• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synergistic effect of magnetic field and nanocomposite pour point depressant on the yield stress of waxy model oil

    2020-06-22 06:05:20HuiRongHuangWeiWangZeHengPengKaiLiYanFenDingWeiJieYuDongYingGanChuanShuoWangYiHanXueJingGong
    石油科學通報 2020年3期

    Hui?Rong Huang · Wei Wang · Ze?Heng Peng · Kai Li · Yan?Fen Ding · Wei?Jie Yu · Dong?Ying Gan ·Chuan?Shuo Wang · Yi?Han Xue · Jing Gong

    Abstract Yield stress, as the key parameter to characterize the network strength of waxy oil, is important to the petroleum pipeline safety. Reducing the yield stress of waxy oil is of great signi ficance for flow assurance. In this study, the effect of alternating magnetic field (intensity, frequency) on the yield stress of a waxy model oil with nanocomposite pour point depressant(NPPD) is systematically investigated. An optimum magnetic field intensity and frequency is found for the reduction in yield stress. When adding with NPPD, the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy model oil. Interestingly, the magnetic field is helpful for the modi fication of yield stress at a lower frequency and intensity before the optimal value; however, the modi fication is found to be weakened when the magnetic field is further increased after the optimal value. Possible explanation is proposed that the aggregation morphology of wax crystal would be altered and results in the release of wrapped oil phase from the network structure under the magnetic field.

    Keywords Magnetic field · Nanocomposite · Yield stress · Waxy model oil

    1 Introduction

    Wax components in crude oil result in complex precipitation and crystallization behavior (Bai et al. 2019; Guo et al. 2004;Ganeeva et al. 2016; Hassanzadeh et al. 2018; Li et al. 2018;Lim et al. 2018; Wang et al. 2019; Zhang et al. 2013). In lowtemperature environment (e.g., deep water, polar region),the precipitated wax crystal forms three-dimensional network and may cause serious flow assurance problem such as coagulation, blockage and even rupture during pipeline transportation (Chevallier et al. 2000; Pechook et al. 2016;Visintin et al. 2005). Different chemical and physical methods are considered to modify the crystallization of crude oil(Ashbaugh et al. 2002; Castro and Vazquez 2008; Deshmukh and Bharambe 2008; Yang et al. 2019). Based on copolymerization and chemical grafting, pour point depressant (PPD)such as ethylene–vinyl acetate copolymers (EVA), acrylic acid ester polymers and styrene–maleic anhydride–acrylic acid alcohol ester copolymers (Binks et al. 2015; Castro and Vazquez 2011; Deshmukh and Bharambe 2014; Huang et al.2013; Jun et al. 2010; Li et al. 2012; Liu et al. 2015; Soni et al. 2008; Soni et al. 2010; Xu et al. 2013) are synthesized;however, the fluidity of modi fied crude oil might deteriorate when temperature rises due to its instability (Soni et al.2008).

    In recent years, nanoparticle is selected to develop nanocomposite pour point depressant (NPPD) (AlSabagh et al.2016; Gao et al. 2017; He et al. 2016; Huang et al. 2018,2019; Norrman et al. 2016; Song et al. 2016; Tu et al. 2018;Yang et al. 2017; Yao et al. 2018; Zhao et al. 2018). Since the surface effect generated in nanometer dimension, nanoparticle possesses unique physical–chemical properties and has aroused tremendous attention in synthesizing various function materials (Guo et al. 2004; Ganeeva et al. 2016; Li et al. 2018; Lim et al. 2018; Zhang et al. 2013). Research on NPPD’s synthesis and application has been conducted in the modi fication of wax crystallization (AlSabagh et al.2016; He et al. 2016; Huang et al. 2019; Tu et al. 2018).Bene fit from the speci fic lamellar structure and good dispersibility of nanoparticle, NPPD is prepared by blending of organic modi fied montmorillonite layer and different polymers (AlSabagh et al. 2016; Gao et al. 2017; He et al.2016; Huang et al. 2018, 2019), which demonstrates better modi fication compared to traditional PPDs in reducing pour point and bulk phase viscosity. Meanwhile, organic modi fied silica nanoparticle is applied to prepare NPPD which demonstrates obvious improvement in the waxy oil fluidity (Norrman et al. 2016; Song et al. 2016). In addition,the graphene oxide and attapulgite are introduced into the development of NPPD and gained good achievement (Tu et al. 2018; Zhao et al. 2018).

