of Cayley graphs, one may refer to[14]and the references therein.

    Huang et al.[12]determined the isomorphic classes of cubic Cayley graphs on dihedral groups.Inspired by their results, we are interested in the dicyclic group of order 4p.For an odd primep, the dicyclic group of order 4pis presented asT4p=.This paper is organized as follows.After collecting some preliminary results in Section 2, the isomorphic classes of quartic Cayley graphs onT4p(Theorem 3.3)and the isomorphic classes of quintic Cayley graphs onT4p(Theorem 4.3)will be presented in Section 3 and Section 4, respectively.In Section 5, the isomorphic classes of sextic Cayley graphs onT4p(Theorem 5.3)will be given, and the number of isomorphic classes(Theorem 5.11)will be got by using Gauss’s celebrated law of quadratic reciprocity.

    2 Preliminaries

    In this section, we introduce some notations and present several results which will be used later.

    For a finite groupG, we denote byIRR(G)andIrr(G)the complete set of non-equivalent irreducible representations ofGand the complete set of non-equivalent irreducible characters ofG, respectively.We need the characters of cyclic groups.

    The following lemma is essential for our results, which involves spectral graph theory and representations and characters of finite groups.

    Lemma 2.2([5]) LetGbe a finite group of ordern,S?G{1} be such thatS=S-1, andIrr(G)={χ1,…,χh} withχi(1)=di(i=1,…,h).Then the spectrum of the Cayley graphX(G,S)can be arranged as

    Spec(X(G,S))={[λ11]d1,…,[λ1d1]d1,…,[λh1]dh,…,[λhdh]dh}.

    Furthermore, for any natural numbert, we have

    Our focus is on the dicyclic group.In general, the presentation for dicyclic groupT4nis given by

    T4n=.

    Fornodd, settingx2=aandt=b, then we may rewriteT4nas

    T4n=.

    This group has order 4n, and we have

    T4n={ak,akb,akb2,akb3| 0≤k≤n-1}.

    Lemma 2.3For the dicyclic groupT4n=, wherenis odd, we have

    (1)akb=ba-k;akb2=b2ak;akb3=b3a-k;

    (2)(akb)-1=akb3;(akb2)-1=a-kb2.

    ProofBy relationsan=b4=1 andb-1ab=a-1, the results follow immediately.

    Then+3 conjugacy classes ofT4nare listed as follows

    {ajb| 0≤j≤n-1}, {ajb3| 0≤j≤n-1}.

    Now we get the character table ofT4n.

    Lemma 2.4([13]) Fornodd, the character table ofT4n= is given in Table 1,whereχgandψhare respectively irreducible characters of degree one and two(g=1,2,3,4,h=1,2,…,n-1).

    Table 1 The character table of T4n for n odd

    By Lemmas 2.2 and 2.4, we have

    Theorem 2.5([6]) LetT4nbe the dicyclic group andS?T4n{1} satisfyingS=S-1.Then we have

    Spec(X(T4n,S))={[λg]1;[μh1]2,[μh2]2g=1,2,3,4;h=1,2,…,n-1},

    and

    (1)

    We also need some notations for our convenience.For any characterχand two subsetsA,Bof a groupG, we denoteχ(A)=∑a∈Aχ(a)andχ(AB)=∑a∈A,b∈Bχ(ab).In particular,χ(A2)=∑a1,a2∈Aχ(a1a2).

    For oddn, in the dicyclic groupT4n, we setS1?b2andS2?b∪b3.By Theorem 2.5, we obtain the following explicit formula for the spectrum ofX(T4n,S).

    Corollary 2.6For oddn, letT4n= be the dicyclic group, andS=S1∪S2?T4n{1} be such thatS=S-1.Then we have

    Spec(X(T4n,S))={[λg]1;[μh1]2,[μh2]2|g=1,2,3,4;h=1,2,…,n-1},

    ProofNote thatS1S2={s1s2|s1∈S1,s2∈S2}?b∪b3andS2S1?b∪b3.By Lemma 2.4, we haveψh(S1S2)=0=ψh(S2S1).Thus

    Then, the spectrum ofX(T4n,S)presented in(1)satisfies

    (2)

    From(2), we have thatμh1andμh2are the roots of the following quadratic equation

    (3)

    Lemma 2.7([15]) For oddn, letT4n= be the dicyclic group.Then for each automorphismσ∈Aut(T4n), we haveσ(b)=aβb1+rfor someβ∈n, wherebr∈Z(T4n),Z(T4n)is the center ofT4n.

    By Lemma 2.7, we may obtain the automorphism group of the dicyclic groupT4n.

    Theorem 2.8Suppose thatn>2 is odd andT4n= is the dicyclic group of order 4n.Then

    whereσα,β(ak)=akα,σα,β(akb2)=akαb2,σα,β(aib)=aiα+βb,σα,β(aib3)=aiα+βb3, andτγ,δ(ak)=akγ,τa,δ(akb2)=akγb2,τγ,δ(aib)=aiγ+δb3,τγ,δ(aib3)=aiγ+δb.

    ProofThe automorphism of cyclic groupaisσ(a)=ai, wheregcd(i,n)=1.And by Lemma 7, sinceZ(T4n)={1,b2}, for each automorphismσofT4n, we haveσ(b)=aβborσ(b)=atab3, whereβ∈n.Thus we define

    σα,β(ak)=akα,σα,β(akb2)=akαb2,σα,β(aib)=aiα+βb,σα,β(aib3)=aiα+βb3,

    and

    τγ,δ(ak)=akγ,τγ,δ(akb2)=akγb2,τγ,δ(aib)=aiγ+δb3,τγ,δ(aib3)=aiγ+δb.

