• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship between Solar Wind-Magnetosphere Energy and Eurasian Winter Cold Events

    2020-06-23 03:41:28XinpingXUShengpingHEandHuijunWANG
    Advances in Atmospheric Sciences 2020年6期

    Xinping XU, Shengping HE, and Huijun WANG

    1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

    2Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen 5007, Norway

    3Nansen-Zhu International Research Center, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    4Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, China

    ABSTRACT

    Key words: solar wind—magnetosphere energy, cold events, interannual variability, wave-mean flow interaction

    1. Introduction

    Despite global climate warming, boreal winters have experienced frequent cold extremes with heavy snowfall in the early 21st century (Liu et al., 2012; Screen, 2014, 2015;

    Sun et al., 2016; Francis, 2017). Additionally, a remarkable surface cooling trend appears over Northern Hemisphere midlatitudes after the late-1990s (Cohen et al., 2014; Kug et al.,2015). Many studies have explored possible reasons for such abnormal climate, such as Arctic sea-ice loss and Arctic warming (Honda et al., 2009; Mori et al., 2014; Wang and Liu, 2016; Screen, 2017b; Xu et al., 2018a, b, 2019)and internal atmospheric variability (Screen et al., 2014;McCusker et al., 2016; Screen, 2017a; Ogawa et al., 2018).As the fundamental source of the climate system, solar activity has a profound impact on the decadal variability of boreal winter climate (Gray et al., 2010).

    A mounting body of observational and modeling evidence converges on a common conclusion that the occurrence of European cold winters becomes high when the solar activity reaches its minimum on the decadal time scale(Lockwood et al., 2010; Woollings et al., 2010; Ineson et al., 2011; Matthes, 2011). The surface pressure pattern in response to the 11-year solar cycle projects onto the North Atlantic Oscillation (NAO) (Kodera, 2003; Thiéblemont et al., 2015), a dominant mode of the Northern Hemisphere atmospheric variability influencing winter weather and climate in the Eurasia-Atlantic sector (Wallace, 2000; Bader et al., 2011; Matthes, 2011; Cohen et al., 2014; Screen,2017a). The physical link between the solar ultraviolet (UV)forcing and the decadal NAO variability has been suggested to arise from the “top-down” mechanism (Kodera and Kuroda, 2002; Gray et al., 2010). A lagged and amplified NAO response to the solar cycle is further proposed involving the ocean-atmosphere interaction mechanism (Gray et al.,2013; Scaife et al., 2013). Thiéblemont et al. (2015)revealed a 1-2-year lagged solar-NAO linkage via a multidecadal experiment with 11-year solar forcing variability.Sunspot number, open solar flux, and F10.7 cm radio flux,representing the decadal solar variability or solar UV variations, have been widely used to investigate the solar contribution to Earth’s climate on the decadal time scale (Roy and Haigh, 2010; Woollings et al., 2010; Thiéblemont et al.,2015; Miao et al., 2018). However, the potential connections on the interannual time scale remain unclear.

    In addition to radiative forcing, another important aspect of the solar activity influencing Earth’s climate is energetic particle forcing (Lilensten et al., 2015). Matthes et al.(2017) recently suggested that changes in solar spectral irradiance (most importantly in the UV) and energetic particle precipitation (EPP) are two major players for the climate from the aspect of solar variability. The EPP consists of particles originating from the sun, Earth’s magnetospheric field, and from beyond the solar system. Changes in EPP can lead to the production of NOxthrough ionization and dissociation and the subsequent intricate chemical processes in the middle atmosphere (Jackman et al., 2006; Rozanov et al.,2012). Then, the polar winter descent of EPP-generated NOxinto the stratosphere affects the ozone abundance(Baumgaertner et al., 2011; Matthes et al., 2017). Sinnhuber et al. (2018) suggested that stratospheric EPP signals are more likely a result of dynamic processes than caused by downward descent of EPP-induced chemistry from the mesosphere and lower thermosphere. Rozanov et al. (2005) provided evidence that EPP-generated variations in stratospheric and tropospheric temperatures are comparable to those caused by solar UV forcing. The possible mechanisms linking the influence of EPP on the stratosphere to the surface are further suggested to be similar to those related to solar UV influence, including the accelerated stratospheric polar night jet and top-down coupling (Sepp?l? and Clilverd, 2014). Cnossen et al. (2016) also discussed the possible mechanism of downward connection from the thermosphere to the troposphere. However, a modeling study found that the EPP effect on tropospheric temperature is small and insignificant (Meraner and Schmidt, 2018).

