• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Variation Dissection of Rice Blast Resistance Using an Indica Population

    2020-07-06 09:58:12ZhangMengchenWeiZhonghuaYuanXiaopingWangCaihongWangShanNiuXiaojunXuXinXuQunFengYueYuHanyongWangYipingZhuZhiweiZhaiRongrongYangYaolongWeiXinghua
    Rice Science 2020年4期

    Zhang Mengchen, Wei Zhonghua, Yuan Xiaoping, Wang Caihong, Wang Shan, Niu Xiaojun, Xu Xin, Xu Qun, Feng Yue, Yu Hanyong, Wang Yiping, Zhu Zhiwei, Zhai Rongrong, Yang Yaolong, Wei Xinghua

    Letter

    Genetic Variation Dissection of Rice Blast Resistance Using anPopulation

    Zhang Mengchen1, Wei Zhonghua2, Yuan Xiaoping1, Wang Caihong1, Wang Shan1, Niu Xiaojun1, Xu Xin1, Xu Qun1, Feng Yue1, Yu Hanyong1, Wang Yiping1, Zhu Zhiwei1, Zhai Rongrong3, Yang Yaolong1, Wei Xinghua1

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua 152000, China; Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

    Rice blast disease, caused by fungus pathogen, is one of the most destructive diseases that impact rice farming. In the worldwide, rice harvests lose 10% to 30% of the total production because of blast infection, which is estimated to be enough for feeding 60 million people (Skamnioti and Gurr, 2009). The most cost-effective approach to prevent rice blast disease is by employing host resistance in rice cultivars. To date, more than 84 resistance loci have been identified by various mapping approaches (http://www.ricedata. cn/gene/). Among these, 35genes have been isolated, mostly by positional cloning strategy. Except(Chen et al, 2006),(Fukuoka et al, 2009),(Li et al, 2017) and(Zhao et al, 2018),genes share conserved gene structure and encode nucleotide-binding site (NBS) and leucine-rich repeat (LRR) proteins (Liu et al, 2007). The relatively rapid molecular evolution ofgenes results in abundant alleles and contributes to the adaptability to polymorphic pathogen effectors in nature (Jones and Dangl, 2006). For instance, at least five allelic genes have been identified from blast resistance locus, known as,,,and(Ashikawa et al, 2008; Yuan et al, 2011; Zhai et al, 2011, 2014; Hua et al, 2012). With respectto rice blast disease research, recently several association studies were implemented and various candidate locus were obtained (Wang et al, 2014; Kang et al, 2016). Nevertheless, research based on large-scale association population is still lack. In this study, 1005varieties with 4202 high quality single nucleotide polymorphisms (SNPs) (Lu et al, 2015; Zhang et al, 2017) were inoculated with nineisolates. We, then, conducted a comprehensive dissection on genetic variation of rice blast resistance. The results are expected to deepen our knowledge on rice blast resistance.

    To evaluate the population genetic components and reduce its potential influence on genome-wide association study (GWAS), we firstly performed genetic structure analysis. We used ADMIXTURE (Alexander et al, 2009) to estimate ancestry relationship. Results indicated a clear clustering of genetic components when usingas 3. Based this, we then divided the population into three groups (Fig. 1-A). Next, we calculated the pairwise genetic distance and constructed a neighbor-joining tree based on’s 1973 genetic distance (Fig. 1-B). The phylogenetic relationship showed a reasonable identical result compared with groups derived from ADMIXTURE. Then, we carried out principle component analysis (PCA) to further verify our grouping results. The first two principle components that explained the largest genetic variation classified the population into visualized three clusters and a mix group (Fig. 1-C). These results indicated that a weak but clear genetic structure existed in this population.