    Physical methods, as electrical or magnetic, are widely investigated (Bacri et al. 1995; Du et al. 2018; Martínez-Palou et al. 2011; Ma et al. 2017; Tao et al. 2014). Both the electrical and magnetic treatments can depress the viscosity of waxy crude oil (Martínez-Palou et al. 2011). Under the electric field, it is revealed that the aggregation of suspended crystal particles into chains should be responsible for the weakness of crystal network (Tao et al. 2014). Similarly,the suspended crystal particles aggregate and lead to the decrease in waxy crude oil viscosity when applying a pulsed magnetic field (Rosensweig 1996; Tao and Xu 2006). However, the modi fication effect of magnetic field is selective which is not only related to the properties of crude oil, but also depended on the metal ions (Mn2+, Sr2+, Br?) and water content in crude oil (Gon?alves et al. 2010; Gon?alves et al.2011; Shliomis and Morozov 1994).

    With the combination of NPPD and traditional PPD, the synergistic effect of magnetic field and PPDs has rarely been investigated. In the present work, the synergistic modification effect of an alternating magnetic field and a developed NPPD (He et al. 2016; Huang et al. 2018; Huang et al.2019) on waxy model oil is investigated. The yield stress of the waxy model oil is systematically characterized. Parameters as magnetic field intensity, frequency and temperature are considered, which aims to advance the understanding of synergistic modi fication methods in waxy oil fluidity improvement.

    2 Experimental materials and methods

    The waxy model oil is prepared by dissolving 10 wt%mixed wax (Daqing Refining & Chemical Company)into the solvent oil D80 (ExxonMobil). The viscosity(25 °C) of D80 is 2.09 mm2/s, and density (15 °C) is 0.795 g/cm3. Carbon distribution of oil and mixed wax is provided in Table 1. The NPPD used is developed by melting blending of EVA and montmorillonite, organic modified by hexadecyl trimethyl ammonium bromide(Qin et al. 2005). Details of NPPD used can be found in studies (He et al. 2016; Huang et al. 2018; Huang et al.2019). NPPD is dissolved in diesel solvent at a concentration of 3% (mass fraction) under stirring for 30 min before added into waxy model oil.

    Table 1 Carbon distribution of D80 and mixed wax

    Table 2 WAT of undoped/doped (200 mg/kg) waxy model oil

    Wax appearance temperature (WAT) of undoped/doped waxy model oil is measured with differential scanning calorimeter (TA2000). The measured WAT is shown in Table 2. Yield stress of waxy model oil under magnetic field is obtained by rheometer (TA, DHR-2). The MR module of rheometer consists of upper and lower cover assembly, and a cylindrical core surrounded by solenoid(Fig. 1). Firstly, heating the waxy model oil to 60 °C and keeping 2 h; then, cooling to set temperature at 0.5 °C/min and keeping for 30 min. Finally, applying shear stress from 0 to 600 Pa at 5 Pa/min under magnetic field and obtaining the stress–strain curves. Crystal morphology of waxy model oil treated with magnetic field (0.3 T, 20 Hz)is observed by microscope (BX51) at 15 °C.

    Fig. 1 MR module of rheometer, a structure diagram of MR module (TA Instruments-Waters LLC 2015), b schematic diagram of MR module

    Fig. 2 Synergistic effect of magnetic field (0.2 T, 20 Hz) and EVA/NPPD (200 mg/kg) on the yield stress of waxy model oil (15 °C)

    Fig. 3 Yield stress curves of undoped waxy model oil under magnetic field at different temperatures (15, 20, 25 °C)

    3 Results and discussion

    To gain better understanding on the synergistic effect, an alternating magnetic field is applied to the NPPD-doped and EVA-doped waxy model oil. For example, combined with magnetic field (0.2 T, 20 Hz), the yield stress further decreases from 46 to 19 Pa (EVA doped) and 30 to 14 Pa(NPPD doped), as shown in Fig. 2. Factors influencing the synergistic modification of magnetic field and NPPD are systematically investigated.

