• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Could the Recent Taal Volcano Eruption Trigger an El Ni?o and Lead to Eurasian Warming?

    2020-06-24 08:08:42FeiLIUChenXINGJinbaoLIBinWANGJingCHAIChaochaoGAOGangHUANGJianLIUandDeliangCHEN
    Advances in Atmospheric Sciences 2020年7期

    Fei LIU, Chen XING, Jinbao LI, Bin WANG, Jing CHAI, Chaochao GAO,Gang HUANG, Jian LIU, and Deliang CHEN

    1School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China

    2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

    3Earth System Modeling and Climate Dynamics Research Center, Nanjing University of Information Science and Technology, Nanjing 210044, China

    4Department of Geography, University of Hong Kong, Pokfulam, Hong Kong

    5Department of Atmospheric Sciences and International Pacific Research Center,University of Hawaii at Manoa, Honolulu, HI 96822, USA

    6Department of Environmental Science, Zhejiang University, Hangzhou 310058, China

    7State key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    8Key Laboratory for Virtual Geographic Environment, Ministry of Education; Jiangsu Provincial State Key Laboratory Cultivation Base of Geographical Environment Evolution; School of Geography Science,Nanjing Normal University, Nanjing 210023, China

    9Department of Earth Sciences, University of Gothenburg, Gothenburg 405 30, Sweden

    The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020 (Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth’s climate and environment.

    Volcanic eruptions affect climate through injecting sulfur dioxide (SO2) into the stratosphere (Robock, 2000). The volcanic sulfate aerosols formed through the reaction between SO2and hydroxide or water vapor exhibit a typical e-folding time of about 12?14 months. A large eruption that injects sulfate aerosols into the stratosphere can perturb global climate by scattering incoming solar radiation, resulting in global surface cooling that may last for two to three years after the eruption owing to the delayed ocean response (Sear et al., 1987; Robock, 2000). Tropical eruptions tend to slow down the global hydrological cycle (Trenberth and Dai, 2007; Iles and Hegerl, 2014), leading to a weakened global monsoon system (Man and Zhou, 2014; Liu et al., 2016; Stevenson et al., 2016). The semi-arid region, however, tends to get wetter owing to the monsoon?desert coupling mechanism (Zuo et al., 2019).

    Big volcano eruptions’ climate impacts can last for decades through a positive sea-ice/albedo feedback, even though the volcanic aerosols in the stratosphere remain only for about a year (Schneider et al., 2009; Zanchettin et al., 2011; Slawinska and Robock, 2018). Expanded Arctic sea-ice cover existed for a decade after the latest three large tropical eruptions,although the sea ice is sensitive to pre-eruption temperature (Gagné et al., 2017). One of the largest eruptions during the current Holocene Epoch, the 1258 Samalas eruption, together with three small ensuing eruptions, are speculated to have triggered the Little Ice Age through positive sea-ice/ocean feedbacks during a cooling summer (Miller et al., 2012). The phase of the Atlantic Multidecadal Oscillation can be affected by large volcanic eruptions (Otter? et al., 2010). Background conditions, i.e., the initial climate state and additional external forcings, may influence the decadal responses of oceanic heat transport and sea ice in the North Atlantic to large tropical eruptions (Zanchettin et al., 2011, 2013). However, in work by Bethke et al. (2017), historical volcanic eruptions could not counteract the long-term global warming trend induced by anthropogenic greenhouse gases under the future emissions scenario based on a general circulation model (GCM) simulation.

    Fig. 1. Observed El Ni?o and enhanced polar vortex?induced Eurasian warming after three large tropical eruptions. (a)Eruption cloud of the Taal Volcano taken from an airplane on 12 January 2020 (Photo credit: Faxin CHEN). (b) Composite 50-hPa geopotential height anomaly in JRA-55 (upper panel) and surface air temperature anomaly in GISTEMP in the first boreal winter following the 1963 Agung, 1982 El Chichón, and 1991 Pinatubo eruptions [updated from Xing et al. (2020)].Stippling indicates temperature anomalies significant at the 95% confidence level. The magenta arrow denotes stratospheric westerly anomalies around 70°N, and the gray arrow gives the potential linkage between the stratosphere and surface.