    For a Cayley graphX(G,S)over a groupGwith respect toS, ifσ∈G, thenσinduces an isomorphism ΦσfromX(G,S)toX(G,σ(S)).Such an isomorphism is the so-called Cayley isomorphism.Thus we obtain

    For an odd primep, Li et al.[15]showed that the dicyclic group is a CI-group.

    Lemma 2.10([15]) For any odd primep, the dicyclic group

    T4p=

    of order 4pis a CI-group.

    Then, from Lemmas 2.9 and 2.10, we deduce the following corollary.

    Corollary 2.11LetX(T4p,S)andX(T4p,T)be two Cayley graphs onT4p.ThenX(T4p,S)?X(T4p,T)if and only ifS~T.

    In the subsequent sections, we will discuss the isomorphic classes of Cayley graphsX(T4p,S), where |S|=4, |S|=5, and |S|=6.

    3 Isomorphic Classes of quartic Cayley Graphs on T4p

    Now we focus on the quartic Cayley graphX(T4n,S)with |S|=4.SinceX(T4n,S)is quartic andS=S-1, we can suppose thatS={ak,a-k,aib,aib3}, orS={akb2,a-kb2,aib,aib3}, orS={aib,aib3,ajb,ajb3}, wherek∈n{0},i,j∈nandi≠j.

    Lemma 3.1For oddn, letX(T4n,S)be the quartic Cayley graph onT4nwith respect to S, whereS={ak,a-k,aib,aib3},S={akb2,a-kb2,aib,aib3}, orS={aib,aib3,ajb,ajb3}.ThenX(T4n,S)is connected.

    ProofIfS={ak,a-k,aib,aib3}, thenakak=a2k.Sincenis odd, we havegcd(2k,n)=1, thena2kcan generatea, thusS=T4n, i.e.,X(T4n,S)is connected.

    The remaining two cases can be obtained in the similar way, we omit the proof here.

    By Corollary 2.6, we get the spectrum of the quartic Cayley graphX(T4n,S).

    Lemma 3.2LetX(T4n,S)be the quartic Cayley graph onT4nwith respect toS.

    (1)IfS={ak,a-k,aib,aib3}, then

    whereΔh(S)=16 ifhis even, andΔh(S)=0 ifhis odd.

    (2)IfS={akb2,a-kb2,aib,aib3}, then

    (3)IfS={aib,aib3,ajb,ajb3}, then

    ProofWe prove the result item by item.

    and

    Therefore, we have

    ψh(S1)=ψh(akb2)+ψh(a-kb2)

    and

    Therefore, we obtain

    =8(ψh(1)+ψh(b2))+4(ψh(ai-j)+ψh(aj-i)+ψh(ai-jb2)+ψh(aj-ib2))

    We complete this proof.

    LetT4p= be the dicyclic group of order 4p(pis an odd prime).By Lemma 1, every quartic Cayley graphs onT4pis connected becausepis an odd prime.According to Theorem 8 and Lemma 2, because those quartic Cayley graphs onT4pof different types are not cospectral, and so they cannot be isomorphic.Thus we can determine the isomorphic classes of quartic Cayley graphs onT4p.

    Theorem 3.3For an odd primep, letX(T4p,S)be the quartic Cayley graph onT4pwith respect toS.Then, the following statements hold.

    (1)IfS={ak,a-k,aib,aib3}, thenS~{a,a-1,b,b3}, i.e.,X(T4p,S)?X(T4p,{a,a-1,ab,ab3}).

    (2)IfS={akb2,a-kb2,aib,aib3}, thenS~{ab2,a-1b2,b,b3}, i.e.,X(T4p,S)?X(T4p,{ab2,a-1b2,b,b3}).

    (3)IfS={aib,aib3,ajb,ajb3}, thenS~{b,b3,ab,ab3}, i.e.,X(T4p,S)?X(T4p,{b,b3,ab,ab3}).

    ProofWe do case by case.

    (1)Sincepis a prime andk∈p{0},i∈p, we haveandi-k∈p.Takingandβ=i-k∈p, one can verify thatσα,β({a,a-1,b,b3})=S.This implies thatS~{a,a-1,b,b3}, and soX(T4p,S)?X(T4p,{a,a-1,ab,ab3})by Lemma 2.9.

    (2)The proof is similar to that of(1).

    (3)Sincepis a prime andi,j∈p,i≠j, we haveandβ=i∈p, one can easy verify thatσα,β({b,b3,ab,ab3})=S.This implies thatS~{b,b3,ab,ab3}, and soX(T4p,S)?X(T4p,{b,b3,ab,ab3})by Lemma 2.9.

    Thus our result holds.

    According to Theorem 3.3, we have

    Corollary 3.4Letpbe an odd prime.Then the quartic Cayley graphs onT4phas only three isomorphic classes.

