• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cucurbitane-Type Triterpene Glycosides from Momordica charantia and Their α-Glucosidase Inhibitory Activities

    2020-06-19 08:08:28YaGaoJianChaoChenXingRongPengZhongRongLiHaiGuoSuMingHuaQiu
    Natural Products and Bioprospecting 2020年3期

    Ya Gao 1,2 · Jian-Chao Chen 1 · Xing-Rong Peng 1 · Zhong-Rong Li 1 · Hai-Guo Su 1,2 · Ming-Hua Qiu 1,2,3

    Abstract

    Keywords Momordica charantia · Cucurbitane-type triterpene glycosides · α-Glucosidase inhibitory activity

    Graphic Abstract

    1 Introduction

    Diabetes mellitus (DM) is a type of metabolic disorder caused by insuき cient insulin secretion or insulin utilization disorder, and is marked by persistent hyperglycemia [ 1]. The latest edition of the International Diabetes Federation (IDF)'s Diabetes Atlas estimates that, in 2019, about 463 million adults were living with DM around the world, and 11.3% of global deaths were due to DM [ 2]. Moreover, it can overwhelm the social and economic welfare of all countries, regardless of their economic level. Therefore, the prevention and treatment of DM is essential. In modern medicine, there are many oral hypoglycemic agents (OHAs) used to treat DM, however, they also have diあ erent adverse eあ ects including gastrointestinal upset, lactic acidosis, characteristic hepatocyte injury, dizziness, acute hypoglycemia, and even death [ 3, 4]. Therefore, screening the new hypoglycemic drugs with high eき ciency and low toxicity from the natural products of plants is urgently required. In China, ancient books have recorded many Chinese herbs used in the treatment of DM, among which Momordica charantia (Cucurbitaceae) was very popular and had an incredible hypoglycemic eあ ect. Therefore, M. charantia has great research potential in reducing blood sugar and is a hot spot in modern phytochemical research.

    Momordica charantia is a traditional medicinal and edible plant, which has a long history of use in developing countries. Modern phytochemistry research shows that both crude extracts and secondary metabolites (including polysaccharides, triterpenes, saponins, proteins, fl avonoids, alkaloids, and steroids, etc.) of M. charantia possess antidiabetic activity [ 5- 10]. Thereinto, cucurbitane-type triterpenoids are the main bioactive ingredients in M. charantia, which can control blood sugar through multiple mechanisms of action (such as PPAR- γ activator, PTP1B inhibitor, and α-glucosidase inhibitor, etc.) [ 11, 12]. To date, more than 300 kinds of cucurbitane-type triterpenoids have been identifi ed, and some of them showed prominent biological activity [ 6, 10, 13]. Based on this, we conducted further excavations, hoping to fi nd new cucurbitane-type triterpenoids with good hypoglycemic activity.

    2 Results, Discussion and Conclusion

    Phytochemical investigation of the fruits of M. charantia resulted in the isolation of fi ve new compounds, charantosides H ( 1), J ( 2), K ( 3), momorcharacoside A ( 4), and goyaglycoside- L ( 5), by repeated column chromatography (CC) (Fig. 1). Meanwhile, fi ve known compounds ( 6-10) were isolated and identifi ed, on the basis of comparison of obtained values with literature values, as (19 R,23 E)-5 β,19-epoxy-19-methoxycucurbita-6,23,25-trien-3 β-ol 3- O- β- D-allopyranoside ( 6) [ 14], charantoside I ( 7) [ 15], charantoside III ( 8) [ 15], momordicoside K ( 9) [ 16], and 7 β,25-dimethoxycucurbita-5(6),23( E)-dien-19-al 3- O- β- Dallopyranoside ( 10) [ 17] (Fig. 1), respectively.