    As reviewed by Matthes et al. (2017), the influence of different EPP components on the surface climate is an emerging research topic, the challenge of which, however, is to quantify its climate impact. The solar wind, which cannot penetrate into the lower atmosphere directly but can violently interact with Earth’s magnetosphere, serves as a source of EPP (Mironova et al., 2015). The solar wind resembles the high-speed stream generated from the solar coronal regionand mainly encompass electrons, protons, and α-particles.Lu et al. (2008) found a significant relationship between the solar wind and the Northern Annular Mode. The energy input from the solar wind into Earth’s magnetosphere can cause space weather phenomena, such as magnetic storms,aurora, and so on (Akasofu, 1981). Magnetospheric particle precipitation associated with high-speed solar wind streams is more frequent during the decaying phase and near the minimum of the solar cycle (Sinnhuber et al., 2012).

    Early studies suggest that the solar wind energy input is largely determined by the solar wind velocity (Crooker et al., 1977) or by the interplanetary magnetic field (IMF) (Dungey, 1961). Different opinions have been proposed since,but it remains a big challenge to quantitatively estimate the solar wind energy input into Earth’s magnetosphere (Ein)(Akasofu, 1981; Newell et al., 2008). Recently, Wang et al.(2014) quantified Einas a function of interplanetary and solar wind conditions, using three-dimensional magnetohydrodynamics. The new Einindex shows both quasi-decadal variability and interannual variability (He et al., 2018, 2019b),which provides a direct motivation for us to explore the potential interannual connections between the solar activity-controlled magnetospheric energetic particle forcing and the surface climate. Furthermore, He et al. (2018) revealed for the first time that Einhas a tangible effect on the interannual variability of the subsequent winter ENSO. With this in mind, is it plausible that the year-to-year variability of Eurasian winter weather and climate is linked to the solar wind energy penetrating Earth’s magnetosphere. Thus, in this study, we attempt to understand the implications of the preceding Einfor winter extreme cold temperatures over Eurasia on the interannual time scale.

    2. Data and methods

    Ein(units: W) is estimated by a three-dimensional magnetohydrodynamic simulation (Wang et al., 2014),

    where nSW(units: cm-3) is the solar wind number density;VSW(units: km s-1) is the solar wind velocity; BT(units: nT)is the transverse magnetic field magnitude; θ is the IMF clock angle; and the solar wind data can be taken from the NASA OMNI project since 1963 (http://omniweb.gsfc.nasa.gov/). The energy input is more sensitive to the solar wind velocity and the IMF clock angle than other parameters (Wang et al., 2014). The monthly Einis derived from the daily Ein. The annual mean Einis employed to show the cumulative effect of energy input from the solar wind into Earth’s magnetosphere. The annual mean Einindex is normalized.In the composite analysis, the higher (lower) Einyears are defined when the normalized annual mean Einindex is equal to or greater (less) than 0.5 (-0.5) standard deviation (Fig. 1c).

    Daily surface air temperature (SAT) and atmospheric circulation data are derived from the NCEP-NCAR Reanalysis 1 with a horizontal resolution of 2.5° × 2.5° (Kalnay et al., 1996). The daily NAO indices are obtained from the Climate Prediction Center of NOAA (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). In this paper, we focus on the winters of 1964-2018 considering the time range of the available Eindata. The winter of 1964(for example) refers to December in 1964 and January and February in 1965. The relationship between Einactivity and winter cold events at lag +1 year (for example, the annual mean Einin 1963 and cold events in winter 1964) is analyzed. All data are detrended before the regression, composite, and correlation analyses. The significance test is based on the standard two-tailed Student’s t-test. The effective degree of freedom is computed as

    where N is the number of samples; r1and r2are the autocorrelation coefficients of the two variables at one time interval(Bretherton et al., 1999).

    Cold events are defined when the daily SAT is below the climatological mean SAT by 1.5 or more standard deviation (Thompson and Wallace, 2001). This study focuses on the total number of cold events in winter, as well as the number of extreme circulation events. Changes in extreme circulation events may not be simply identical to changes in the mean climate and are of greater concern to the public(Screen, 2017a). The extreme sea level pressure (SLP)events, 850-hPa wind (UV850; cyclone) events, and 300-hPa zonal wind (U300) events, are defined as the daily SLP/UV850/U300 above its 90th percentile (Pfahl, 2014).The negative (positive) NAO events are defined as intervals in which the normalized daily NAO index is lesser(greater) than or equal to -1.0 (+1.0) standard deviation for at least three consecutive days (Yao and Luo, 2015). Based on this definition, the frequency of negative (positive) NAO events in a winter is obtained by summing the duration of all negative (positive) NAO events in that winter. The 3-8-day bandpass-filtered 300-hPa transient eddies (v’2) are calculated according to Murakami (1979).

    We use the Eliassen-Palm (EP) flux (F) and its divergence (DF), which are calculated according to Edmon et al.(1980), to diagnose the wave-mean flow interaction(Andrews et al., 1987):

    where ρ is the air density; r0is the radius of Earth; φ is the latitude; u and v are the zonal and meridional wind, respectively; θ is the potential temperature; p is the pressure, θp=dθ/dp; primes denote zonal deviations; and overbars denote zonal average. To display the EP√ flux throughout the stratosphere, the vectors are scaled byand 1/ρ (Wang et al., 2009). The vertical component is multiplied by 125(Castanheira and Graf, 2003). An equatorward (upward) EP flux vector corresponds to a poleward eddy momentum(heat) flux, and the zonal-mean zonal flow decelerates (accelerates) where the EP flux converges (diverges) (Hartmann et al., 2000).