    3.1 The synergistic modi fication effect under different temperatures

    When the temperature decreases to WAT, wax crystals precipitate and connect with each other. As a key parameter to characterize the strength of crystal network, the yield stress is temperature dependent (Venkatesan et al. 2005).The effect of magnetic field on yield stress under different temperatures is important. An optimized magnetic field in current work (0.3 T, 20 Hz) is applied to the waxy model oil at different temperatures. The results of yield stress are shown in Figs. 3, 4 and 5.

    Fig. 4 Yield stress curves of EVA-doped (200 mg/kg) waxy model oil under magnetic field at different temperatures (10, 15, 20 °C)

    Fig. 5 Yield stress curves of NPPD-doped (200 mg/kg) waxy model oil under magnetic field at different temperatures (10, 15, 20 °C)

    For undoped waxy model oil, the yield stress without magnetic field is 196 Pa at 15 °C, while it decreases to 127 Pa (35.2% reduction) under magnetic field (0.3 T,20 Hz), as shown in Fig. 3. At 20 °C, the yield stress without magnetic field is 41 Pa, while the yield stress decreases to 16 Pa (60.9% reduction) under magnetic field. Similar trend is obtained at 25 °C, where the yield stress varies from 24 to 9 Pa (62.5% reduction).

    For doped waxy model oil, the yield stress at 20, 15 and 10 °C is selected and compared as shown in Figs. 4 and 5 (25 °C is not demonstrated due to a limited yield stress with PPD). For EVA-doped waxy model oil, the yield stress decreases from 16 to 4 Pa (20 °C), 46 to 8 Pa (15 °C), 102 to 23 Pa (10 °C) under magnetic field (0.3 T, 20 Hz) in Fig. 4. The reduction in yield stress under magnetic field is 75% (20 °C), 82.6% (15 °C), 77.4% (10 °C) under magnetic field. Similar effect is found in NPPD-doped waxy model oil; the yield stress decreases from 7 to 1 Pa (20 °C), 30 to 5 Pa (15 °C), 50 to 14 Pa (10 °C) under magnetic field(0.3 T, 20 Hz) in Fig. 5. The reduction in yield stress is 85.7% (20 °C), 83.3% (15 °C), 72% (10 °C) under magnetic field, as shown in Table 3.

    The yield stress and its reduction are further compared at 15 °C. It is found that the reduction in yield stress is 35.2% (196 to 127 Pa) for undoped waxy model oil. However, with synergistic modi fication of NPPD or EVA and magnetic field, the reduction in yield stress is 83.3% (30to 5 Pa) for NPPD-doped and 82.6% (46 to 8 Pa) for EVA-doped waxy model oil. The synergistic effect of magnetic field and NPPD is obviously compared to magnetic field alone. Furthermore, the synergistic effect under different magnetic intensities and frequencies is further investigated in Sects. 3.2 and 3.3.

    3.2 The effect of magnetic intensity on synergistic modi fication

    The effect of magnetic field intensity (0–0.5 T) on yield stress of waxy model oil is discussed at the magnetic field frequency of 20 Hz. Based on Table 3, an intermittent temperature is selected for demonstration (undoped oil 20 °C,doped oil 15 °C). For undoped oil (20 °C), the yield stress decreases from 41 to 37 Pa (0.1 T), 28 Pa (0.2 T), 16 Pa(0.3 T) and 5 Pa (0.4 T), respectively. With the intensity further increasing to 0.5 T, the yield stress slightly rebounds to 7 Pa, as shown in Fig. 6.

    For EVA-doped oil (200 mg/kg, 15 °C), the yield stress is sensitive to the variation of magnetic field intensity which decreases from 46 to 25 Pa (0.1 T), 19 Pa(0.2 T), 8 Pa (0.3 T) and 5 Pa (0.4 T). Similar trend is obtained that with the intensity increasing to 0.5 T, the yield stress increases to 9 Pa (Fig. 7). For NPPD-doped oil (200 mg/kg, 15 °C), the yield stress decreases from 30 to 27 Pa(0.1 T), 14 Pa (0.2 T) and 5 Pa (0.3 T). When the magnetic field intensity increases to 0.4 and 0.5 T, the yield stress rebounds to 16 Pa and 20 Pa (Fig. 8).