    We evaluated the resistance of each variety against nineisolates (Supplemental Table 1). The descriptive statistical analysis showed diverse distributions of phenotype values (Supplemental Fig. 1). For strains S102, S159 and S182, the frequency distribution showed clear negative skewness. On the contrary, positive skewness distribution was detected with S359 and S362. Based on the resistance degrees to the nine isolates, we calculated the rate of resistant spectrum (RRS) for each variety. The data showed a positive skewed distribution while most varieties possessed RRS less than 40% (Supplemental Fig. 1). According to the standard described in Materials and Method section by INGER (1996) (Supplemental File 1), we identified 61 varieties resistant to at least 8 isolates and 76 varieties resistant to none of the 9 isolates. These 61 and 76 varieties were used to construct the broad spectrum resistant pool and the susceptible pool, respectively (Supplemental Table 2). To understand the relationship between blast resistance and genetic differentiation of the population, we compared the average RRS values of the classified fourgroups. Group 2 showed an average RRS of 62.60% that was significantly higher than the other three groups (Fig. 1-D). This result implied potential correlation existed between rice blast resistance and genetic structure. We then performed statistical analysis using the broad spectrum resistant pool. Interestingly, 80.32% varieties in resistant pool belonged to Group 2 (Fig. 1-E). These results demonstrated the resistance distribution among rice subpopulation was not uniform, and a higher frequency of resistance was found in Group 2.

    We carried out trait-marker association using the first three principle components as the covariant under the mixed linear model (MLM). With a threshold of< 0.001, we detected a total of 137 significant SNPs distributed in 10 chromosomes except chromosomes 4 and 5 (Supplemental Table 3 and Supplemental Fig. 2). The highest rank of SNP was seq-rs4195, with a-value of 6.997 × 10-12associated with isolate S359. Among these significant SNPs, 82 were detected on chromosome 12, mostly distributed from 9.9 Mb to 13.1 Mb. Previous research identified a major blast resistance genein this region (Bryan et al, 2000). To evaluate the potential relationship between these signals and, we performed linkage calculation with all significant SNPs detected on chromosome 12. The result indicated a genome region from seq-rs5638 (Position: 9905544) to seq-rs5706 (Position: 13696562) containing SNPs in strong linkage disequilibrium (Supplemental Fig. 3). Since this region located close to the centromere of chromosome 12, we concluded that the local linkage disequilibrium scale was enlarged to at least three megabases and caused a lot of significant signals. Using the other associated SNPs, we then identified 25 genetic loci, namedto, respectively. Among these loci, seven were mapped to known genes,(Hayashi and Yoshida, 2009),(Wang et al, 1999),(Li et al, 2009),(Lee et al, 2009; Deng et al, 2019),(Okuyama et al, 2011),(Zhai et al, 2011) and(Bryan et al, 2000) (Supplemental Table 3). Moreover, 7 of the 25 genomic loci were mapped to previously reported QTLs (Supplemental Table 3). These co- localized genetic loci suggested the accuracy of our association model. The rest 11 loci were defined as newly detected resistance loci as no information has been reported before.

    Fig. 1. Genetic structure and resistance level ofpopulation.

    A, Model-based population assignment using ADMIXTURE. B, Neighbor-joining tree based on’s 1973 genetic distance. C, Principle component (PC) analysis showed by the first two genetic components. D, Comparison on average rate of resistance spectrum (RRS) of three majorgroups and a mix group. E, Group distribution of the resistant pool (61 varieties). F, Heat map shows the multiple resistance of 25 associated genomic loci.

    To evaluate the potential broad resistance of the associated genomic loci, we constructed a heatmap with the GWAS results (Fig. 1-F). As a consequence, 6 of the 25 genomic loci confer resistance to more than 3isolates. Among these six loci, five were cloned genes (,,,and). A novel locuswas associated with resistance to blast strains S193, S242 and S252. A previously detected resistance QTL,(t), was found to cover, demonstrating its real value. To better understand the effect of alleles of the associated genetic loci, we calculated the average phenotype value for all the 25 loci (if there were more than one strain associated with one locus, all of them were analyzed). A set of boxplots comparing average resistance level of each two alleles were displayed in Supplemental Fig. 4. Most loci showed substantial resistance differences except two (with no color filling in the box). These results implied correlation between the resistance level and SNP alleles while superior alleles can be used as genetic markers for resistance selection in rice breeding project.

    In summary, we identified 61 highly resistant varieties by screening blast resistance from 1005varieties and found Group 2 was correlated significantly with rice blast resistance, while the average RRS of Group 2 was remarkably higher than those of the other three groups. These varieties must contain diverse resistance genes and can be used as donator in breeding improvement. Through GWAS approach, we detected 25 genetic loci associated with resistance against 9isolates. The co-localized cloned resistance genes indicated the accuracy of our strategy. Genetic loci containingandwere detected with extremely low-values, suggesting major effect of these genes on blast resistance (Supplemental Table 3 and Supplemental Fig. 2). We also screened the resistant spectrum of the associated loci and found,,,,andcontribute to resistance against at least three isolates which suggested their great values in breeding system (Fig. 1-F).