    3. Results

    3.1. Interannual relationship between Ein and subsequent winter Eurasian cold extremes

    The frequency of Eurasian cold events in the subsequent winter regressed onto the annual mean Einindex is firstly presented in Fig. 1a. Clearly, there is a significantly decreased frequency of cold extremes over northern Asia,Russia and northern Scandinavia, primarily north of 50°N,and an increased frequency over northern Africa and near the Black and Caspian seas (Fig. 1a). The relationship between Einactivity and winter cold events at lag 0 or +2 years is weaker and less significant (Fig. 2). To further investigate the linkage between Einand the interannual variability of extreme cold weather in the subsequent winter, the dominant interannual modes of cold events over Eurasia(20°-80°N, 0°-150°E) during 1964-2018 are extracted by performing empirical orthogonal function (EOF) analysis.The first mode of EOF (EOF1) explains 23.8% of the total variance, which is 8.6% larger than the second mode. The corresponding principal component of the EOF1 mode (PC1)shows remarkable interdecadal and interannual variability (figure not shown). EOF1 exhibits consistent negative values across the northern Eurasian continent and positive values in northern Africa (Fig. 1b). This pattern of cold events is quite similar to that following higher Einin the preceding year, with a high spatial correlation coefficient of 0.79. The regions that cover (45°-70°N, 40°-140°E) and (20°-45°N,0°-50°E) (red and blue rectangles in Figs. 1a and b) are hereafter referred to as northern Eurasia (NE) and northern Africa (NA), respectively. The linear correlation between the annual mean Einindex and the frequency of cold events over NE and NA are -0.38 and 0.30, respectively, significant at the 99% confidence level (Fig. 1c). Moreover, the probability for northern Eurasian winter to experience more than30 extreme cold days following a higher (lower) Einyear is about 26.7% (48.2%), based on the probability density function (PDF) of the occurrence of cold extremes; the PDF for cold days in NA at lag +1 year shows more occurrences of more than 30 extreme cold days (from 33.0% to 49.4%), in response to higher Einrelative to lower Ein(figure not shown). It is thus hypothesized that the magnetospheric particle precipitation from solar wind is associated with the interannual variations of Eurasian cold events in the subsequent winter.

    Fig. 1. (a) Regressions of frequency (units: d) of winter cold events during 1964-2018 against the normalized annual mean Ein index during 1963-2017. Dotted values are significant at the 95% confidence level based on the Student’s t-test. (b)First mode of the EOF analysis for the frequency of winter cold events over Eurasia (20°-80°N, 0°-150°E) during 1964-2018. Red and blue boxes in (a) and (b) mark the regions where northern Eurasia (NE: 45°-70°N, 40°-140°E)and northern Africa (NA: 20°-45°N, 0°-40°E) are defined,respectively. (c) Normalized annual mean Ein index during 1963-2017 (bars) and normalized frequency of winter cold events during 1964-2018 over NE (blue lines) and NA (red lines). The dots (stars) indicate those years when the annual mean Ein index is equal to or greater (less) than 0.5 (-0.5)standard deviation. The correlation coefficients between the annual mean Ein index and frequency of winter cold events over NE and NA are given at the top of the panel.

    Fig. 2. Regressions of the frequency (units: d) of winter cold events during (a) 1963-2016 and (b) 1965-2018 against the normalized annual mean Ein index during 1963-2016. Dotted values are significant at the 95% confidence level based on the Student’s t-test.

    3.2. Extreme circulation events related to Ein variations

    Extreme cold temperatures over Eurasia are affected by anomalous circulations that are related to various forcing(Liu et al., 2012; Cohen et al., 2014). Figure 3a shows a decrease in the frequency of SLP extremes associated with PC1 in the Arctic region and a pronounced increase in the frequency at midlatitudes of the Europe-Atlantic sector (Fig.3a). More frequent days with the lower-level anomalous anticyclone appear at midlatitudes (Fig. 3b). In the upper troposphere, more (less) frequent extreme strong westerly wind is shown to the north (south) of the climatological westerly jet(Fig. 3c), consistent with the significant positive (negative)U300 anomalies in the north of 50°N (south of 40°N) (figure not shown). This suggests the poleward shift of the North Atlantic westerly jet. The more (less) frequent strong westerly wind near the Norwegian (Mediterranean) Sea would drive milder (colder) conditions in NE (NA). Clearly,the anomalous circulation extremes related to the higherthan-normal Einin the preceding year (Figs. 3d-f) are qualitatively in good agreement with those related to PC1 (Figs.3a-c). This provides further support for the interannual connections between the solar wind-magnetosphere energy flux, the subsequent winter circulation extremes in the Europe-Atlantic sector, and extreme temperatures over Eurasia.