    4 Isomorphic Classes of quintic Cayley Graphs on T4p

    In this section, we focus on the quintic Cayley graphX(T4n,S)with |S|=5.SinceX(T4n,S)is quintic andS=S-1, there are only three types of this setS, i.e.,S={b2,ak,a-k,aib,aib3}, orS={b2,akb2,a-kb2,aib,xib3}, orS={b2,aib,aib3,ajb,ajb3}, wherek∈n{0},i,j∈nandi≠j.Comparing the setSin Section 3, here the setShas an additional elementb2.Thus, in the similar lines of Section 3, we get

    Lemma 4.1For oddn, letX(T4n,S)be the quintic Cayley graph onT4nwith respect to S, whereS={b2,ak,a-k,aib,aib3}, {b2,akb2,a-kb2,aib,aib3}, or {b2,aib,aib3,ajb,ajb3}, andk∈n{0},i,j∈nandi≠j.ThenX(T4n,S)is connected.

    Lemma 4.2LetX(T4n,S)be the quintic Cayley graph onT4nwith respect toS.

    (1)IfS={b2,ak,a-k,aib,aib3}, then

    |1≤h≤n-1},

    whereΔh(S)=16 ifhis even, andΔh(S)=0 ifhis odd.

    (2)IfS={b2,akb2,a-kb2,aib,aib3}, then

    |1≤h≤n-1},

    (3)IfS={b2,aib,aib3,ajb,ajb3}, then

    Theorem 4.3For an odd primep, letX(T4p,S)be the quintic Cayley graph onT4pwith respect toS.Then, the following statements hold.

    (1)IfS={b2,ak,a-k,aib,aib3}, thenS~{b2,a,a-1,b,b3}, i.e.,X(T4p,S)?X(T4p,{b2,a,a-1,ab,ab3}).

    (2)IfS={b2,akb2,a-kb2,aib,aib3}, thenS~{b2,ab2,a-1b2,b,b3}, i.e.,X(T4p,S)?X(T4p,{b2,ab2,a-1b2,b,b3}).

    (3)IfS={b2,aib,aib3,ajb,ajb3}, thenS~{b2,b,b3,ab,ab3}, i.e.,X(T4p,S)?X(T4p,{b2,b,b3,ab,ab3}).

    Corollary 4.4Letpbe an odd prime.Then the quintic Cayley graphs onT4phas only three isomorphic classes.

    5 Isomorphic Classes of sextic Cayley Graphs on T4p

    In this section, we focus on the sextic Cayley graphX(T4n,S)with |S|=6.SinceX(T4n,S)is sextic andS=S-1, and for the graph to be connected, we can suppose that

    · Type-I:S={ak1,a-k1,ak2,a-k2,aib,aib3},k1≠±k2,k1,k2∈n{0},i∈n;

    · Type-II:S={ak1b2,a-k1b2,ak2b2,a-k2b2,aib,aib3},k1≠±k2,k1,k2∈n{0},i∈n;

    · Type-III:S={ak1,a-k1,ak2b2,a-k2b2,aib,aib3},k1,k2∈n{0},i∈n;

    · Type-IV:S={ak,a-k,ai1b,ai1b3,ai2b,ai2b3},k∈n{0},i1≠i2,i1,i2∈n;

    · Type-V:S={akb2,a-kb2,ai1b,ai1b3,ai2b,ai2b3},k∈n{0},i1≠i2,i1,i2∈n;

    · Type-VI:S={ai1b,ai1b3,ai2b,ai2b3,ai3b,ai3b3},i1≠i2≠i3,i1,i2,i3∈n.

    Similar to Lemma 3.1, we have that the sextic Cayley graphX(T4n,S)is always connected.

    Lemma 5.1For odd numbern, letX(T4n,S)be the sextic Cayley graph onT4nwith respect toS, whereSis one of the above types.ThenX(T4n,S)is connected.

    From Lemma 2.4 and Corollary 2.6, we deduce the spectrum of the sextic Cayley graphX(T4n,S).

    Lemma 5.2LetX(T4n,S)be the sextic Cayley graph onT4nwith respect toS.

    (1)IfX(T4n,S)is of type-I, i.e.,S={ak1,a-k1,ak2,a-k2,aib,aib3}, then

    |1≤h≤n-1},

    whereΔh(S)=16 ifhis even, andΔh(S)=0 ifhis odd;

    (2)IfX(T4n,S)is of type-II, i.e.,S={ak1b2,a-k1b2,ak2b2,a-k2b2,aib,aib3}, then

    whereΔh(S)=16 ifhis even, andΔh(S)=0 ifhis odd;

    (3)IfX(T4n,S)is of type-III, i.e.,S={ak1,a-k1,ak2b2,a-k2b2,aib,aib3}, then

    |1≤h≤n-1},

    whereΔh(S)=16 ifhis even, andΔh(S)=0 ifhis odd;

    (4)IfX(T4n,S)is of type-IV, i.e.,S={ak,a-k,ai1b,ai1b3,ai2b,ai2b3}, then

    |1≤h≤n-1},

    (5)IfX(T4n,S)is of type-V, i.e.,S={akb2,a-kb2,ai1b,ai1b3,ai2b,ai2b3}, then

    |1≤h≤n-1},

    (6)IfX(T4n,S)is of type-VI, i.e.,S={ai1b,ai1b3,ai2b,ai2b3,ai3b,ai3b3}, then

    ProofBy Corollary 6, the proof is similar to the proof of Lemma 3.2.

    RemarkLetT4p= be the dicyclic group of order 4p(pis an odd prime).By Lemma 5.1, every sextic Cayley graphs onT4pis connected becausepis a prime.According to Theorem 2.8 and Lemma 5.2, we claim that those sextic Cayley graphs onT4pof different types cannot be cospectral, and so cannot be isomorphic.Even within each type, those sextic Cayley graphs are not necessarily isomorphic.Thus, in order to determining the isomorphic classes of sextic Cayley graphs onT4p, we need to determine the isomorphic classes within each type.