    ACKNOWLEDGEMENTs

    This work was supported by the Ministry of Science and Technology of China (Grant No. 2017YFD0102002) and National Natural Science Foundation of China (Grant Nos. 31600999 and 31601282).

    Supplemental DatA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Supplemental File 1. Materials and methods used in this study.

    Supplemental Table 1. Virulence profile of nineisolates.

    Supplemental Table 2. Information of 1005varieties.

    Supplemental Table 3. Blast resistance loci identified by association mapping using 1005varieties.

    Supplemental Fig. 1. Phenotypic value distribution of resistance against nineisolates.

    Supplemental Fig. 2. Manhattan plots and Quantile-Quantile plots of genome-wild association study.

    Supplemental Fig. 3. Linkage analysis of the associated single nucleotide polymorphisms on chromosome 12.

    Supplemental Fig. 4. Statistical analysis on phenotypic effects of 25 associated genomic loci.

    Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals., 19(9): 1655–1664.

    Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer-specific rice blast resistance., 180(4): 2267–2276.

    Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, Mcadams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene., 12(11): 2033–2046.

    Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. 2006. A B-lectin receptor kinase gene conferring rice blast resistance., 46(5): 794–804.

    Deng Y F, Liu M H, Wang D, Zuo S M, Kang H X, Wang G L. 2019. Origin, distribution and sequence diversity of rice blast resistance locus LABR_64 in rice., 33(1): 20–27. (in Chinese with English abstract)

    Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice., 325: 998–1001.

    Hayashi K, Yoshida H. 2009. Refunctionalization of the ancient rice blast disease resistance geneby the recruitment of a retrotransposon as a promoter., 57(3): 413–425.

    Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. 2012. The isolation of, an allele at thelocus which confers broad spectrum resistance to rice blast., 125(5): 1047–1055.

    INGER. 1996. Standard evaluation system for rice. 4th edn. Manila, the Philippines: International Rice Research Institute (IRRI).

    Jones J D, Dangl J L. 2006. The plant immune system., 444: 323–329.

    Kang H X, Wang Y, Peng S, Zhang Y L, Xiao Y, Wang D, Qu S H, Li Z Q, Yan S, Wang Z L, Liu W, Ning Y, Korniliev P, Leung H, Mezey J, McCouch S R, Wang G L. 2016. Dissection of the genetic architecture of rice resistance to the blast fungus., 17(6): 959–972.

    Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. 2009. Rice-mediated resistance torequires the presence of two coiled-coil-nucleotide-binding- leucine-rich repeat genes., 181(4): 1627–1638.

    Li W, Wang B H, Wu J, Lu G D, Hu Y J, Zhang X, Zhang Z G, Zhao Q, Feng Q, Zhang H Y, Wang Z Y, Wang G L, Han B, Wang Z H, Zhou B. 2009. Theavirulence geneencodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene., 22(4): 411–420.

    Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J, Zhou X G, Zhu X B, Chen Z X, Wang J C, Zhao W, Ma B T, Qin P, Chen W L, Wang Y P, Liu J L, Wang W M, Wu X J, Li P, Wang J R, Zhu L H, Li S G, Chen X W. 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance., 170(1): 114–126.

    Liu J L, Liu X L, Dai L Y, Wang G L. 2007. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants., 34(9): 765–776.

    Lu Q, Zhang M C, Niu X J, Wang S, Xu Q, Feng Y, Wang C H, Deng H Z, Yuan X P, Yu H Y, Wang Y P, Wei X H. 2015. Genetic variation and association mapping for 12 agronomic traits inrice., 16: 1067.

    Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. 2011. A multifaceted genomics approach allows the isolation of the riceblast resistance gene consisting of two adjacent NBS-LRR protein genes., 66(3): 467–479.

    Skamnioti P, Gurr S J. 2009. Against the grain: Safeguarding rice from rice blast disease., 27(3): 141–150.

    Wang C H, Yang Y Y, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. 2014. Genome-wide association study of blast resistance inrice., 14(1): 311.

    Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. Thegene for rice blast resistance belongs to the nucleotide binding and leucine- rich repeat class of plant disease resistance genes., 19(1): 55–64.

    Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. 2011. Theresistance toin rice is mediated by a pair of closely linked CC-NBS-LRR genes., 122(5): 1017–1028.

    Zhai C, Lin F, Dong Z Q, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. 2011. The isolation and characterization of, a rice blast resistance gene which emerged after rice domestication., 189(1): 321–334.

    Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z Q, Wang L, Pan Q H. 2014. Function and interaction of the coupled genes responsible forencoded rice blast resistance., 9(6): e98067.

    Zhang M C, Lu Q, Wu W, Niu X, Wang C H, Feng Y, Xu Q, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. 2017. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination inrice., 8: 678.

    Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G L, Yang Y. 2018. The rice blast resistance geneencodes an atypical protein required for broad-spectrum disease resistance., 9(1): 2039.

    Wei Xinghua (weixinghua@caas.cn);

    Yang Yaolong (yangxiao182@126.com)

    12 March 2019;

    15 May 2019

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.05.001

    久久女婷五月综合色啪小说| 中文字幕av电影在线播放| 国产老妇伦熟女老妇高清| 亚洲国产欧美日韩在线播放| 老汉色av国产亚洲站长工具| 久久精品亚洲av国产电影网| 国产精品女同一区二区软件| 亚洲av综合色区一区| 日韩一区二区视频免费看| 日本免费在线观看一区| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 如何舔出高潮| 岛国毛片在线播放| 又大又黄又爽视频免费| 久久精品久久精品一区二区三区| 人妻系列 视频| 精品国产一区二区三区四区第35| 免费观看在线日韩| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 不卡视频在线观看欧美| 日本色播在线视频| 黄色毛片三级朝国网站| 日韩制服丝袜自拍偷拍| 色网站视频免费| 亚洲av成人精品一二三区| 国产成人av激情在线播放| 一边摸一边做爽爽视频免费| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区三区| 香蕉精品网在线| 伦精品一区二区三区| 18在线观看网站| 欧美中文综合在线视频| 丝袜脚勾引网站| 天天影视国产精品| 久久精品国产亚洲av高清一级| 亚洲av男天堂| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 日本免费在线观看一区| 色哟哟·www| 女性被躁到高潮视频| 波多野结衣av一区二区av| 色网站视频免费| 99热网站在线观看| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 久久精品久久久久久久性| 18禁国产床啪视频网站| 亚洲人成电影观看| 久久青草综合色| 亚洲精品中文字幕在线视频| 国产精品.久久久| 最黄视频免费看| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 亚洲国产精品一区三区| 欧美亚洲日本最大视频资源| www.av在线官网国产| 亚洲色图 男人天堂 中文字幕| 在线观看美女被高潮喷水网站| 久久久精品区二区三区| 女性生殖器流出的白浆| 各种免费的搞黄视频| 国产精品久久久久成人av| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 免费观看性生交大片5| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 美女视频免费永久观看网站| 日韩熟女老妇一区二区性免费视频| 又大又黄又爽视频免费| 老司机影院成人| 男女无遮挡免费网站观看| 国产精品 国内视频| av一本久久久久| 欧美成人午夜精品| 毛片一级片免费看久久久久| 亚洲av在线观看美女高潮| 老司机影院毛片| 精品一区二区三区四区五区乱码 | 国产一区二区在线观看av| 