    Yield stress and its reduction in NPPD-/EVA-doped waxy model oil (200 mg/kg, 20 Hz, 15 °C) is further compared in Fig. 9; it can be gained that the optimal magnetic field intensity in EVA-doped oil is 0.4 T, while it is 0.3 T in NPPD-doped oil.

    Table 3 Yield stress of wax model oil under magnetic field (0.3 T, 20 Hz)

    Fig. 6 Yield stress curves of undoped waxy model oil under magnetic field (20 Hz, 20 °C) at different intensities (0–0.5 T)

    Fig. 7 Yield stress curves of EVA-doped (200 mg/kg) waxy model oil under magnetic field (20 Hz, 15 °C) at different intensities (0–0.5 T)

    3.3 The effect of magnetic frequency on synergistic modi fication

    The effect of magnetic field frequency (0–50 Hz) on yield stress of waxy model oil is discussed at the magnetic field intensity of 0.3 T. For undoped oil (20 °C), the yield stress decreases from 41 to 29 Pa (5 Hz), 24 Pa (10 Hz), 16 Pa(20 Hz) and 12 Pa (40 Hz), respectively. However, an opposite trend is observed that the yield stress rebounds to 21 Pa with the frequency further increasing to 50 Hz, as shown in Fig. 10.

    For EVA-doped oil (200 mg/kg, 15 °C), the yield stress decreases from 46 to 39 Pa (5 Hz), 15 Pa(10 Hz) and 8 Pa(20 Hz). There is a minimum yield stress of 6 Pa (40 Hz). Then the yield stress increases to 9 Pa with the frequency increasing to 50 Hz (Fig. 11). For NPPD-doped oil (200 mg/kg, 15 °C), the yield stress decreases from 30 to 27 Pa (5 Hz), 24 Pa (10 Hz)and 5 Pa (20 Hz). An opposite trend is observed that the yield stress rebounds and increases to 15 and 25 Pa with the frequency increasing to 40 and 50 Hz (Fig. 12).

    Fig. 10 Yield stress curves of undoped waxy model oil under magnetic field (0.3 T, 20 °C) at different frequencies (0–50 Hz)

    Fig. 11 Yield stress curves of EVA-doped (200 mg/kg) waxy model oil under magnetic field (0.3 T, 15 °C) at different frequencies(0–50 Hz)

    Fig. 12 Yield stress curves of NPPD-doped (200 mg/kg) waxy model oil under magnetic field (0.3 T, 15 °C) at different frequencies(0–50 Hz)

    Fig. 13 Yield stress and its reduction in NPPD-/EVA-doped (200 mg/kg) waxy model oil under magnetic field (0.3 T, 15 °C) at different frequencies (0–50 Hz)

    Yield stress and its reduction in NPPD-/EVA-doped waxy model oil (200 mg/kg, 0.3 T, 15 °C) is further compared in Fig. 13. It can be gained that the optimal magnetic field frequency in EVA-doped oil is 40 Hz, where the yield reduction is better than other frequencies, while the optimal magnetic field frequency in NPPD-doped oil is 20 Hz (Fig. 13).

    Actually, yield stress behavior under different magnetic intensities and frequencies re flects the in fluence of magnetic field on wax crystal’s network. As shown in Fig. 14a, the precipitated wax crystals obviously interacted with each other and formed network structure in undoped waxy model oil; the yield stress is 196 Pa at 15 °C. With the addition of EVA (Fig. 14c) or NPPD (Fig. 14e), co-crystallization in EVA or heterogeneous nucleation in NPPD-doped system (He et al. 2016; Norrman et al. 2016) demonstrates the modi fication of crystal morphology; consequently, the yield stress is reduced to 46 Pa (EVA) and 30 Pa (NPPD) at 15 °C.It is interesting that an aggregation trend of wax crystals is observed after treated with magnetic field, which contributes to the release of liquid oil wrapped between crystal network (Ma et al. 2017; Tao et al. 2014). The change of wax crystal morphology under magnetic field results in a lower yield stress (undoped oil, 196 Pa to 127 Pa; EVA-doped oil,46 Pa to 8 Pa; NPPD-doped oil, 30 Pa to 5 Pa) (AlSabagh et al. 2016). However, when the optimum magnetic field is exceeded, aggregation of wax crystals might reversely strengthen the crystal network. (Fig. 15)