    Theorem 5.3For an odd primep, letX(T4p,S)be the sextic Cayley graph onT4pwith respect toS.We have that

    (1)IfX(T4n,S)is of type-I, i.e.,S={ak1,a-k1,ak2,a-k2,aib,aib3}, thenS~{a,a-1,ak,a-k,b,b3}, i.e.,X(T4p,S)?X(T4p,{a,a-1,ak,a-k,b,b3}), wherek∈p{0,1,-1};

    (2)IfX(T4n,S)is of type-II, i.e.,S={ak1b2,a-k1b2,ak2b2,a-k2b2,aib,aib3}, thenS~{ab2,a-1b2,akb2,a-kb2,b,b3}, i.e.,X(T4p,S)?X(T4p,{ab2,a-1b2,akb2,a-kb2,b,b3}), wherek∈p{0,1,-1};

    (3)IfX(T4n,S)is of type-III, i.e.,S={ak1,a-k1,ak2b2,a-k2b2,aib,aib3}, thenS~{a,a-1,akb2,a-kb2,b,b3}, i.e.,X(T4p,S)?X(T4p,{a,a-1,akb2,a-kb2,b,b3}), wherek∈p{0};

    (4)IfX(T4n,S)is of type-IV, i.e.,S={ak,a-k,ai1b,ai1b3,ai2b,ai2b3}, thenS~{a,a-1,b,b3,aib,aib3}, i.e.,X(T4p,S)?X(T4p,{a,a-1,b,b3,aib,aib3}), wherei∈p{0};

    (5)IfX(T4n,S)is of type-V, i.e.,S={akb2,a-kb2,ai1b,ai1b3,ai2b,ai2b3}, thenS~{ab2,a-1b2,b,b3,aib,aib3}, i.e.,X(T4p,S)?X(T4p,{ab2,a-1b2,b,b3,aib,aib3}), wherei∈p{0};

    (6)IfX(T4n,S)is of type-VI, i.e.,S={ai1b,ai1b3,ai2b,ai2b3,ai3b,ai3b3}, thenS~{b,b3,ab,ab3,aib,aib3}, i.e.,X(T4p,S)?X(T4p,{b,b3,ab,ab3,aib,aib3}), wherei∈p{0,1}.

    ProofWe do case by case.

    (1)Sincepis a prime andk1,k2∈p{0},k1≠±k2andi∈p, we havep{0,1}.Takingp, one can easy verify thatσα,β(S)={a,a-1,ak,a-k,b,b3}, wherep{0,1,-1}.This implies thatS~{a,a-1,ak,a-k,b,b3}, and soX(T4p,S)?X(T4p,{a,a-1,ak,a-k,b,b3})by Lemma 2.9.

    (2)Similar to(1).

    (3)Sincepis a prime andk1,k2∈p{0} andi∈p, we havep{0}.Takingp, one can easy verify thatgmaα,β(S)={a,a-1,ak,a-k,b,b3}, wherep{0}.This implies thatS~{a,a-1,akb2,a-kb2,b,b3}, and soX(T4p,S)?X(T4p,{a,a-1,akb2,a-kb2,b,b3})by Lemma 2.9.

    (4)Sincepis a prime andi1,i2∈p,i1≠i2, we haveandβ=-i1k-1∈p, one can easy verify thatσα,β(S)={a,a-1,b,b3,aib,aib3, wherei=(i2-i1)k-1∈p{0}.This implies thatS~{a,a-1,b,b3,aib,aib3}, and soX(T4p,S)?X(T4p,{a,a-1,b,b3,aib,aib3})by Lemma 2.9.

    (5)Similar to(4).

    (6)Sincepis a prime andi1,i2∈p,i1≠i2, we haveandβ=-i1(i2-i1)-1∈p, one can easy verify thatσα,β(S)={b,b3,ab,ab3,aib,aib3}, wherei=(i3-i1)(i2-i1)-1∈p{0,1}.This implies thatS~{a,a-1,b,b3,aib,aib3}, and soX(T4p,S)?X(T4p,{a,a-1,b,b3,aib,aib3})by Lemma 2.9.

    We complete the proof.

    LetSbe the set consists of all subsets ofSofT4p, whereShas six elements and 1?S,S=S-1.The following result determines all equivalence classes ofS.

    Lemma 5.4The following statements hold.

    (1)Fork,l∈p{0,1,-1}, in type-I, letS={a,a-1,ak,a-k,b,b3} andT={a,a-1,al,a-l,b,b3}.Then[S]=[T]if and only ifk=lork=-lorkl=1 orkl=-1;

    (2)Fork,l∈p{0,1,-1}, in type-II, letS={ab2,a-1b2,akb2,a-kb2,b,b3} andT={ab2,a-1b2,alb2,a-lb2,b,b3}.Then[S]=[T]if and only ifk=lork=-lorkl=1 orkl=-1;

    (3)Fork,l∈p{0}, in type-III, letS={a,a-1,akb2,a-kb2,b,b3} andT={a,a-1,alb2,a-lb2,b,b3}.Then[S]=[T]if and only ifk=lork=-l;

    (4)Fori,j∈p{0}, in type-IV, letS={a,a-1,b,b3,aib,aib3} andT={a,a-1,b,b3,ajb,ajb3}.Then[S]=[T]if and only ifi=jori=-j;

    (5)Fori,j∈p{0}, in type-V, letS={ab2,a-1b2,b,b3,aib,aib3} andT={ab2,a-1b2,b,b3,ajb,ajb3}.Then[S]=[T]if and only ifi=jori=-j;

    (6)Fori,j∈p{0,1}, in type-VI, letS={b,b3,ab,ab3,aib,aib3} andT={b,b3,ab,ab3,ajb,ajb3}.Then[S]=[T]if and only ifi=jori=-jorij=1 ori-ij-1=0 orj-ij-1=0 ori+j-ij=0.