    All of the fi ve new compounds were considered as monoglycosides based on the IR absorption bands of a glycosidic function (e.g., 1: νmax3426, 1084, 1033 cm -1 ) [ 15, 18] and an anomeric proton signal of the glycosyl moiety observed in their 1 H NMR spectra. After acid hydrolysis, the sugars of 4 and 5 were identifi ed as D-allose and D-glucose by comparing their TLC and specifi c rotation with the corresponding authentic sample. The predicted structures for these new compounds as depicted below were supported by analysis of the 1 H- 1 H COSY, HMBC, and NOESY data (Figs. 2 and 3), in addition to 13 C-DEPT, and HMQC data.

    Compound 1 was obtained as white amorphous powder. The molecular formula C38H62O9was deduced from its HRESIMS (positive-ion mode) data (685.4295 [M + Na] + ), indicated eight degrees of unsaturation. The 1 H NMR spectrum of 1 (Table 1) showed signals assignable to seven methyl groups [ δ H 1.73, 1.69, 1.47, 1.05, 0.88, 0.86, 0.84], two methoxy groups [ δH3.58, 3.29], three olefi nic protons [ δH6.27 (1H, dd, J = 1.8, 9.0 Hz), 5.48 (1H, dd, J = 3.6, 9.6 Hz), 5.22 (1H, d, J = 8.4 Hz)], and an anomeric proton [ δH5.36 (1H, d, J = 7.8 Hz, H-1′)]. The 13 C NMR (Table 2) showed 38 carbon signals. The DEPT spectrum exhibited nine methyls, eight methylenes, fi fteen methines, and six quaternary carbons. And 13 C NMR spectrum showed olefi nic carbons appeared at δC135.1, 134.4, 129.1, and 127.7. The NMR data of 1 were closely similar to those of (19 R,23 R)-5 β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3 β-ol 3- O- β- D-allopyranoside (charantoside II) [ 15] except for the signals due to the stereochemistry at C-19. And that Δ δ C values [ δC(charantoside II) - δC( 1)] for the relevant signals were calculated as 1.7 (C-5), - 7.3 (C-8), - 0.7 (C- 9), 2.8 (C-10), 1.6 (C-11) and -1.4 (C-19) from the 13 C NMR data of charantoside II and 1, which were feckly consistent with the Δ δCvalues [ δC(19 R) - δC(19 S)] of 1.8 (C-5), - 7.8 (C-8), - 0.7 (C-9), 2.6 (C-10), 1.8 (C-11) and -2.6 (C-19) calculated from the 13 C NMR data of 5 β,(19 R)- and 5 β,(19 S)-epoxy-19,23-dimethoxycucurbita-6,24-dien-3β-ol [ 19]. Therefore, compound 1 has the ( S)-confi guration at C-19, and the ROESY correlation (Fig. 3) of H-8/H-19 confi rmed the above deduction [ 20]. The actual connection positions were further established on the basis of HMBC correlations (Fig. 2) between H-1′ ( δH5.36) of the sugar moiety and C-3 ( δC84.7) of the aglycon group. And we found that the NMR data of the sugar moiety of 1 was basically consistent with 4, which corroborates the presence of a D-allose. In addition, long-range correlations were also observed at 19-methoxyl protons ( δH3.58)/C-19 ( δC113.8), and 23-methoxyl protons ( δH3.29)/C-23 ( δC74.6). Therefore, the molecular formula of 1, along with the 1D and 2D spectroscopic data illustrated that the structure of 1 could be assigned as (19 S,23 R)-5 β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3 β-ol 3- O- β- Dallopyranoside, named charantoside H.

    Compound 2 was obtained as white solid. It showed a quasi-molecular ion at 685.4293([M + Na] + ) in the HRESIMS (positive-ion mode) spectrum and had the same molecular formula C38H62O9as 1, which also possessed eight degrees of unsaturation. Detailed analysis of the 1 H, 13 C NMR, and DEPT spectra (Tables 1 and 2) of compound 2, which showed heavily resemblance in all signals to those of (19 S,23 R)-5 β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3 β-ol 3- O- β- D-allopyranoside (charantoside H, 1) except that D-allose of 1 were replaced by D-glucose in 2. In the 13 C NMR spectrum of compound 2, an anomeric carbon atom ( δ C 105.2) and a series of oxygenated carbon signals ( δC78.6, 77.8, 76.1, 71.8, and 62.9) were in line with 5, confi rmed the presence of a β- D-glucopyranosyl residue [ 15]. The 1 H- 1 H COSY and HMBC correlations of compound 1 and 2 were similar, but their ROESY spectra (Fig. 3) showed the diあ erent correlations between H-3′/H-5′, further proved the type of sugar moiety of 2. Similarly, the absolute confi guration of C-19 ( S) in 2 was confi rmed by ROESY correlation of H-8/H-19. Based on the above corroboration, the structure of compound 2 was identifi ed as (19 S,23 R)-5 β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3 β-ol 3- O- β- D-glucopyranoside, named charantoside J.