    4 Conclusions

    The effect of alternating magnetic field (intensity, frequency)on the yield stress of waxy model oil with/without PPDs is investigated. It is found that the optimum magnetic intensity is 0.4 T for EVA-doped oil and is 0.3 T for NPPD-doped oil. Furthermore, for magnetic frequency, the optimal value is 20 Hz for NPPD-doped system, but 40 Hz for EVA-doped system. When the magnetic intensity or frequency is lower than this optimum value, the yield stress reduction is enhanced with the increase in intensity and frequency.However, the modi fication is found to be weakened when the magnetic field is further increased after the optimal value.Under the magnetic field, the aggregation of wax crystals would be altered which could be owed to the variation of yield stress.

    Fig. 14 The morphology of undoped/doped waxy model oil with/without magnetic field (0.3 T, 20 Hz)

    Fig. 15 The schematic diagram of synergistic modi fication

    AcknowledgementsThe authors wish to thank the National Natural Science Foundation of China (51774303, 51422406, 51534007), the National Science & Technology Speci fic Project (2016ZX05028-004-001), 111 Project (B18054) and Science Foundation of China University of Petroleum, Beijing (C201602) for providing support for this work.

    Compliance with ethical standards

    Conflicts of interestThere are no con flicts of interest to declare.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons.org/licen ses/by/4.0/.