    The North Atlantic synoptic-scale eddy variations play an important role in the highly variable midlatitude weather patterns (Cohen et al., 2014). Figure 4 presents the anomalous storm-track activity response to PC1 and the preceding annual mean Ein, separately. As expected, significantly enhanced storm-track activity emerges primarily in the high-latitude North Atlantic (Fig. 4). Previous studies have suggested that positive storm-track activity anomalies are intimately linked to westerly wind anomalies in situ, cyclonic eddy forcing to the north, and anticyclonic eddy forcing to the south (Lau, 1988; Gong et al., 2011; He et al.,2019a). The northward shift of the synoptic-scale eddies favors the northward shift of the North Atlantic westerly jet and more frequent strong westerly wind at high latitudes(Figs. 3c and f). The increases in the strength of the synoptic-scale eddy forcing at high latitudes are also tied to the cyclone extremes to the north and anticyclone extremes to the south (Figs. 3b and e). Considering the wider literature,changes in the North Atlantic storm tracks are consistent with the shift of the NAO phase (Bader et al., 2011; Cohen et al., 2014). A poleward shift of the storm track occurs when the NAO is in its positive phase (NAO|+) and an equatorward shift is observed in negative NAO (NAO|-) winters.The influence of geomagnetic activity on the NAO has been examined in previous studies (Baumgaertner et al., 2011; Li et al., 2011). A dynamical change of the positive shift of the NAO is thus expected in association with the higher solar wind-magnetosphere energy flux input.

    Fig. 3. (a-c) Regressions of the frequency (units: d) of winter (a) SLP, (b) UV850, and (c) U300 extremes during 1964-2018 against the normalized PC1 during 1964-2018. (d-f) As in (a-c), but regressed against the normalized annual mean Ein index during 1963-2017. (c, f) Green lines represent the climatology of winter U300 during 1964-2018. Vectors and dotted values are significant at the 95% confidence level based on the Student’s t-test.

    Fig. 4. Regressions of winter 3-8-day bandpass-filtered 300-hPa transient eddies (v′2; units: 10-3 m2 s-2) against (a) the normalized PC1 during 1964-2018 and (b) the normalized annual mean Ein index during 1963-2017. Green lines represent the climatology of winter U300 during 1964-2018.Dotted values are significant at the 95% confidence level based on the Student’s t-test.

    Next, we turn our attention to the frequency of strong NAO events following higher and lower Einyears. As shown in Fig. 5a, the composite occurrence of 1-yearlagged NAO|+ events is higher-than-normal following higher Ein, and lower-than-normal following lower Ein. Similarly, the NAO|- events have a higher frequency following lower Eincompared to higher Ein(Fig. 5a). These differences support the notion that the subsequent winter NAO|+(NAO|-) events are intensified (weakened) following higher Einactivity, favoring less frequent cold events in NE and more frequent cold events in NA, and vice versa (Fig. 5b).

    4. Discussion on the mechanism

    The potential influence of magnetospheric energetic particle forcing on stratospheric circulation has been suggested in previous studies (Sepp?l? et al., 2009; Baumgaertner et al., 2011; Rozanov et al., 2012). Associated with the higher energy input from the solar wind into Earth’s magnetosphere, the tropical region warms in the upper troposphere and lower stratosphere in the following year from spring(March-May) to winter (Fig. 6a). This might be due to the cumulative effect of energy input from the solar wind into Earth’s magnetosphere and increased ozone heating(Kodera and Kuroda, 2002; Cionni et al., 2011). Additionally, it is also possible that the relationship between Einand equatorial temperature is modulated by ENSO, because a previous study revealed a close relationship between boreal winter ENSO and the preceding annual-mean solar wind-magnetosphere energy flux input (He et al., 2018).The westerly wind is profoundly accelerated throughout the troposphere and stratosphere in boreal winter (Fig. 6b),which might be attributable to the intensified northward temperature gradient due to the persistent warming at lower latitudes (Fig. 6a). There are anomalous downward-pointing EP flux vectors from the stratosphere to the upper troposphere in the following December and January (Figs. 7a and b; vectors), suggesting reduced upward Rossby wave propagation from the troposphere into the stratosphere. Also, the EP flux divergent anomalies in the troposphere (Figs. 7a and b; contours) are consistent with westerly anomalies at 20°-35°N and 50°-75°N and easterly anomalies in between (Fig. 3f).This wave-mean flow interaction (Charney and Drazin,1961; Hartmann et al., 2000) is favorable for maintaining the downward propagation of the solar signals (Thiéblemont et al., 2015) and the connection of Einsignals to tropospheric circulation and climate. It might be the case that there is no clear wave-mean flow interaction associated with Einin February (Fig. 7c). However, there are some significant SLP anomalies in February (Fig. 8c), consistent with those in December and January (Figs. 8a and b). This might be because the impacts of Einhave propagated into the troposphere in December and January (Figs. 7a and b).