    ProofWe do case by case.

    (2)Similar to(1).

    (5)Similar to(4).

    So we get the desired result.

    In the remaining of this section, we will enumerate the isomorphic classes of sextic Cayley graphs onT4p.We only need to enumerate the isomorphic classes of those graphs of each type.For this purpose, the condition in Lemma 4 are called isomorphism conditions of sextic Cayley graphs onT4pof each type.From Lemma 4, we see that type-I and type-II have the same conditions, and type-III, type-IV and type-V have the same conditions.Thus, in the following discussion, we will divide into three cases.

    1.Enumerating the isomorphic classes of sextic Cayley graphs onT4pof type-I(or type-II).

    Fork,l∈p{0,1,-1}, we say thatkandlare equivalent, denoted byk?lifkandlsatisfy one of the isomorphism conditions, or equivalently,l∈{k,-k,k-1,-k-1}.It is easy to see that “?” defines an equivalence relation onp{0,1,-1}.Let[s]denote the equivalence class ofp{0,1,-1}.According to Theorem 3.3, we have

    [k]={k,-k,k-1,-k-1}.

    (4)

    Moreover, from Lemma 5.4 we see that the number of equivalence classes ofp{0,1,-1}, denoted byN1, is just the number of isomorphic classes of sextic Cayley graphs onT4pof type-I.

    Letpbe an odd prime.The Legendre symbol is a function ofpand an integeradefined as

    From Eq.(4)we know that[k]={k,-k,k-1,-k-1}, in which some elements may be equal.Forx,y∈[k], we list all the possibilities forx=yin Table 2.

    Table 2 All the possibilities for x=y.

    To determine the exact value ofN1, we need the following lemma.

    Lemma 5.6Letp≥5 be a prime.We have

    (1)ifp≡3(mod 4), then |[k]|=4, for allk∈p{0,1,-1};

    (2)ifp≡1(mod 4), then the equationk2=-1 has exactly two distinct rootsk0,-k0, wherek0∈p{0,1,-1}.Furthermore,[k0]={k0,-k0} and |k|=4 for allk?{0,1,-1,k0,-k0}.

    Proof

    We complete the proof.

    Note that ifp=3, then3{0,1,-1}=?, thusn1=0.By Lemma 5.3(1),(2), Lemma 5.4(1),(2)and Lemma 5.6, we get the following result immediately.

    Theorem 5.7Letpbe an odd prime.Then the number of isomorphic classes of sextic Cayley graphs onT4pof type-I(or type-II)is given by

    2.Enumerating the isomorphic classes of sextic Cayley graphs onT4pof type-III(or type-IV, or type-V).

    Similar to the discussion in Case 1, fork∈p{0}, we can get the equivalence class ofp{0} is[k]={k,-k}.Thus the number of equivalence classes ofp{0}, denoted byN2, is just the number of isomorphic classes of sextic Cayley graphs onT4pof type-III.Sincek≠-k, we have |[k]|=2 for allk∈p{0}.Moreover, we get the following result immediately.

    3.Enumerating the isomorphic classes of sextic Cayley graphs onT4pof type-VI.

    Similar to the discussion in Case 1, fork∈p{0,1}, we can get the equivalence class ofp{0,1} is

    [i]={i,i-1,1-i,(i-1)i-1,(1-i)-1,i(i-1)-1}.

    Thus the number of equivalence classes ofp{0,1}, denoted byN3, is just the number of isomorphic classes of sextic Cayley graphs onT4pof type-VI.

    To determine the exact value ofN3, we need the following lemma in[12].

    Lemma 5.9[12] Letp≥5 be a prime.We have

    (1)[2]={2,2-1,-1};

    (2)ifp≡5(mod 6), then |[i]|=6, for alli?[2];

    Note that ifp=3, then3{0,1}={2}=[2], thusN3=1.By Lemma 5.3(6), Lemma 5.4(6)and Lemma 5.9, we get the following result.

    Theorem 5.10Letpbe an odd prime.Then the number of isomorphic classes of sextic Cayley graphs onT4pof type-VI is given by

    By Theorems 5.8, 5.9 and 5.10, we obtain the main result of this section immediately.

    Theorem 5.11Letpbe an odd prime.Then the number of isomorphic classes of sextic Cayley graphs onT4pis given by

    ProofBy the aforementioned arguments, we haveN=2N1+3N2+N3.

    Ifp=3, we haveN1=0,N2=1 andN3=1, thusN=2N1+3N2+N3=2·0+3·1+1=4.

    We complete the proof.

    Now we give an example to show how to use the above method in Table 3.