好男人视频免费观看在线| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 久久久精品94久久精品| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 日韩中文字幕视频在线看片| 亚洲三区欧美一区| 国产成人精品在线电影| 亚洲内射少妇av| 99热全是精品| 国产一区二区三区综合在线观看| 成人国语在线视频| 99久国产av精品国产电影| 国产精品久久久av美女十八| 亚洲精品久久久久久婷婷小说| 成人漫画全彩无遮挡| 国产精品久久久久久精品古装| 国产一区二区激情短视频 | 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 一级片免费观看大全| 中国国产av一级| 亚洲国产欧美日韩在线播放| 国产成人精品久久久久久| 黑人猛操日本美女一级片| 亚洲三区欧美一区| 熟女电影av网| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 亚洲精品美女久久av网站| 亚洲国产av新网站| 国产精品99久久99久久久不卡 | 欧美精品一区二区免费开放| 国产精品久久久久成人av| 赤兔流量卡办理| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| av在线app专区| 满18在线观看网站| av国产精品久久久久影院| 国产在线一区二区三区精| 在线看a的网站| 免费av中文字幕在线| 久久久精品区二区三区| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 三上悠亚av全集在线观看| 欧美激情高清一区二区三区 | 久久精品夜色国产| 国产毛片在线视频| 国产男人的电影天堂91| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 丰满乱子伦码专区| 乱人伦中国视频| 久久99一区二区三区| 一级毛片电影观看| 国产野战对白在线观看| 边亲边吃奶的免费视频| 99久久综合免费| 国产又爽黄色视频| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 黄片无遮挡物在线观看| 99久久综合免费| 一区福利在线观看| 日本wwww免费看| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 菩萨蛮人人尽说江南好唐韦庄| av不卡在线播放| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 一级片'在线观看视频| 韩国高清视频一区二区三区| 黄频高清免费视频| 美女xxoo啪啪120秒动态图| 自线自在国产av| 美女大奶头黄色视频| 久久久久久久精品精品| 国产日韩欧美亚洲二区| 91aial.com中文字幕在线观看| 性色avwww在线观看| 国产av一区二区精品久久| 26uuu在线亚洲综合色| 日本欧美国产在线视频| 亚洲经典国产精华液单| www.精华液| 久久久久久久国产电影| freevideosex欧美| 欧美 亚洲 国产 日韩一| 国产伦理片在线播放av一区| xxx大片免费视频| 性色av一级| 日本免费在线观看一区| 国产精品女同一区二区软件| 成年女人在线观看亚洲视频| 精品久久久久久电影网| 在线观看www视频免费| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 精品人妻偷拍中文字幕| 在线观看免费高清a一片| 久久狼人影院| 极品人妻少妇av视频| 少妇熟女欧美另类| 国产免费福利视频在线观看| 国产av国产精品国产| 国产免费又黄又爽又色| 精品国产一区二区久久| 国产日韩欧美视频二区| 国产女主播在线喷水免费视频网站| 久久青草综合色| 精品国产一区二区三区四区第35| 美女国产视频在线观看| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 1024香蕉在线观看| 又粗又硬又长又爽又黄的视频| 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 热re99久久国产66热| 国产成人午夜福利电影在线观看| 久久久国产一区二区| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 一本大道久久a久久精品| 国产成人一区二区在线| 国产激情久久老熟女| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 久久久久久久国产电影| 两性夫妻黄色片| 亚洲一区中文字幕在线| 美女高潮到喷水免费观看| 国产精品三级大全| 日本欧美视频一区| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 久久99精品国语久久久| 性色avwww在线观看| 午夜福利,免费看| 大码成人一级视频| 亚洲美女搞黄在线观看| 一级,二级,三级黄色视频| 99九九在线精品视频| 考比视频在线观看| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美| 丝袜人妻中文字幕| 老司机影院成人| 亚洲国产日韩一区二区| 精品第一国产精品| 亚洲第一av免费看| 亚洲欧洲国产日韩| 青春草国产在线视频| 国产男女超爽视频在线观看| 综合色丁香网| h视频一区二区三区| 观看av在线不卡| 色婷婷久久久亚洲欧美| 