    Nevertheless, volcanic eruption-induced global cooling suggests a useful strategy against global warming (Niemeier and Tilmes, 2017). Stratospheric aerosol geoengineering (SAG), also known as “solar radiation management” in the Geoengineering Model Intercomparison Project (GeoMIP), is an analogue of large volcanic eruptions in terms of impacts on global climate, and an artificial supplementary method that could mitigate anthropogenic global warming through increasing the planetary albedo (Kravitz et al., 2015; Niemeier and Tilmes, 2017). The goal to hold temperatures at 1.5°C or 2.0°C higher than the level of 1850?1900 can be reached with SAG, which partially balances a future high emissions scenario with CESM2 (WACCM6) (Tilmes et al., 2019). Apart from the high economic costs and technological requirements for SAG, one more obstacle is that its direct and indirect effects on the hydrological cycle remain inconsistent. For the same global temperature change, volcanic eruption-induced global precipitation changes are stronger than those resulted from greenhouse gases (Liu et al., 2018c). Although precipitation and evaporation are reduced by applying SAG (Tilmes et al.,2013), it is inspiring that wetlands, as the ratio of precipitation and evaporation, can be increased over major American land regions where people reside (Xu et al., 2020).

    Five large tropical eruptions have occurred since instrumental observations began to become available 150 years ago(Sato et al., 1993; Gao et al., 2008), i.e., the 1883 Krakatau, 1902 Santa Maria, 1963 Agung, 1982 El Chichón, and 1991 Pinatubo eruptions (Table 1). Contrary to the global volcanic cooling trend in the first three years following these large tropical volcanic eruptions, an average 0.1 K global mean surface temperature rebound happened in the first post-eruption boreal winter (Xing et al., 2020). Such a global temperature rebound of the first Northern Hemisphere (NH) winter results from the atmospheric responses to the blockage of shortwave radiation, which induces an El Ni?o-like warming and a Eurasian warming caused by an enhanced polar vortex (Fig. 1b).

    El Ni?o events were observed in the first boreal winters after these large tropical eruptions, except for the 1883 Krakatau eruption (Khodri et al., 2017). Due to the small sample size, the statistical significance cannot be established, and thus these El Ni?o events may also be attributable to internal variability (Self et al., 1997; Robock, 2000). However, longterm reconstruction analysis has suggested a hypothesis that large tropical eruptions can increase the probability of El Ni?o occurrence (Adams et al., 2003; McGregor and Timmermann, 2011; Liu et al., 2018a). Liu et al. (2018b) found that, over the last millennium, about 81% of tropical volcanic eruptions were followed by an El Ni?o-like sea surface temperature(SST) anomaly during the first post-eruption NH winter if the ocean before eruption had been in a neutral or La Ni?a condition. The 2019/20 winter did not witness a strong El Ni?o condition since not all the oceanic Ni?o indexes exceeded 0.5°C for five consecutive three-month periods. Therefore, there is an 83% (25/30) probability that an El Ni?o-like warming will occur in the 2020/21 winter if the Taal Volcano continues to eject large amounts of SO2into the stratosphere (Fig. 2a).

    There are uncertainties in the prediction of the effects of volcanic eruptions on the El Ni?o occurrence with models.Numerical experiments of some individual models have reproduced the El Ni?o occurrence. The tropical eruption-induced El Ni?o in these models is related to several possible mechanisms: the ocean dynamic thermostat mechanism (Ohba et al.,2013; Predybaylo et al., 2017), the equatorward migration of the Intertropical Convergence Zone caused by reduced evaporation over cloudless subtropical regions (Lim et al., 2016), the land?ocean thermal contrast-induced westerly anomaly (Predybaylo et al., 2017), and the westerly response to suppressed West African monsoon and Warm Pool precipitation (Khodri et al., 2017; Chai et al., 2020). Another two factors may also affect the simulation of El Ni?o-like responses after tropical eruptions: the initial ocean condition and eruption strength. It is hard to replicate an El Ni?o when the initial ocean condition is already at an El Ni?o peak phase before the eruption (Liu et al., 2018b). Besides, the volcanic eruption has to be strong enough to excite an El Ni?o (Emile-Geay et al., 2008; Lim et al., 2016).