    Fig. 5. Composites of the frequency of winter (a) NAO|+ and NAO|- events and (b) cold events over northern Eurasia (NE)and northern Africa (NA) during 1964-2018 following the higher (red bars) and lower (blue bars) Ein years during 1963-2017.

    5. Conclusion

    Solar activity is a major energy source of Earth’s climate, through changes in radiative forcing and energetic particle forcing (Lilensten et al., 2015). The impacts of the variation in solar irradiance on the decadal variability of Eurasian winter climate have been well recorded in the literature (Gray et al., 2010; Woollings et al., 2010; Thiéblemont et al., 2015). However, it remains a big challenge to quantify the influence of the different EPP components on the surface climate, which is an emerging research topic (Matthes et al., 2017).

    Fig. 6. Vertical-horizontal cross section for the correlations between the daily zonal-mean (a) temperature averaged along 30°S-30°N and (b) zonal wind averaged along 55°-65°N (from 1 March to 28 February, with 5-day lowpass filtering) during 1964/65-2018/19 and the normalized annual mean Ein index during 1963-2017. Dotted values are significant at the 95% confidence level based on the Student’s t-test. The effective degrees of freedom are adopted in (a) for the Student’s t-test.

    Fig. 7. Composites of the subsequent (a) December, (b) January, and (c) February Eliassen-Palm flux (vectors; units: 107 m2 s-2)and its divergence anomalies (contours; units: m s-1 d-1; red/blue contours indicate anomalous divergence/convergence)between the higher and lower Ein years during 1963-2017.

    The solar wind serves as a source of magnetospheric energetic particle forcing, in the main form of electrons (Mironova et al., 2015). Recently, Wang et al. (2014) quantified the solar wind energy input into Earth’s magnetosphere(Ein) using three-dimensional magnetohydrodynamics. It is worth noting that this new Einindex exhibits both interdecadal and interannual variability (He et al., 2018, 2019b).The interannual relationship between the solar wind energy penetrating Earth’s magnetosphere and Eurasian cold extremes in the subsequent winter is thus explored in this study. The results show that the frequency of cold winter events following years with increased solar wind-magneto-sphere energy flux shows a significant decrease over NE and increase in NA, and vice versa. This is broadly similar to the dominant EOF mode of interannual variability in Eurasian cold extremes, with a high spatial correlation coefficient of 0.79. The high variance of winter cold events over NE and NA explained by the preceding annual mean Eincan reach up to 0.2 (figure not shown). Moreover, the frequent positive NAO (NAO|+) events and poleward shift of the North Atlantic storm track activities following the preceding higher-than-normal Einactivity, favors the anomalous circulation extremes and less frequent extreme cold temperatures over northern Eurasia. It is further hypothesized that the wave-mean flow interaction in the stratosphere and troposphere is favorable for the connection of Einsignals to tropospheric circulation and climate in the following winter. In general, our study provides further insight into the potential interannual linkage between EPP variations and the surface extreme cold weather.

    Acknowledgements.This work was supported by the National Key R&D Program of China (Grant No. 2016YFA06 00703), the National Natural Science Foundation of China (Grant Nos. 41875118, 41605059 and 41505073), the Postgraduate Research & Practice Innovation Program of Jiangsu Province(Grant No. KYCX18_0997), the funding of the Jiangsu Innovation & Entrepreneurship Team, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. This work was partially supported by the International Space Science Institute (ISSI) in Beijing, through the working team“Dynamical signatures of energetic particle precipitation in atmospheric re-analyses” (ID:32, 2019).