    狂野欧美激情性xxxx| 精品国产亚洲在线| 天天影视国产精品| 久久中文字幕一级| 香蕉国产在线看| 两性夫妻黄色片| 色婷婷av一区二区三区视频| 亚洲欧洲日产国产| 少妇 在线观看| 日本欧美视频一区| 久久亚洲真实| 高清av免费在线| 日韩免费高清中文字幕av| 女人被躁到高潮嗷嗷叫费观| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 正在播放国产对白刺激| 久久国产精品影院| 深夜精品福利| 午夜精品久久久久久毛片777| 久久人妻av系列| 久热爱精品视频在线9| avwww免费| 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 黄色成人免费大全| 人妻 亚洲 视频| 最近最新中文字幕大全免费视频| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| 一区二区av电影网| 午夜福利影视在线免费观看| 午夜福利视频在线观看免费| 狠狠狠狠99中文字幕| 国产单亲对白刺激| 欧美日韩精品网址| 久久久精品免费免费高清| 男女下面插进去视频免费观看| 国产成人欧美在线观看 | 又黄又粗又硬又大视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| www.精华液| 国产精品久久久久久精品电影小说| 国产在线观看jvid| 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 国产一区二区 视频在线| www日本在线高清视频| 老汉色∧v一级毛片| 欧美黑人精品巨大| 午夜福利在线免费观看网站| 久久精品成人免费网站| 精品一区二区三区四区五区乱码| 久久久久精品国产欧美久久久| 9191精品国产免费久久| 在线观看66精品国产| 国产欧美日韩一区二区三区在线| 亚洲成人免费av在线播放| 日韩 欧美 亚洲 中文字幕| 欧美黑人欧美精品刺激| 亚洲国产欧美一区二区综合| 国产成人av教育| 国产人伦9x9x在线观看| 丰满少妇做爰视频| 蜜桃国产av成人99| 另类亚洲欧美激情| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 成人国产av品久久久| 手机成人av网站| 国产淫语在线视频| 国产色视频综合| 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 亚洲中文字幕日韩| 久久精品人人爽人人爽视色| 777米奇影视久久| 久久久久网色| 国产精品免费一区二区三区在线 | 国产成人av教育| 黑人操中国人逼视频| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 制服人妻中文乱码| 日韩免费av在线播放| 老司机影院毛片| 日韩大片免费观看网站| 五月天丁香电影| 国产主播在线观看一区二区| 亚洲熟女精品中文字幕| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 大型av网站在线播放| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 99热网站在线观看| 在线 av 中文字幕| 黄片小视频在线播放| 国产av又大| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 久久亚洲真实| 啦啦啦视频在线资源免费观看| 国产精品影院久久| 高清黄色对白视频在线免费看| 亚洲欧洲日产国产| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av | 少妇 在线观看| 男女床上黄色一级片免费看| 操美女的视频在线观看| 精品福利观看| 女性生殖器流出的白浆| 大片电影免费在线观看免费| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| 大型黄色视频在线免费观看| 黄频高清免费视频| 久久热在线av| 亚洲美女黄片视频| 久久中文字幕人妻熟女| 最近最新中文字幕大全电影3 | 丝瓜视频免费看黄片| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区精品视频观看| 性高湖久久久久久久久免费观看| 欧美另类亚洲清纯唯美| 欧美 日韩 精品 国产| 精品久久久久久久毛片微露脸| 亚洲伊人久久精品综合| 香蕉久久夜色| 高清视频免费观看一区二区| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区 | 男女免费视频国产| xxxhd国产人妻xxx| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 美女福利国产在线| 久久毛片免费看一区二区三区| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产 | 日韩大码丰满熟妇| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 9热在线视频观看99| 欧美激情 高清一区二区三区| 国产精品免费一区二区三区在线 | 亚洲免费av在线视频| 曰老女人黄片| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 一级黄色大片毛片| 99国产综合亚洲精品| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 国产精品久久久久久人妻精品电影 | 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | 国产黄频视频在线观看| 天天躁日日躁夜夜躁夜夜| 久久久精品免费免费高清| av福利片在线| 欧美性长视频在线观看| 国产在线免费精品| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 夜夜爽天天搞| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 另类亚洲欧美激情| 一区二区三区精品91| 欧美久久黑人一区二区| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 露出奶头的视频| 国产黄频视频在线观看| 国产精品免费大片| 亚洲av片天天在线观看| 日韩中文字幕欧美一区二区| 国产真人三级小视频在线观看| 极品教师在线免费播放| 69精品国产乱码久久久| 丰满迷人的少妇在线观看| 