    Fig. 2. Relationship between ENSO responses to tropical eruptions and initial ocean conditions. Scatterplots of Ni?o3.4 index anomalies (dots) during the winter before eruption versus the first winter after eruption in (a) reconstructed ENSO index for tropical eruptions over the past 1100 years, and in (b) CMIP6 for the five tropical eruptions since 1870. Shading indicates the density distribution of the internal mode of ENSO relative to the total sample number. As for the reconstructions, the recent large tropical eruptions since 1870 were selected based on Gao et al. (2008), and the remaining eruptions were based on Sigl et al. (2015). For the simulations, colored symbols denote the average of these five tropical eruptions for the ensemble mean of each model, and the black square is their multi-model mean.

    However, in contrast to the results obtained from experiments with the individual models, most models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Xing et al., 2020), phase 3 of the Paleoclimate Modelling Intercomparison Project (Chai et al., 2020aChai, J., F. Liu, C. Xing, B. Wang, C. Gao, J. Liu, and D. Chen, 2020: A robust equatorial Pacific westerly response to tropical volcanism in multiple models: Wet region gets drier. Climate Dyn., submitted.), and CMIP6 (Fig. 2b) fail to produce an El Ni?o response in the first post-eruption winter. After tropical volcanic eruptions, the Ni?o3.4 SST warming cannot be reproduced against the uniform global volcanic cooling. In some models, however, a positive SST anomaly gradient in the equatorial Pacific with a positive sea surface height anomaly over the Ni?o3.4 region is simulated (Ding et al., 2014; Maher et al., 2015; Wang et al., 2018). This discrepancy demonstrates that there are limitations in the simulation of air?sea interaction in some models (Watanabe et al.,2011), and suggests the representation of local and remote signals in different El Ni?o?Southern Oscillation (ENSO) reconstructions (Li et al., 2011; Dee et al., 2020).

    Volcanic eruptions can also affect the Eurasian winter temperature. A maximum 3°C surface temperature increase was observed over the Eurasian continent in the first winter following the 1991 Pinatubo eruption, which was associated with the global temperature rebound immediately after a volcanic eruption (Robock and Mao, 1992; Robock, 2002). Although this 1991/92 winter warming has been argued to have been caused by internal variability (Polvani et al., 2019), a Eurasian warming was also observed in the first NH winter after the other three tropical volcanic eruptions (Xing et al., 2020). This type of European warming was verified to have occurred after 15 major tropical eruptions in a 500-year multi-proxy reconstruction (Fischer et al., 2007).

    The tropical volcanic eruption?Eurasian warming teleconnection is related to stratosphere?troposphere interaction. A tropical volcanic eruption can warm up the lower tropical stratosphere directly since the aerosol clouds absorb incoming near-infrared radiation and upwelling longwave radiation. Ozone in the polar region is depleted by volcanic aerosols by influencing stratospheric ozone photochemistry processes. Since stratospheric ozone absorbs solar radiation, ozone depletion will decrease temperatures in the polar region (Stenchikov et al., 2002). As shown in Fig. 3a, this low-latitude stratospheric warming and polar cooling increase the meridional temperature gradient over the NH, resulting in a strengthened polar vortex in the NH winter (Robock, 2000). This enhanced polar vortex, associated with a positive westerly anomaly, tends to warm up Eurasia by trapping tropospheric wave energy through reflection of planetary waves (Perlwitz and Graf, 1995; Butler et al., 2014). Most of the CMIP5 (Xing et al., 2020) and CMIP6 models (Fig. 3a) are able to simulate this low-latitude stratospheric warming induced by shortwave radiation absorption. The enhanced polar vortex in the models, however, is too weak compared to reanalysis (Fig. 3b), posing a challenge for the current simulation of stratospheric teleconnection.