    日日啪夜夜爽| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 日韩精品免费视频一区二区三区| 国精品久久久久久国模美| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品一区二区大全| 亚洲欧美成人精品一区二区| 国产欧美日韩一区二区三区在线| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 国产av一区二区精品久久| 久久亚洲国产成人精品v| 捣出白浆h1v1| 丝袜美腿诱惑在线| 一区福利在线观看| 久久狼人影院| 亚洲少妇的诱惑av| 国产乱人偷精品视频| 秋霞伦理黄片| 深夜精品福利| videosex国产| 99re6热这里在线精品视频| 成年av动漫网址| 极品少妇高潮喷水抽搐| 婷婷成人精品国产| 香蕉精品网在线| 日本欧美国产在线视频| 春色校园在线视频观看| 春色校园在线视频观看| 一级毛片电影观看| 日韩大片免费观看网站| 久久久精品国产亚洲av高清涩受| 一本色道久久久久久精品综合| av国产久精品久网站免费入址| 久久精品久久久久久久性| 国产免费又黄又爽又色| 亚洲精华国产精华液的使用体验| 在线观看免费视频网站a站| 亚洲国产精品国产精品| 高清视频免费观看一区二区| 永久网站在线| 日韩伦理黄色片| 中文字幕色久视频| 丰满迷人的少妇在线观看| 日韩成人av中文字幕在线观看| 啦啦啦在线免费观看视频4| 另类精品久久| 岛国毛片在线播放| 精品一区二区免费观看| 又黄又粗又硬又大视频| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 一级毛片电影观看| 成人二区视频| 大香蕉久久网| 一级毛片 在线播放| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区久久| 亚洲国产色片| 热re99久久精品国产66热6| 久久久精品区二区三区| 国产乱来视频区| 超碰成人久久| 又黄又粗又硬又大视频| 中文字幕制服av| 看免费成人av毛片| 欧美日韩精品成人综合77777| 大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| 97在线视频观看| 国产亚洲午夜精品一区二区久久| av天堂久久9| 好男人视频免费观看在线| 黄网站色视频无遮挡免费观看| 亚洲三区欧美一区| 精品人妻一区二区三区麻豆| 成人午夜精彩视频在线观看| 五月开心婷婷网| 18禁国产床啪视频网站| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 性色avwww在线观看| 丁香六月天网| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看| 精品一区二区免费观看| a级毛片黄视频| 久久这里有精品视频免费| 麻豆av在线久日| 成人影院久久| 九九爱精品视频在线观看| 欧美最新免费一区二区三区| 可以免费在线观看a视频的电影网站 | 欧美bdsm另类| 日韩免费高清中文字幕av| 亚洲第一av免费看| 超色免费av| 久久综合国产亚洲精品| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲 | 欧美精品一区二区免费开放| 黄色毛片三级朝国网站| 亚洲第一av免费看| 国产精品无大码| 91精品国产国语对白视频| 亚洲精品一区蜜桃| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 999精品在线视频| 大香蕉久久网| 91aial.com中文字幕在线观看| 少妇的丰满在线观看| 精品一区二区三区四区五区乱码 | 一本大道久久a久久精品| 又黄又粗又硬又大视频| 色婷婷久久久亚洲欧美| 日韩中文字幕欧美一区二区 | 亚洲国产成人一精品久久久| 黄色 视频免费看| 国产乱人偷精品视频| 另类亚洲欧美激情| 欧美日本中文国产一区发布| 尾随美女入室| 亚洲国产日韩一区二区| av网站免费在线观看视频| 少妇人妻 视频| 在线观看美女被高潮喷水网站| 久久精品夜色国产| 久久久a久久爽久久v久久| 午夜福利视频在线观看免费| 国产不卡av网站在线观看| 久久免费观看电影| 国产精品 欧美亚洲| 精品卡一卡二卡四卡免费| 欧美精品亚洲一区二区| 看免费成人av毛片| 2018国产大陆天天弄谢| 人妻系列 视频| 日韩欧美一区视频在线观看| 午夜免费男女啪啪视频观看| 亚洲成av片中文字幕在线观看 | 国产精品三级大全| 久久国内精品自在自线图片| 曰老女人黄片| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 香蕉国产在线看| 亚洲精品国产一区二区精华液| 男女高潮啪啪啪动态图| 观看美女的网站| 人妻少妇偷人精品九色| 黄色一级大片看看| 国产精品免费大片| 成年av动漫网址| 男女免费视频国产| 青春草亚洲视频在线观看| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 成人影院久久| 亚洲欧美色中文字幕在线| 男女边摸边吃奶| 一区二区三区四区激情视频| 美女午夜性视频免费| 1024视频免费在线观看| 最近手机中文字幕大全| 欧美+日韩+精品| 国产97色在线日韩免费| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 毛片一级片免费看久久久久| 亚洲第一青青草原| av片东京热男人的天堂| 婷婷成人精品国产| 亚洲第一区二区三区不卡| 国产片内射在线| 999精品在线视频| 国产淫语在线视频| a级毛片在线看网站| xxxhd国产人妻xxx| 精品一品国产午夜福利视频| 日韩不卡一区二区三区视频在线| 麻豆乱淫一区二区| 香蕉丝袜av| 国产视频首页在线观看| av线在线观看网站| 波野结衣二区三区在线| 久久精品亚洲av国产电影网| 激情五月婷婷亚洲| 亚洲国产色片| 丝袜在线中文字幕| 精品人妻在线不人妻| 国产在线视频一区二区| 久久99一区二区三区| 五月伊人婷婷丁香| 少妇 在线观看| videosex国产| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久成人av| 宅男免费午夜| 极品人妻少妇av视频| 国产精品免费视频内射| 中文字幕另类日韩欧美亚洲嫩草| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 国产精品国产av在线观看| 精品一区二区免费观看| 香蕉精品网在线| 成人毛片60女人毛片免费| 久久97久久精品| 亚洲精品久久成人aⅴ小说| 日本色播在线视频| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 一区二区三区四区激情视频| 久久狼人影院| 成人国产av品久久久| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 国产国语露脸激情在线看| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 熟女少妇亚洲综合色aaa.