欧美日韩av久久| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 亚洲黑人精品在线| 成人永久免费在线观看视频 | 一级毛片精品| 考比视频在线观看| 亚洲成国产人片在线观看| 国产日韩欧美视频二区| 免费观看人在逋| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 啦啦啦免费观看视频1| 69精品国产乱码久久久| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 在线观看免费高清a一片| av视频免费观看在线观看| 视频区图区小说| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 国产高清激情床上av| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| videosex国产| 9色porny在线观看| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 9色porny在线观看| 考比视频在线观看| 一级片'在线观看视频| 大型黄色视频在线免费观看| 国产av又大| 国产精品久久久久久精品电影小说| av有码第一页| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频精品福利| 丝袜人妻中文字幕| 国产精品久久久久久精品电影小说| 视频区欧美日本亚洲| 国产精品一区二区在线不卡| 美女午夜性视频免费| 制服诱惑二区| 亚洲男人天堂网一区| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 男女免费视频国产| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 久久人妻av系列| 美女午夜性视频免费| 午夜老司机福利片| 久久久精品区二区三区| 久久精品国产亚洲av高清一级| 窝窝影院91人妻| 国产av一区二区精品久久| 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区免费| 九色亚洲精品在线播放| 欧美日韩亚洲国产一区二区在线观看 | 这个男人来自地球电影免费观看| 午夜久久久在线观看| 亚洲色图av天堂| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 国产精品1区2区在线观看. | 日韩制服丝袜自拍偷拍| 99在线人妻在线中文字幕 | 人人妻人人澡人人看| 午夜日韩欧美国产| 嫩草影视91久久| 久久精品aⅴ一区二区三区四区| 日韩熟女老妇一区二区性免费视频| 中国美女看黄片| 午夜成年电影在线免费观看| 9热在线视频观看99| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 不卡一级毛片| 一区二区三区精品91| 欧美日韩精品网址| av网站免费在线观看视频| 精品久久久精品久久久| 黑丝袜美女国产一区| 国精品久久久久久国模美| 成年动漫av网址| 极品人妻少妇av视频| 亚洲精品国产区一区二| 日本av免费视频播放| av免费在线观看网站| 性色av乱码一区二区三区2| 午夜日韩欧美国产| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| av网站在线播放免费| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 12—13女人毛片做爰片一| 亚洲人成电影观看| 日韩一区二区三区影片| 桃红色精品国产亚洲av| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 少妇 在线观看| 欧美在线一区亚洲| 一边摸一边抽搐一进一出视频| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 香蕉丝袜av| 丝袜美足系列| 国产一区二区三区在线臀色熟女 | 欧美精品av麻豆av| h视频一区二区三区| av又黄又爽大尺度在线免费看| 国产亚洲精品第一综合不卡| 成人国语在线视频| 免费看a级黄色片| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的| 电影成人av| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 性高湖久久久久久久久免费观看| 丝袜美足系列| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 久久久久精品人妻al黑| 日日夜夜操网爽| 国产在线视频一区二区| 久久 成人 亚洲| 亚洲精品美女久久av网站| 91老司机精品| 在线天堂中文资源库| 日本av手机在线免费观看| 日本精品一区二区三区蜜桃| 久久青草综合色| 国产精品二区激情视频| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 成人影院久久| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| kizo精华| 婷婷成人精品国产| 国内毛片毛片毛片毛片毛片| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 黄色丝袜av网址大全| 自线自在国产av| 久久午夜亚洲精品久久| 国产欧美日韩一区二区三区在线| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 最黄视频免费看| 老熟妇仑乱视频hdxx| 美女主播在线视频| 老熟女久久久| 国产区一区二久久| 欧美在线黄色| www.精华液| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 五月开心婷婷网| 丁香六月欧美| 亚洲精品中文字幕一二三四区 | 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 免费少妇av软件| 精品一区二区三区视频在线观看免费 | 蜜桃在线观看..| 操美女的视频在线观看| 老汉色∧v一级毛片| 国产精品 国内视频| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 多毛熟女@视频| 一个人免费看片子| 国产国语露脸激情在线看| 亚洲午夜精品一区,二区,三区| 国产av精品麻豆| 啦啦啦在线免费观看视频4| 国产精品国产av在线观看| 精品欧美一区二区三区在线| 亚洲全国av大片| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 亚洲,欧美精品.