    Current GCMs are able to reproduce the direct responses to large tropical eruptions (Trenberth and Dai, 2007; Iles and Hegerl, 2014; Man and Zhou, 2014; Liu et al., 2016; Stevenson et al., 2016), but they still have difficulty simulating the delayed responses, which is determined by their performance in replicating internal variability (Ding et al., 2014; Maher et al., 2015; Wang et al., 2018; Liu et al., 2018a, 2018b; Xing et al., 2020).

    The climate effects of the Taal Volcano eruption will depend on the magnitude of the eruption, especially on the amount of SO2ejected into the stratosphere to form volcanic aerosols. The Volcanic Explosivity Index (VEI)—a scale that represents the explosivity of an eruption event—consists of volcanically ejected materials, the height of the ash plume, and the type of eruption (Newhall and Self, 1982). Compared to the five large historical tropical eruptions, the Taal eruption is still too small, and its SO2amount is about two orders of magnitude smaller than those of the 1982 El Chichón and 1991 Pinatubo eruptions (Table 1), which means that the climate response to the current magnitude of the Taal eruption would be insignificant.

    The Taal Volcano is still in an active phase, and the Philippine Institute of Volcanology and Seismology has sent out an alert over the Taal Volcano to warn that more explosive eruptions could happen. Since the 2019/20 winter was not in a strong El Ni?o condition, there is an 83% probability that an El Ni?o-like warming will occur in the 2020/21 winter if the magnitude of the continued Taal Volcano eruption or any other tropical volcanic eruption reaches a critical level where the VEI is greater than 3. Eurasian warming due to an enhanced polar vortex is also likely.

    Data and methods

    We used outputs during 1850 to 2015 from 131 historical runs of 21 coupled models (Table 2), which were the CMIP6 models released recently (https://esgf-node.llnl.gov). To avoid giving more weight to models with large ensembles, the multi-model ensemble mean was calculated for each model first. The observed surface air temperature was from the NASA Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP), version 3 (Lenssen et al., 2019), for the period 1870?2018. The geopotential height was derived from the Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al.,2015). In this study, we used the reconstructed ENSO index from Li et al. (2011) over the period 900?1869, and the observed boreal-winter Ni?o3.4 index based on HadISST (Rayner et al., 2003) was adopted for the period 1870?2016. The volcanic eruptions over the past 1100 years were obtained from Sigl et al. (2015), which was based on the Greenland and Antarctic ice cores.

    The effect of anthropogenic forcing was reduced through removing the linear trend of each variable. To separate volcanically forced climate responses from the climatological mean, the monthly mean of the five years preceding the eruptions was removed. The Ni?o3.4 index used to represent El Ni?o events was calculated by the area mean over the Ni?o3.4 region(5°S?5°N, 170°?120°W). December?January?February was defined as boreal winter.

    Fig. 3. Stratospheric responses to tropical volcanic eruptions in CMIP6. Composites of (a) zonally averaged temperature anomalies (shading) as a function of latitude and height, and (b) 50-hPa geopotential height anomalies (shading) in the first NH winter following the five tropical eruptions for the multi-model mean of the 21 CMIP6 models. The ensemble mean of each model is also shown in (b). Stippling denotes anomalies significant at the 95% confidence level.

    Table 1. Information on the 2020 Taal eruption and the five strongest tropical eruptions over the past 150 years. The eruption date,location, aerosol loading, and Volcanic Explosivity Index (VEI) of each eruption are given. The SO2 mass was obtained from Gao et al.(2008). For the 2020 Taal eruption, the accumulated SO2 mass from 12?31 January was calculated by the Philippine Institute of Volcanology and Seismology (https://www.phivolcs.dost.gov.ph/index.php/taal-volcano-bulletin-menu/). The VEI of the Taal eruption is inferred from historical SO2 loading and the eruption height.

    Table 2. Institution name, ID, and number of ensemble members of the CMIP6 models used in this study.

    Acknowledgements.This work was primarily supported by the National Natural Science Foundation of China (Grant Nos.41975107 and 41971108). We would like to thank Mr. Faxin CHEN for providing the photo shown in Fig. 1a. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model outputs. This paper is ESMC Contribution No. 306.