| 丝袜在线中文字幕| 国产精品国产三级专区第一集| 热re99久久国产66热| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 在现免费观看毛片| 丝袜美腿诱惑在线| 精品少妇内射三级| 精品人妻熟女毛片av久久网站| 精品午夜福利在线看| 久久久久久人人人人人| 超色免费av| 超碰成人久久| 欧美日韩综合久久久久久| 在线观看国产h片| 新久久久久国产一级毛片| 青草久久国产| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 欧美变态另类bdsm刘玥| 777米奇影视久久| 熟妇人妻不卡中文字幕| 青草久久国产| 午夜激情av网站| 亚洲成人av在线免费| 国产成人av激情在线播放| 国产xxxxx性猛交| 日韩伦理黄色片| 不卡视频在线观看欧美| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 欧美在线黄色| 寂寞人妻少妇视频99o| 欧美人与性动交α欧美精品济南到 | 日韩伦理黄色片| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 久久久久久免费高清国产稀缺| 午夜福利乱码中文字幕| 男女免费视频国产| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久精品一区二区三区| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 男女免费视频国产| 久久久国产一区二区| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 777米奇影视久久| 亚洲三区欧美一区| 亚洲成色77777| 精品久久蜜臀av无| 麻豆乱淫一区二区| 久久久国产精品麻豆| 中文字幕色久视频| 欧美成人午夜精品| 亚洲在久久综合| 亚洲av国产av综合av卡| 精品一区在线观看国产| 曰老女人黄片| 亚洲欧美中文字幕日韩二区| kizo精华| 日本色播在线视频| av女优亚洲男人天堂| 国产欧美亚洲国产| 国产激情久久老熟女| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 各种免费的搞黄视频| av不卡在线播放| 日韩电影二区| 成人手机av| 亚洲一区中文字幕在线| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站 | 国产av码专区亚洲av| 欧美人与性动交α欧美精品济南到 | 成人漫画全彩无遮挡| 亚洲国产欧美日韩在线播放| 亚洲,欧美,日韩| 国产熟女午夜一区二区三区| 97精品久久久久久久久久精品| 最近最新中文字幕大全免费视频 | 日日爽夜夜爽网站| 高清视频免费观看一区二区| 天堂8中文在线网| 国产不卡av网站在线观看| 亚洲精品国产一区二区精华液| 久久久a久久爽久久v久久| 亚洲国产av新网站| 久久精品国产a三级三级三级| 五月伊人婷婷丁香| 纯流量卡能插随身wifi吗| 日本av免费视频播放| 国产日韩欧美视频二区| 国产极品天堂在线| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 欧美日韩av久久| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 99国产精品免费福利视频| 国产一区二区 视频在线| kizo精华| 青青草视频在线视频观看| 亚洲第一青青草原| 观看美女的网站| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆 | 日本欧美国产在线视频| 秋霞伦理黄片| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 国产男人的电影天堂91| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 免费播放大片免费观看视频在线观看| 精品少妇内射三级| 欧美成人午夜免费资源| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 亚洲av综合色区一区| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| av不卡在线播放| 午夜福利一区二区在线看| freevideosex欧美| 久久影院123| 成年av动漫网址| 天天躁夜夜躁狠狠久久av| 国产免费一区二区三区四区乱码| 人妻一区二区av| 日韩中文字幕视频在线看片| 香蕉精品网在线| 精品人妻偷拍中文字幕| av一本久久久久| 最近的中文字幕免费完整| 国产免费福利视频在线观看| 热re99久久国产66热| 国产xxxxx性猛交| 看非洲黑人一级黄片| 精品少妇一区二区三区视频日本电影 | 亚洲情色 制服丝袜| 国产精品不卡视频一区二区| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久久久99蜜臀 | 久久ye,这里只有精品| 秋霞伦理黄片| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 男人操女人黄网站| 九色亚洲精品在线播放| 成年人免费黄色播放视频| 国产日韩一区二区三区精品不卡| 十八禁网站网址无遮挡| 久久精品久久精品一区二区三区| 大香蕉久久网| 亚洲欧美清纯卡通| 电影成人av| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 蜜桃国产av成人99| 99热国产这里只有精品6| 18禁观看日本| 国产97色在线日韩免费| 亚洲av综合色区一区| 