    Table 3 The number of isomorphic classes for p≤19

    精品久久久久久成人av| 最后的刺客免费高清国语| 我的老师免费观看完整版| 日日夜夜操网爽| 日韩欧美在线二视频| 久99久视频精品免费| 亚洲五月天丁香| 18禁在线播放成人免费| 久久中文看片网| 国产真实伦视频高清在线观看 | 亚洲片人在线观看| 91字幕亚洲| 成人永久免费在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 午夜福利成人在线免费观看| a在线观看视频网站| 69av精品久久久久久| 午夜福利免费观看在线| 亚洲激情在线av| 欧美在线黄色| 亚洲精品在线观看二区| 国产一区二区三区视频了| 黄色成人免费大全| 欧美乱码精品一区二区三区| 久久人妻av系列| 中出人妻视频一区二区| 女人被狂操c到高潮| 亚洲av免费高清在线观看| www.999成人在线观看| 国产高清激情床上av| 午夜免费成人在线视频| 亚洲国产高清在线一区二区三| 老司机深夜福利视频在线观看| 可以在线观看毛片的网站| 国产综合懂色| 国产综合懂色| 蜜桃久久精品国产亚洲av| 亚洲欧美激情综合另类| 熟女人妻精品中文字幕| 最近在线观看免费完整版| 精品久久久久久久末码| or卡值多少钱| 天堂动漫精品| 他把我摸到了高潮在线观看| 男女下面进入的视频免费午夜| 欧美在线黄色| 日本与韩国留学比较| 一区二区三区激情视频| 亚洲国产精品合色在线| 国产成+人综合+亚洲专区| 真人做人爱边吃奶动态| 欧美乱码精品一区二区三区| 99精品在免费线老司机午夜| 免费一级毛片在线播放高清视频| 99热这里只有是精品50| 内地一区二区视频在线| 在线播放国产精品三级| 日本在线视频免费播放| 校园春色视频在线观看| 制服人妻中文乱码| 级片在线观看| 日本在线视频免费播放| 国产在线精品亚洲第一网站| 亚洲欧美精品综合久久99| 可以在线观看的亚洲视频| 欧美日本亚洲视频在线播放| 神马国产精品三级电影在线观看| 精品免费久久久久久久清纯| 丁香欧美五月| 欧美又色又爽又黄视频| 久久国产乱子伦精品免费另类| 2021天堂中文幕一二区在线观| 亚洲欧美日韩无卡精品| 一区福利在线观看| 高清日韩中文字幕在线| 国内揄拍国产精品人妻在线| 午夜福利欧美成人| www.色视频.com| 亚洲av美国av| 老汉色av国产亚洲站长工具| 久久久国产精品麻豆| 99国产综合亚洲精品| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 亚洲人成电影免费在线| 婷婷丁香在线五月| 国内久久婷婷六月综合欲色啪| 免费人成在线观看视频色| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 婷婷精品国产亚洲av在线| 99久久精品热视频| a级毛片a级免费在线| 精品免费久久久久久久清纯| 99在线视频只有这里精品首页| 高清在线国产一区| 国产精品99久久久久久久久| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 精品久久久久久久人妻蜜臀av| 伊人久久大香线蕉亚洲五| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 亚洲自拍偷在线| а√天堂www在线а√下载| 色av中文字幕| av天堂中文字幕网| 88av欧美| bbb黄色大片| 香蕉久久夜色| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 一级毛片高清免费大全| 久久精品国产自在天天线| 久久精品91无色码中文字幕| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 波多野结衣高清作品| 成人性生交大片免费视频hd| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 别揉我奶头~嗯~啊~动态视频| 中文字幕高清在线视频| 久久这里只有精品中国| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 久久亚洲精品不卡| a在线观看视频网站| 国产探花在线观看一区二区| 国产成人系列免费观看| 免费看十八禁软件| 国产伦精品一区二区三区四那| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 色av中文字幕| 麻豆久久精品国产亚洲av| a级毛片a级免费在线| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区免费观看 | 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 亚洲国产精品999在线| 日本 欧美在线| 男女那种视频在线观看| 午夜影院日韩av| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 欧美色视频一区免费| 中文资源天堂在线| 色吧在线观看| 成人鲁丝片一二三区免费| 亚洲av五月六月丁香网| 一区福利在线观看| 51午夜福利影视在线观看| 国产一区在线观看成人免费| 麻豆久久精品国产亚洲av| 亚洲专区中文字幕在线| 男女做爰动态图高潮gif福利片| 色综合站精品国产| 真人一进一出gif抽搐免费| 国产在视频线在精品| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 少妇裸体淫交视频免费看高清| 午夜激情福利司机影院| 丁香六月欧美| 日本黄大片高清| 97超视频在线观看视频| 欧美黑人巨大hd| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区三区| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 国产成人aa在线观看| 一个人看视频在线观看www免费 | 午夜久久久久精精品| 日本免费一区二区三区高清不卡| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 亚洲va日本ⅴa欧美va伊人久久| 欧美黄色片欧美黄色片| 成熟少妇高潮喷水视频| 日本黄大片高清| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 在线观看一区二区三区| 亚洲人成电影免费在线| 在线天堂最新版资源| 90打野战视频偷拍视频| 男女那种视频在线观看| 一a级毛片在线观看| 1024手机看黄色片| 亚洲欧美日韩东京热| 日本精品一区二区三区蜜桃| 亚洲不卡免费看| 