九草在线视频观看| 亚洲综合色网址| 亚洲国产欧美日韩在线播放| 亚洲av欧美aⅴ国产| 9191精品国产免费久久| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 成人二区视频| 只有这里有精品99| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 亚洲综合色惰| 久久精品久久久久久久性| 欧美激情高清一区二区三区 | 亚洲国产色片| 99国产精品免费福利视频| 成人国产av品久久久| 亚洲av在线观看美女高潮| 亚洲精品自拍成人| 精品久久久精品久久久| 人妻一区二区av| 日韩三级伦理在线观看| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 咕卡用的链子| 亚洲久久久国产精品| 久久久国产一区二区| 伊人久久国产一区二区| 日韩制服骚丝袜av| 国产爽快片一区二区三区| 两性夫妻黄色片| 久久精品夜色国产| 国产成人精品无人区| 午夜91福利影院| 成年人免费黄色播放视频| 91久久精品国产一区二区三区| 十八禁高潮呻吟视频| 只有这里有精品99| 人妻少妇偷人精品九色| 国产av码专区亚洲av| 观看美女的网站| 少妇的逼水好多| 成人国语在线视频| 久久久久久人妻| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 国产毛片在线视频| 亚洲国产精品一区三区| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 999精品在线视频| freevideosex欧美| 精品少妇一区二区三区视频日本电影 | 精品少妇一区二区三区视频日本电影 | 国产成人午夜福利电影在线观看| 亚洲国产欧美在线一区| 一个人免费看片子| 亚洲国产欧美在线一区| 日韩视频在线欧美| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 国产在线一区二区三区精| 最黄视频免费看| 97精品久久久久久久久久精品| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| 国产精品麻豆人妻色哟哟久久| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 成人国产麻豆网| 亚洲精品国产av蜜桃| 一区在线观看完整版| 国产精品久久久久久精品古装| 久久99蜜桃精品久久| 久久久久国产精品人妻一区二区| 1024视频免费在线观看| 亚洲精品第二区| 国产成人精品久久久久久| 一本大道久久a久久精品| 熟女电影av网| 一区二区三区乱码不卡18| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 欧美人与善性xxx| 亚洲精品国产色婷婷电影| 久久婷婷青草| 高清av免费在线| 国产精品香港三级国产av潘金莲 | 亚洲国产av影院在线观看| 久久久久久人妻| 亚洲欧美成人综合另类久久久| 女人被躁到高潮嗷嗷叫费观| 日韩精品有码人妻一区| 老熟女久久久| 国产成人免费观看mmmm| av在线老鸭窝| 亚洲综合色网址| 青春草视频在线免费观看| 国产精品人妻久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情久久久久久久| 久久精品aⅴ一区二区三区四区 | 亚洲国产毛片av蜜桃av| 在线观看三级黄色| h视频一区二区三区| 亚洲欧洲日产国产| 亚洲第一青青草原| 中国国产av一级| 人妻一区二区av| 日韩成人av中文字幕在线观看| 精品人妻熟女毛片av久久网站| 天美传媒精品一区二区| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 夫妻性生交免费视频一级片| 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 9热在线视频观看99| 日韩av不卡免费在线播放| 国产成人aa在线观看| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 这个男人来自地球电影免费观看 | 亚洲国产精品999| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区 | 久久久久久久国产电影| 亚洲av.av天堂| 精品亚洲成国产av| 一级片'在线观看视频| 午夜免费观看性视频| 欧美精品av麻豆av| 国产精品二区激情视频| 免费观看无遮挡的男女| 在线天堂最新版资源| 婷婷色综合www| 国产成人精品久久二区二区91 | 亚洲国产色片| 婷婷色麻豆天堂久久| 在线观看www视频免费| 国产熟女午夜一区二区三区| 久久精品国产鲁丝片午夜精品| 性少妇av在线| 日韩电影二区| 国产高清国产精品国产三级| 亚洲精品美女久久久久99蜜臀 | 丰满迷人的少妇在线观看| 99国产精品免费福利视频| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 边亲边吃奶的免费视频| 性色av一级| 精品国产乱码久久久久久小说| 亚洲国产精品国产精品| 777米奇影视久久| 午夜福利一区二区在线看| 青春草亚洲视频在线观看| 亚洲在久久综合| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 亚洲欧美中文字幕日韩二区| 中文欧美无线码| 丰满饥渴人妻一区二区三| 国产精品无大码| 