久久99蜜桃精品久久| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 丝袜喷水一区| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 中国国产av一级| 国产精品二区激情视频| 嫩草影院入口| 男女免费视频国产| 韩国av在线不卡| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 色婷婷av一区二区三区视频| 天天影视国产精品| 成人影院久久| 欧美激情极品国产一区二区三区| 丰满少妇做爰视频| 中文天堂在线官网| 妹子高潮喷水视频| 人人妻人人澡人人看| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 日韩电影二区| 成年女人毛片免费观看观看9 | 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥| av国产精品久久久久影院| 看十八女毛片水多多多| 亚洲av免费高清在线观看| a级毛片在线看网站| 国产亚洲一区二区精品| 一区二区av电影网| 青春草视频在线免费观看| 国产高清国产精品国产三级| 黄色配什么色好看| 精品卡一卡二卡四卡免费| 久久人妻熟女aⅴ| 国产黄色视频一区二区在线观看| 国产精品一国产av| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇一区二区三区视频日本电影 | 日韩 亚洲 欧美在线| 国产成人精品福利久久| 看免费成人av毛片| 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 一区二区三区激情视频| 国产麻豆69| 国产xxxxx性猛交| 国产亚洲最大av| 91精品三级在线观看| 色播在线永久视频| 亚洲av欧美aⅴ国产| 性色av一级| 久久久精品国产亚洲av高清涩受| 美女中出高潮动态图| 两个人看的免费小视频| 亚洲av电影在线进入| a级毛片黄视频| 街头女战士在线观看网站| 老熟女久久久| 夫妻午夜视频| 国产在线免费精品| 久久久久网色| 国产精品一国产av| 久久久a久久爽久久v久久| 丰满乱子伦码专区| 九草在线视频观看| 女性被躁到高潮视频| 最新的欧美精品一区二区| 18禁观看日本| 高清av免费在线| 亚洲成av片中文字幕在线观看 | 中文字幕人妻丝袜一区二区 | 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久 | h视频一区二区三区| 久久久久久久久免费视频了| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 日韩中字成人| 男人添女人高潮全过程视频| xxxhd国产人妻xxx| 亚洲欧美一区二区三区黑人 | av片东京热男人的天堂| 久久毛片免费看一区二区三区| 日日摸夜夜添夜夜爱| 最近最新中文字幕大全免费视频 | 中文乱码字字幕精品一区二区三区| 国产精品偷伦视频观看了| 老熟女久久久| 丰满乱子伦码专区| 国产成人精品在线电影| 一级a爱视频在线免费观看| 最黄视频免费看| 亚洲国产毛片av蜜桃av| 在线观看美女被高潮喷水网站| 国产精品av久久久久免费| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 一区福利在线观看| 一二三四中文在线观看免费高清| 亚洲一码二码三码区别大吗| 香蕉精品网在线| 在线观看三级黄色| 精品少妇黑人巨大在线播放| 亚洲av免费高清在线观看| 香蕉国产在线看| 一个人免费看片子| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 国产精品一二三区在线看| 99热网站在线观看| 国产精品不卡视频一区二区| 性色avwww在线观看| 国产极品天堂在线| 国产亚洲精品第一综合不卡| 国产日韩一区二区三区精品不卡| 最近中文字幕2019免费版| 亚洲精品成人av观看孕妇| 日韩制服骚丝袜av| 国产不卡av网站在线观看| 9191精品国产免费久久| 婷婷色麻豆天堂久久| 十八禁高潮呻吟视频| 搡老乐熟女国产| 九草在线视频观看| av国产久精品久网站免费入址| 熟女电影av网| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看 | 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 日韩免费高清中文字幕av| 波野结衣二区三区在线| 国产成人av激情在线播放| 国产成人午夜福利电影在线观看| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 精品一区二区三区四区五区乱码 | 日韩精品免费视频一区二区三区| 日韩中文字幕视频在线看片| 在线观看免费视频网站a站| 久久久精品94久久精品| 考比视频在线观看| 两个人看的免费小视频| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 超碰97精品在线观看| 免费观看a级毛片全部| 亚洲美女搞黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 日韩精品免费视频一区二区三区| 一级毛片电影观看| 十八禁网站网址无遮挡| 精品国产国语对白av| 久久人妻熟女aⅴ| 亚洲欧美精品综合一区二区三区 | 免费观看性生交大片5| 亚洲av电影在线进入| 五月天丁香电影| 免费高清在线观看视频在线观看| 久久精品久久久久久久性| 国产 一区精品| 男人舔女人的私密视频| 国产国语露脸激情在线看| 中文字幕亚洲精品专区| 爱豆传媒免费全集在线观看| 人妻 亚洲 视频| 亚洲 欧美一区二区三区| 欧美+日韩+精品| 色播在线永久视频| 大话2 男鬼变身卡| 国产成人欧美| 国产男女内射视频| 久久女婷五月综合色啪小说| 性色av一级| 亚洲内射少妇av| 看十八女毛片水多多多| 韩国高清视频一区二区三区| 国产成人精品婷婷| 国产白丝娇喘喷水9色精品| 99热全是精品| 亚洲av福利一区| av有码第一页| 国产乱来视频区| 黄色配什么色好看| 秋霞在线观看毛片| 国产男人的电影天堂91| 国产精品.久久久| 丰满饥渴人妻一区二区三| 高清av免费在线| 欧美日韩综合久久久久久| 超碰97精品在线观看| 97在线视频观看| 亚洲中文av在线| 侵犯人妻中文字幕一二三四区| 日韩三级伦理在线观看| 色94色欧美一区二区|