    男女国产视频网站| 赤兔流量卡办理| 狠狠精品人妻久久久久久综合| 最近的中文字幕免费完整| 老司机亚洲免费影院| 免费黄色在线免费观看| 国产 精品1| 丰满饥渴人妻一区二区三| 侵犯人妻中文字幕一二三四区| 丝袜脚勾引网站| 亚洲人与动物交配视频| 51国产日韩欧美| 青春草国产在线视频| 国产69精品久久久久777片| 免费看av在线观看网站| 亚洲少妇的诱惑av| 亚洲av男天堂| 欧美日韩综合久久久久久| a级片在线免费高清观看视频| 深夜精品福利| 在线天堂最新版资源| 汤姆久久久久久久影院中文字幕| 国产福利在线免费观看视频| 国产精品.久久久| 亚洲在久久综合| 人人妻人人爽人人添夜夜欢视频| 亚洲成av片中文字幕在线观看 | 亚洲av免费高清在线观看| 亚洲国产精品成人久久小说| 熟女人妻精品中文字幕| 黄网站色视频无遮挡免费观看| 欧美3d第一页| 女性生殖器流出的白浆| 国产免费福利视频在线观看| 亚洲精品日韩在线中文字幕| 成人毛片60女人毛片免费| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| 亚洲久久久国产精品| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 久久影院123| 美国免费a级毛片| 99热6这里只有精品| 午夜精品国产一区二区电影| 亚洲精品一二三| 狠狠婷婷综合久久久久久88av| 亚洲精品,欧美精品| 午夜激情久久久久久久| 美女内射精品一级片tv| 韩国高清视频一区二区三区| 免费少妇av软件| 日韩欧美一区视频在线观看| 久久女婷五月综合色啪小说| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 久久久久久久精品精品| 亚洲四区av| 18禁动态无遮挡网站| 日韩一区二区视频免费看| 亚洲成人av在线免费| 日韩精品有码人妻一区| 日本爱情动作片www.在线观看| 99久国产av精品国产电影| 晚上一个人看的免费电影| 亚洲精品一二三| 日韩av不卡免费在线播放| 99久久中文字幕三级久久日本| 亚洲国产精品一区三区| 一二三四在线观看免费中文在 | 国产成人精品福利久久| 久久99精品国语久久久| 亚洲精品色激情综合| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 新久久久久国产一级毛片| 亚洲成av片中文字幕在线观看 | 九草在线视频观看| 看免费成人av毛片| 男的添女的下面高潮视频| 精品久久久久久电影网| 国产免费视频播放在线视频| 51国产日韩欧美| 国产在线一区二区三区精| 尾随美女入室| 女人久久www免费人成看片| 在线看a的网站| 免费高清在线观看视频在线观看| 精品午夜福利在线看| 国国产精品蜜臀av免费| 日日爽夜夜爽网站| 熟女人妻精品中文字幕| 十八禁高潮呻吟视频| 在线精品无人区一区二区三| 亚洲精品日韩在线中文字幕| 亚洲综合色网址| 嫩草影院入口| 在现免费观看毛片| 飞空精品影院首页| videos熟女内射| 熟妇人妻不卡中文字幕| 午夜精品国产一区二区电影| 精品一品国产午夜福利视频| 久久久久久久久久久久大奶| av免费在线看不卡| 高清不卡的av网站| 国产乱来视频区| 少妇人妻精品综合一区二区| 久久精品国产鲁丝片午夜精品| 深夜精品福利| 男女啪啪激烈高潮av片| av免费在线看不卡| 少妇猛男粗大的猛烈进出视频| 大片免费播放器 马上看| 18禁在线无遮挡免费观看视频| 97精品久久久久久久久久精品| 如何舔出高潮| 国产日韩欧美在线精品| 人妻一区二区av| 久久精品人人爽人人爽视色| 熟女电影av网| 亚洲精品,欧美精品| 各种免费的搞黄视频| 精品久久国产蜜桃| av卡一久久| 亚洲欧美一区二区三区国产| videos熟女内射| 精品酒店卫生间| 大香蕉久久成人网| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 国产成人一区二区在线| 久久免费观看电影| 国产男女内射视频| 欧美国产精品va在线观看不卡| 伊人久久国产一区二区| 国产毛片在线视频| 国产福利在线免费观看视频| 日韩三级伦理在线观看| 国产1区2区3区精品| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 国产成人精品福利久久| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 一级毛片 在线播放| 有码 亚洲区| 99九九在线精品视频| 国产69精品久久久久777片| 97在线人人人人妻| 18+在线观看网站| 亚洲经典国产精华液单| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 国产亚洲精品久久久com| 另类亚洲欧美激情| 日日撸夜夜添| 超碰97精品在线观看| 国产成人精品在线电影| www.