日韩人妻高清精品专区| 高清毛片免费观看视频网站| 日本熟妇午夜| or卡值多少钱| 免费在线观看日本一区| 国产精品av视频在线免费观看| 日韩有码中文字幕| 婷婷亚洲欧美| 久久久久久国产a免费观看| 亚洲国产中文字幕在线视频| 午夜免费成人在线视频| 午夜福利在线观看吧| 免费在线观看日本一区| 高清日韩中文字幕在线| 成熟少妇高潮喷水视频| 免费看a级黄色片| 99riav亚洲国产免费| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 国产99白浆流出| 欧美成人性av电影在线观看| 久久久久精品国产欧美久久久| 看片在线看免费视频| 好男人在线观看高清免费视频| 国产成人欧美在线观看| 男女那种视频在线观看| 成人国产综合亚洲| 亚洲成人中文字幕在线播放| 一个人免费在线观看电影| 亚洲精品456在线播放app | 日本免费a在线| 国产成人欧美在线观看| 国产精品一区二区三区四区免费观看 | 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 国产真实伦视频高清在线观看 | 国产伦人伦偷精品视频| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 亚洲av不卡在线观看| 日韩免费av在线播放| 免费看十八禁软件| 搞女人的毛片| 99国产综合亚洲精品| 国产成人a区在线观看| 97人妻精品一区二区三区麻豆| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| a级毛片a级免费在线| 黑人欧美特级aaaaaa片| 九九久久精品国产亚洲av麻豆| 亚洲人成伊人成综合网2020| 12—13女人毛片做爰片一| 夜夜爽天天搞| 日本熟妇午夜| 免费观看人在逋| 国产伦精品一区二区三区四那| 一进一出好大好爽视频| 亚洲男人的天堂狠狠| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 亚洲专区国产一区二区| 欧美zozozo另类| 少妇的逼水好多| 日韩欧美三级三区| 制服人妻中文乱码| 久久久久久久久大av| 特大巨黑吊av在线直播| 久久国产乱子伦精品免费另类| 成人av在线播放网站| 一个人看的www免费观看视频| 天天添夜夜摸| 久久久久久久久中文| 五月玫瑰六月丁香| 久久伊人香网站| 日本与韩国留学比较| 成人av在线播放网站| 亚洲成人免费电影在线观看| 日韩欧美精品免费久久 | 午夜a级毛片| 夜夜夜夜夜久久久久| 悠悠久久av| 99riav亚洲国产免费| 又黄又爽又免费观看的视频| а√天堂www在线а√下载| 欧美高清成人免费视频www| 免费高清视频大片| 中文字幕久久专区| 久久久久久久久久黄片| 中文字幕人妻熟人妻熟丝袜美 | 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av | 亚洲欧美日韩无卡精品| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 国产精品久久视频播放| 国产成人a区在线观看| 夜夜夜夜夜久久久久| 成人鲁丝片一二三区免费| 欧美最黄视频在线播放免费| 精品人妻偷拍中文字幕| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 国产精品综合久久久久久久免费| 乱人视频在线观看| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在 | 精品午夜福利视频在线观看一区| 久久香蕉精品热| 90打野战视频偷拍视频| 法律面前人人平等表现在哪些方面| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 亚洲天堂国产精品一区在线| av天堂在线播放| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 国模一区二区三区四区视频| 欧美日韩综合久久久久久 | eeuss影院久久| 首页视频小说图片口味搜索| 91av网一区二区| 美女高潮的动态| 99国产极品粉嫩在线观看| 黄色片一级片一级黄色片| 亚洲成人久久性| 俺也久久电影网| 婷婷精品国产亚洲av| 最近最新中文字幕大全免费视频| 激情在线观看视频在线高清| 亚洲五月天丁香| 白带黄色成豆腐渣| 欧美在线一区亚洲| 色老头精品视频在线观看| 90打野战视频偷拍视频| 欧美日本视频| 中文字幕熟女人妻在线| 国产午夜精品论理片| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 欧美激情在线99| 国产精品国产高清国产av| 成人午夜高清在线视频| 亚洲av二区三区四区| 老鸭窝网址在线观看| 老司机在亚洲福利影院| 亚洲精品久久国产高清桃花| 亚洲精品在线美女| a在线观看视频网站| 九九在线视频观看精品| 亚洲最大成人手机在线| 我的老师免费观看完整版| 好男人在线观看高清免费视频| 亚洲中文字幕一区二区三区有码在线看| 久久天躁狠狠躁夜夜2o2o| 黄色日韩在线| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 国产欧美日韩一区二区精品| 在线天堂最新版资源| 俺也久久电影网| 亚洲 欧美 日韩 在线 免费| 亚洲av免费高清在线观看| 欧美日韩黄片免| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 久久九九热精品免费| 亚洲电影在线观看av| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 午夜精品久久久久久毛片777| 国产高潮美女av| 精品熟女少妇八av免费久了| 午夜福利在线在线| av片东京热男人的天堂| 国产一区在线观看成人免费| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 国产av麻豆久久久久久久| 亚洲av日韩精品久久久久久密| 午夜免费男女啪啪视频观看 | 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 精品福利观看| 日韩高清综合在线| 亚洲成人久久性| 国产成人aa在线观看| 日韩精品青青久久久久久| 国产日本99.