久久久久久人妻| 成人国语在线视频| 久久毛片免费看一区二区三区| 欧美日韩视频高清一区二区三区二| 黄色一级大片看看| 国语对白做爰xxxⅹ性视频网站| 满18在线观看网站| 性色av一级| 日韩不卡一区二区三区视频在线| 日本欧美视频一区| 美女xxoo啪啪120秒动态图| 国产成人精品福利久久| 2021少妇久久久久久久久久久| 日韩一本色道免费dvd| 超碰97精品在线观看| 国产欧美日韩综合在线一区二区| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 在线观看三级黄色| 国产成人一区二区在线| 亚洲国产欧美网| 久久99一区二区三区| 人妻系列 视频| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 欧美日韩亚洲国产一区二区在线观看 | 一二三四中文在线观看免费高清| 黄频高清免费视频| 亚洲三区欧美一区| 菩萨蛮人人尽说江南好唐韦庄| 欧美97在线视频| 久久ye,这里只有精品| 不卡视频在线观看欧美| 亚洲综合精品二区| 18在线观看网站| 亚洲精品国产av蜜桃| 日韩三级伦理在线观看| 熟女av电影| 久久国产亚洲av麻豆专区| 免费女性裸体啪啪无遮挡网站| 少妇人妻精品综合一区二区| 99香蕉大伊视频| 男女午夜视频在线观看| 国产精品欧美亚洲77777| 欧美+日韩+精品| 欧美日韩国产mv在线观看视频| 美女大奶头黄色视频| 国产精品久久久久久精品古装| 亚洲伊人久久精品综合| 人妻 亚洲 视频| 一区二区三区四区激情视频| 久久精品国产亚洲av高清一级| 国产精品国产三级国产专区5o| 亚洲欧洲国产日韩| 午夜福利乱码中文字幕| 高清不卡的av网站| 午夜福利网站1000一区二区三区| 美女视频免费永久观看网站| 国产一区亚洲一区在线观看| 久久亚洲国产成人精品v| 久久国产亚洲av麻豆专区| 男女免费视频国产| 美女视频免费永久观看网站| 久久久久视频综合| 亚洲视频免费观看视频| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| av网站在线播放免费| 国产探花极品一区二区| 国产精品熟女久久久久浪| 街头女战士在线观看网站| 十八禁高潮呻吟视频| 91久久精品国产一区二区三区| 看十八女毛片水多多多| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄| 美女午夜性视频免费| 国产综合精华液| 欧美激情高清一区二区三区 | 国产成人一区二区在线| 婷婷色综合www| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 美女xxoo啪啪120秒动态图| 美女脱内裤让男人舔精品视频| 秋霞在线观看毛片| 日日撸夜夜添| 亚洲精华国产精华液的使用体验| 亚洲国产最新在线播放| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲av天美| 国产男女内射视频| 成人免费观看视频高清| 亚洲国产精品成人久久小说| 一区在线观看完整版| 欧美在线黄色| 日本爱情动作片www.在线观看| av.在线天堂| 国产精品久久久久久精品古装| 亚洲av.av天堂| 国产伦理片在线播放av一区| 中文字幕精品免费在线观看视频| 日本av免费视频播放| 国产又爽黄色视频| 蜜桃在线观看..| 人妻人人澡人人爽人人| 黄片无遮挡物在线观看| 在线观看一区二区三区激情| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 999精品在线视频| 午夜激情久久久久久久| 伦理电影大哥的女人| 9热在线视频观看99| 亚洲欧洲国产日韩| 在线观看免费视频网站a站| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 99久久综合免费| 日韩欧美一区视频在线观看| 午夜日韩欧美国产| 大话2 男鬼变身卡| av国产久精品久网站免费入址| freevideosex欧美| 日本91视频免费播放| 精品人妻在线不人妻| 嫩草影院入口| 久久99精品国语久久久| 国产成人精品一,二区| 久久久久久久精品精品| 欧美精品人与动牲交sv欧美| 成年av动漫网址| 国产高清国产精品国产三级| 狠狠婷婷综合久久久久久88av| 久热久热在线精品观看| www.精华液| 久久久久久久久久人人人人人人| 日韩中文字幕欧美一区二区 | 午夜av观看不卡| 精品一区二区三卡| 精品少妇内射三级| 在线观看免费日韩欧美大片| 欧美精品高潮呻吟av久久| 日本av手机在线免费观看| 高清黄色对白视频在线免费看| 国产爽快片一区二区三区| 久久ye,这里只有精品| 亚洲第一区二区三区不卡| 午夜精品国产一区二区电影| 欧美精品av麻豆av| 欧美xxⅹ黑人| 18禁动态无遮挡网站| 男女国产视频网站| 黄频高清免费视频| 男人舔女人的私密视频| 伦理电影免费视频| 你懂的网址亚洲精品在线观看| 18禁动态无遮挡网站| 国产亚洲最大av| 你懂的网址亚洲精品在线观看| 欧美 日韩 精品 国产| 男女高潮啪啪啪动态图| 丝袜美腿诱惑在线| 如何舔出高潮| 国产视频首页在线观看| 国产成人精品久久久久久| 亚洲美女搞黄在线观看| 久久综合国产亚洲精品| 天天操日日干夜夜撸| 亚洲国产精品国产精品| 久久久久久久精品精品| 一级,二级,三级黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产亚洲av麻豆专区| 国产精品偷伦视频观看了|