熟女人妻精品国产 | 日韩av不卡免费在线播放| 看免费av毛片| 日韩电影二区| 久久精品国产自在天天线| 午夜福利影视在线免费观看| 18+在线观看网站| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 日本av手机在线免费观看| 亚洲国产精品一区二区三区在线| 中文天堂在线官网| 一区在线观看完整版| 精品久久国产蜜桃| 国产黄色视频一区二区在线观看| 久久久久久久亚洲中文字幕| 九九在线视频观看精品| 99热网站在线观看| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 午夜视频国产福利| 满18在线观看网站| 搡女人真爽免费视频火全软件| 男女高潮啪啪啪动态图| 啦啦啦视频在线资源免费观看| 亚洲精品第二区| 久久人人爽人人片av| 亚洲人与动物交配视频| 夜夜爽夜夜爽视频| 亚洲成色77777| 最黄视频免费看| 狂野欧美激情性xxxx在线观看| 狠狠精品人妻久久久久久综合| 满18在线观看网站| 好男人视频免费观看在线| 天天影视国产精品| 最新的欧美精品一区二区| 男女高潮啪啪啪动态图| 欧美另类一区| 十分钟在线观看高清视频www| 老司机影院成人| 国产av一区二区精品久久| 亚洲av国产av综合av卡| 久久久久精品久久久久真实原创| 黑人欧美特级aaaaaa片| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 日产精品乱码卡一卡2卡三| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说| 亚洲国产精品国产精品| a级片在线免费高清观看视频| 久久久久久伊人网av| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 美女国产视频在线观看| 侵犯人妻中文字幕一二三四区| 人人妻人人澡人人爽人人夜夜| 黑人猛操日本美女一级片| 内地一区二区视频在线| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 国产精品女同一区二区软件| 亚洲国产看品久久| 亚洲av男天堂| 自线自在国产av| 午夜日本视频在线| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 男人舔女人的私密视频| 天天躁夜夜躁狠狠久久av| 国产1区2区3区精品| 午夜视频国产福利| 色吧在线观看| 99久久人妻综合| freevideosex欧美| a级毛片黄视频| 亚洲经典国产精华液单| 免费观看性生交大片5| 在线观看免费视频网站a站| 草草在线视频免费看| 一级黄片播放器| 香蕉丝袜av| 人人澡人人妻人| 成人综合一区亚洲| 精品一区二区三区四区五区乱码 | 高清黄色对白视频在线免费看| 久久精品久久精品一区二区三区| a级片在线免费高清观看视频| 亚洲国产精品专区欧美| 最近手机中文字幕大全| 亚洲国产av新网站| 大片电影免费在线观看免费| 一级毛片我不卡| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 久久99精品国语久久久| av在线播放精品| 免费看av在线观看网站| 免费看光身美女| 精品国产乱码久久久久久小说| 有码 亚洲区| 精品少妇内射三级| 成年av动漫网址| 免费av不卡在线播放| 国产精品欧美亚洲77777| 亚洲精品乱久久久久久| 国产成人a∨麻豆精品| 韩国精品一区二区三区 | 亚洲av.av天堂| 国内精品宾馆在线| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 午夜福利影视在线免费观看| 黄色一级大片看看| 日本爱情动作片www.在线观看| 久久久精品免费免费高清| 色吧在线观看| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看日韩| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级片'在线观看视频| 国产深夜福利视频在线观看| 26uuu在线亚洲综合色| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| av女优亚洲男人天堂| 久久国产精品大桥未久av| 国产精品一区二区在线不卡| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 亚洲伊人色综图| 国产 一区精品| 一二三四在线观看免费中文在 | 久久国产亚洲av麻豆专区| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 