| 人人妻人人澡人人看| 亚洲午夜理论影院| 国产精品久久久人人做人人爽| 亚洲伊人久久精品综合| 在线观看66精品国产| 黄色视频不卡| 美女扒开内裤让男人捅视频| 每晚都被弄得嗷嗷叫到高潮| 肉色欧美久久久久久久蜜桃| 最近最新中文字幕大全电影3 | 高清av免费在线| 男人舔女人的私密视频| 久久99一区二区三区| 免费av中文字幕在线| 韩国精品一区二区三区| 免费看十八禁软件| 午夜91福利影院| 久久精品国产亚洲av香蕉五月 | 久久人妻av系列| 欧美黑人欧美精品刺激| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 国产色视频综合| 999久久久国产精品视频| 夜夜夜夜夜久久久久| 精品一区二区三卡| 国产一区二区 视频在线| 日韩三级视频一区二区三区| av电影中文网址| 国产成人精品无人区| 麻豆成人av在线观看| 后天国语完整版免费观看| 亚洲全国av大片| 成人国语在线视频| 另类亚洲欧美激情| 日日夜夜操网爽| 极品教师在线免费播放| 97人妻天天添夜夜摸| 大香蕉久久成人网| 嫩草影视91久久| 中文字幕色久视频| 国产91精品成人一区二区三区 | 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 一本—道久久a久久精品蜜桃钙片| 在线观看免费视频网站a站| 精品第一国产精品| 一个人免费在线观看的高清视频| 欧美激情久久久久久爽电影 | 国产免费av片在线观看野外av| 国产亚洲午夜精品一区二区久久| 亚洲精品美女久久久久99蜜臀| 国产免费视频播放在线视频| 满18在线观看网站| 精品国产亚洲在线| 热99re8久久精品国产| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 亚洲中文av在线| 免费在线观看视频国产中文字幕亚洲| 最近最新免费中文字幕在线| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆| 精品人妻在线不人妻| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 黄色视频在线播放观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久av美女十八| 精品第一国产精品| 大陆偷拍与自拍| 精品福利观看| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 正在播放国产对白刺激| 91成年电影在线观看| 美女国产高潮福利片在线看| 麻豆国产av国片精品| 久久久国产欧美日韩av| 久久影院123| 五月开心婷婷网| 女性被躁到高潮视频| 国产精品成人在线| 精品人妻1区二区| 国产亚洲午夜精品一区二区久久| 啦啦啦 在线观看视频| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 久久久久久久国产电影| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| 亚洲午夜理论影院| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 婷婷丁香在线五月| 亚洲成av片中文字幕在线观看| 午夜91福利影院| 亚洲精品自拍成人| 99久久人妻综合| 欧美国产精品一级二级三级| 日韩熟女老妇一区二区性免费视频| 在线 av 中文字幕| 午夜精品久久久久久毛片777| videos熟女内射| av天堂久久9| 亚洲av电影在线进入| 国产精品一区二区精品视频观看| 女警被强在线播放| 日韩欧美一区视频在线观看| 91精品国产国语对白视频| 最近最新中文字幕大全免费视频| 国产成人欧美| av又黄又爽大尺度在线免费看| 99精品欧美一区二区三区四区| 日韩免费高清中文字幕av| 欧美亚洲 丝袜 人妻 在线| 精品人妻1区二区| 正在播放国产对白刺激| 成在线人永久免费视频| 国产视频一区二区在线看| 精品国产一区二区久久| 在线永久观看黄色视频| 国产成人精品久久二区二区免费| 亚洲精品自拍成人| 国产男靠女视频免费网站| av天堂久久9| 精品国产一区二区三区久久久樱花| 在线观看66精品国产| 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三| 久久精品国产综合久久久| a级毛片在线看网站| 国产深夜福利视频在线观看| 婷婷丁香在线五月| 亚洲精品国产精品久久久不卡| 五月天丁香电影| 别揉我奶头~嗯~啊~动态视频| 久久狼人影院| 国产成人免费无遮挡视频| 久久久久久久精品吃奶| 午夜精品国产一区二区电影| 国产精品欧美亚洲77777| 久久精品人人爽人人爽视色| 亚洲五月色婷婷综合| 两人在一起打扑克的视频| 亚洲,欧美精品.| 中文字幕精品免费在线观看视频| 如日韩欧美国产精品一区二区三区| 丁香欧美五月| 一级毛片精品| 亚洲精品自拍成人| videos熟女内射| 天堂8中文在线网| 亚洲国产精品一区二区三区在线| 蜜桃国产av成人99| 亚洲avbb在线观看| 露出奶头的视频| 亚洲三区欧美一区| 777米奇影视久久| 国产三级黄色录像| 亚洲欧美日韩另类电影网站| 最新在线观看一区二区三区| 99re6热这里在线精品视频| 色综合婷婷激情| 亚洲七黄色美女视频| 国产视频一区二区在线看| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站 | 视频区欧美日本亚洲| 黄片播放在线免费| 亚洲熟妇熟女久久| 日日夜夜操网爽| 五月开心婷婷网| 咕卡用的链子| 国产有黄有色有爽视频| av不卡在线播放| 一级片免费观看大全| 亚洲精品在线美女| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 少妇被粗大的猛进出69影院| 欧美国产精品一级二级三级| 国产主播在线观看一区二区| 丰满迷人的少妇在线观看| 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 国产精品久久电影中文字幕 | 每晚都被弄得嗷嗷叫到高潮| 一区二区av电影网| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线 | 欧美日韩亚洲国产一区二区在线观看 | 美女福利国产在线| 国产免费福利视频在线观看| 日韩一区二区三区影片| 国产国语露脸激情在线看| 久久国产精品男人的天堂亚洲| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久|