免费观看| 久久国产乱子伦精品免费另类| 国产精品久久久久久久久免 | 亚洲av成人av| 中文字幕高清在线视频| 日本免费a在线| 日韩精品中文字幕看吧| 高清毛片免费观看视频网站| 91久久精品电影网| 在线看三级毛片| 欧美av亚洲av综合av国产av| 亚洲精品乱码久久久v下载方式 | 国产熟女xx| а√天堂www在线а√下载| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 亚洲真实伦在线观看| 欧美黄色淫秽网站| 国产伦精品一区二区三区视频9 | 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 成人精品一区二区免费| 在线观看美女被高潮喷水网站 | 亚洲 欧美 日韩 在线 免费| 国产美女午夜福利| 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久| 久久国产精品人妻蜜桃| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看 | 全区人妻精品视频| 国产真实乱freesex| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 国产三级中文精品| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩 | 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 毛片女人毛片| 久久欧美精品欧美久久欧美| 一卡2卡三卡四卡精品乱码亚洲| 欧美午夜高清在线| 日日夜夜操网爽| 叶爱在线成人免费视频播放| 黄色日韩在线| 亚洲国产色片| 亚洲自拍偷在线| 国产精品 欧美亚洲| 深夜精品福利| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 成人特级黄色片久久久久久久| 国产淫片久久久久久久久 | 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 露出奶头的视频| 日韩精品中文字幕看吧| 欧美成狂野欧美在线观看| 日韩精品青青久久久久久| 蜜桃亚洲精品一区二区三区| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 亚洲中文字幕日韩| 免费在线观看亚洲国产| 午夜a级毛片| 午夜精品一区二区三区免费看| 国产高清视频在线观看网站| 欧美大码av| 91麻豆精品激情在线观看国产| 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 欧美乱色亚洲激情| 有码 亚洲区| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 日韩欧美一区二区三区在线观看| 国产成人啪精品午夜网站| 97人妻精品一区二区三区麻豆| 色视频www国产| 国产精品影院久久| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 日韩亚洲欧美综合| 亚洲一区二区三区色噜噜| 日本一二三区视频观看| 熟女电影av网| 一区二区三区免费毛片| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| 国产精品乱码一区二三区的特点| 我要搜黄色片| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 久久精品亚洲精品国产色婷小说| 我要搜黄色片| 婷婷亚洲欧美| 在线观看日韩欧美| 少妇丰满av| 精品国内亚洲2022精品成人| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 少妇人妻精品综合一区二区 | 十八禁网站免费在线| 免费av观看视频| 久久天躁狠狠躁夜夜2o2o| 日韩人妻高清精品专区| 亚洲久久久久久中文字幕| 变态另类丝袜制服| 少妇高潮的动态图| 成人av在线播放网站| www日本黄色视频网| 亚洲在线自拍视频| 搡老妇女老女人老熟妇| 亚洲 欧美 日韩 在线 免费| 成人鲁丝片一二三区免费| 美女黄网站色视频| 欧美+日韩+精品| 青草久久国产| 91av网一区二区| 高潮久久久久久久久久久不卡| 国产黄色小视频在线观看| 动漫黄色视频在线观看| 久久精品国产99精品国产亚洲性色| 日韩欧美三级三区| 欧美绝顶高潮抽搐喷水| 真人一进一出gif抽搐免费| 97人妻精品一区二区三区麻豆| 精品一区二区三区av网在线观看| 亚洲av一区综合| 亚洲中文字幕一区二区三区有码在线看| 首页视频小说图片口味搜索| 国产高清视频在线观看网站| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 日韩 欧美 亚洲 中文字幕| 99精品在免费线老司机午夜| 免费搜索国产男女视频| 此物有八面人人有两片| 中文字幕人妻熟人妻熟丝袜美 | 在线观看66精品国产| 亚洲人与动物交配视频| 国产主播在线观看一区二区| 人人妻人人看人人澡| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| xxx96com| 天美传媒精品一区二区| 日韩欧美 国产精品| 精品99又大又爽又粗少妇毛片 | av专区在线播放| 91久久精品国产一区二区成人 | 国产亚洲av嫩草精品影院| 欧美av亚洲av综合av国产av| 脱女人内裤的视频| 男女视频在线观看网站免费| 国产精品影院久久| 国产色爽女视频免费观看| 一夜夜www| ponron亚洲| www.熟女人妻精品国产| 深爱激情五月婷婷| 身体一侧抽搐| 成人亚洲精品av一区二区| 久久久久久久午夜电影| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| www.999成人在线观看| 亚洲av五月六月丁香网| 老司机午夜十八禁免费视频| 亚洲精品色激情综合| www日本在线高清视频| 99精品久久久久人妻精品| 最新中文字幕久久久久| 午夜视频国产福利| 久久久久九九精品影院| 亚洲成人中文字幕在线播放| 亚洲av中文字字幕乱码综合| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| av女优亚洲男人天堂| 色在线成人网| 日日夜夜操网爽| 国产黄色小视频在线观看| 欧美日韩综合久久久久久 | 丰满乱子伦码专区| 中文亚洲av片在线观看爽| 亚洲精品456在线播放app | 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩一级在线毛片| 他把我摸到了高潮在线观看| 久久精品国产亚洲av涩爱 | 一区二区三区国产精品乱码| 欧美xxxx黑人xx丫x性爽| 日韩欧美精品v在线| 国产探花在线观看一区二区| 国产精品久久视频播放| 亚洲自拍偷在线| 日日摸夜夜添夜夜添小说| 午夜福利在线观看吧| 亚洲国产精品999在线| 亚洲av中文字字幕乱码综合| 亚洲五月婷婷丁香|