免费少妇av软件| 亚洲av.av天堂| 成年av动漫网址| 国产 一区精品| 青春草国产在线视频| 欧美精品一区二区大全| a 毛片基地| 午夜福利在线观看免费完整高清在| av卡一久久| 免费看光身美女| 两个人看的免费小视频| 亚洲国产精品999| 777米奇影视久久| 亚洲少妇的诱惑av| 色吧在线观看| 欧美精品高潮呻吟av久久| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看| 免费播放大片免费观看视频在线观看| 男人舔女人的私密视频| 日韩伦理黄色片| 成人二区视频| 美女主播在线视频| 晚上一个人看的免费电影| av在线观看视频网站免费| 水蜜桃什么品种好| 1024视频免费在线观看| 久久人人爽人人片av| 母亲3免费完整高清在线观看 | 久久99热6这里只有精品| 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品电影小说| 免费女性裸体啪啪无遮挡网站| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 视频中文字幕在线观看| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| 精品少妇黑人巨大在线播放| 两个人看的免费小视频| 亚洲久久久国产精品| 久久热在线av| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 在线观看人妻少妇| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 精品国产乱码久久久久久小说| 久久久久网色| 欧美+日韩+精品| 精品一区二区三区四区五区乱码 | 看免费av毛片| 涩涩av久久男人的天堂| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久 | 大片免费播放器 马上看| tube8黄色片| 22中文网久久字幕| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 交换朋友夫妻互换小说| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 咕卡用的链子| 永久网站在线| 欧美精品亚洲一区二区| av在线观看视频网站免费| 国产精品一二三区在线看| 成人手机av| 另类精品久久| 国产极品粉嫩免费观看在线| 十八禁高潮呻吟视频| 我的女老师完整版在线观看| 免费少妇av软件| 亚洲内射少妇av| 久久精品熟女亚洲av麻豆精品| 有码 亚洲区| 考比视频在线观看| 人人澡人人妻人| 精品少妇黑人巨大在线播放| 午夜福利视频精品| 香蕉丝袜av| 日本欧美国产在线视频| 久久免费观看电影| 欧美3d第一页| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www| 丝袜喷水一区| 一级a做视频免费观看| 午夜视频国产福利| 欧美日韩视频高清一区二区三区二| 99国产精品免费福利视频| 最近中文字幕高清免费大全6| 国产一区二区激情短视频 | 高清在线视频一区二区三区| 国产精品人妻久久久影院| 欧美97在线视频| 色哟哟·www| 午夜免费男女啪啪视频观看| 日本av手机在线免费观看| 九草在线视频观看| 精品国产国语对白av| av.在线天堂| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 91成人精品电影| 精品久久蜜臀av无| 午夜视频国产福利| 久久久久久久精品精品| 色网站视频免费| 欧美 亚洲 国产 日韩一| 男女下面插进去视频免费观看 | 免费在线观看黄色视频的| 亚洲av在线观看美女高潮| 色吧在线观看| 久久久精品免费免费高清| 欧美性感艳星| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件 | 欧美亚洲日本最大视频资源| 亚洲欧洲国产日韩| 国产精品久久久av美女十八| 国产视频首页在线观看| www.av在线官网国产| 久久精品国产综合久久久 | 韩国精品一区二区三区 | 尾随美女入室| 国产成人免费无遮挡视频| 90打野战视频偷拍视频| 咕卡用的链子| 久久免费观看电影| 久热久热在线精品观看| 日日撸夜夜添| 成人午夜精彩视频在线观看| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 久久婷婷青草| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 欧美xxxx性猛交bbbb| 成人手机av| 国产深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品一二三| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人 | 欧美老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 寂寞人妻少妇视频99o| 99热全是精品| 精品国产一区二区久久| 国产色婷婷99| 视频中文字幕在线观看| 熟女电影av网| 婷婷色av中文字幕| 少妇人妻 视频| 日本欧美视频一区| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 久久久久网色| 免费观看a级毛片全部| 丁香六月天网| 国产亚洲最大av| 国产一区二区激情短视频 | 精品视频人人做人人爽| 久久久久久久精品精品| 全区人妻精品视频| 日韩一区二区三区影片| 亚洲伊人久久精品综合| 一区二区日韩欧美中文字幕 | 亚洲欧美成人精品一区二区| 久久国产亚洲av麻豆专区| 制服丝袜香蕉在线| 超碰97精品在线观看| 亚洲av男天堂| 亚洲精华国产精华液的使用体验| 91精品伊人久久大香线蕉| 日本黄大片高清| 国产69精品久久久久777片| 日本vs欧美在线观看视频| 亚洲丝袜综合中文字幕| 国产精品一区二区在线不卡| 老司机影院毛片| 2021少妇久久久久久久久久久| freevideosex欧美| 伊人久久国产一区二区| 有码 亚洲区| 在线天堂中文资源库| 热99国产精品久久久久久7| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 久久国产精品大桥未久av| 狂野欧美激情性bbbbbb| 日韩精品有码人妻一区| 秋霞伦理黄片| 美女福利国产在线| 日韩一本色道免费dvd| 国产爽快片一区二区三区| 777米奇影视久久| 亚洲成av片中文字幕在线观看 | 秋霞在线观看毛片| 国产成人91sexporn| 精品人妻在线不人妻| 91精品国产国语对白视频| 欧美精品一区二区大全| 久久久久久久国产电影| 男女边吃奶边做爰视频| 成人亚洲精品一区在线观看| 男人爽女人下面视频在线观看| av免费观看日本| 国产色婷婷99| 高清不卡的av网站| 22中文网久久字幕| 韩国精品一区二区三区 | 岛国毛片在线播放| 黄色视频在线播放观看不卡| 又大又黄又爽视频免费| 成人午夜精彩视频在线观看| 99久久综合免费| 22中文网久久字幕| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久 | av不卡在线播放| 欧美精品一区二区免费开放| 国产色爽女视频免费观看| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 国产精品 国内视频| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 999精品在线视频| 一级,二级,三级黄色视频| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 22中文网久久字幕| 国产老妇伦熟女老妇高清| 国产永久视频网站| 99热全是精品| 中文欧美无线码| 中文字幕免费在线视频6| 亚洲国产精品专区欧美| 巨乳人妻的诱惑在线观看| 色哟哟·www| 国产不卡av网站在线观看| 人人澡人人妻人| 国产一区二区激情短视频 | 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡 | 国产xxxxx性猛交| 男女国产视频网站| 国产探花极品一区二区| 嫩草影院入口| 大话2 男鬼变身卡| 下体分泌物呈黄色| 久久99精品国语久久久| 婷婷色av中文字幕| 国产国语露脸激情在线看| 丁香六月天网| 伦理电影免费视频| 高清视频免费观看一区二区| 亚洲高清免费不卡视频| 女性生殖器流出的白浆| 在线 av 中文字幕| 两性夫妻黄色片 | 黄色一级大片看看| 热re99久久国产66热| 免费观看在线日韩| 国产 精品1| 青春草视频在线免费观看| 搡老乐熟女国产| 久久久久国产网址| 最近手机中文字幕大全| a级毛片在线看网站| 黄色 视频免费看| 七月丁香在线播放| 考比视频在线观看| 久久99热这里只频精品6学生| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 这个男人来自地球电影免费观看 | 97在线视频观看| 免费看光身美女| av电影中文网址| 婷婷色麻豆天堂久久| 国产成人精品一,二区| 卡戴珊不雅视频在线播放| 亚洲精品久久久久久婷婷小说| 亚洲第一av免费看| 亚洲婷婷狠狠爱综合网| 如日韩欧美国产精品一区二区三区| 成年女人在线观看亚洲视频| 午夜老司机福利剧场| 五月伊人婷婷丁香| 日韩在线高清观看一区二区三区|