    Table 1 1 H NMR spectroscopic data of compounds 1- 5 in pyridine-d5 [δ in ppm, J in Hz]

    Compound 3 was obtained as white amorphous powder. It revealed a quasi-molecular ion at 685.4296 ([M + Na] + ) in the HRESIMS (positive-ion mode) spectrum and had the same molecular formula C38H62O 9 as 1. According to the1H,13C NMR, and DEPT spectra (Tables 1 and 2) of 3, which were also similar to those of charantoside H ( 1) except for the signals due to the stereochemistry at C-23. Compound 3 exhibited 1 H NMR signals (Table 1) for the side-chain protons at δ 1.03 (3H, d, J = 5.6 Hz, a secondary methyl), 1.69 and 1.73 (each 3H, s, two vinylic methyls), 3.29 (3H, s, an O-methyl), 4.10 (1H, m, an allylic oxymethine), and 5.15 (1H, dt, J = 1.6, 9.6 Hz, an olefi nic methine). Detailed comparisons of its 13 C NMR data (Table 2) with those of compound 1, the Δ δCvalues [Δ δC( 1) - Δ δC( 3)] for the side-chain signals were calculated as - 1.1 (C-20), - 1.0 (C-21), + 0.3 (C-22), - 1.7 (C-23), + 0.5 (C-24), - 1.6 (C-25), - 0.0 (C-26), and - 0.3 (C-27), which were almost in line with the Δ δCvalues [Δ δC(23 R) - Δ δC(23 S)] of - 0.9 (C-20), - 0.9 (C-21), + 0.4 (C-22), - 1.6 (C-23), + 0.5 (C-24), - 1.4 (C-25), - 0.1 (C-26), and - 0.4 (C-27) calculated from the 13 C NMR data of charantoside II (23 R) and charantoside VI (23 S) [ 15]. As a consequence, compound 3 has the ( S)-confi guration at C-23. The 1 H- 1 H COSY, HMBC, and ROESY correlations of compounds 1 and 3 were similar as well, suggesting that both compounds 1 and 3 have an almost identical planar chemical structure. Analogously, ROESY correlation of H-8/H-19 certifi ed that acetal carbon (C-19) should has the ( S)-confi guration. Eventually, the structure of compound 3 was identifi ed as (19 S,23 S)-5 β,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3 β-ol 3- O- β- Dallopyranoside, named charantoside K.

    Table 2 13 C (150 MHz) NMR spectroscopic data of compounds 1- 5 in pyridine-d5 [δ in ppm]

    Compound 4 was obtained as white amorphous powder and assigned a molecular formula of C36H56O7, (HRESIMS m/z 623.3926 [M + Na] + ), indicating nine degrees of unsaturation. The absorption at 238 nm in the UV spectrum exhibited a conjugated double bond group. The 1 H NMR spectrum of 4 (Table 1) showed signals allocable to seven methyl groups [ δH1.73, 1.72, 1.46, 1.04, 0.87, 0.87, 0.77], fi ve olefi nic protons [ δH6.33 (1H, dd, J = 10.8, 15.0 Hz), 6.17 (1H, dd, J = 1.8, 10.2 Hz), 5.91 (1H, d, J = 10.2 Hz), 5.53 (1H, dd, J = 3.6, 9.6 Hz), 5.48 (1H, dd, J = 8.4, 14.4 Hz)], and a β-allopyranoside moiety [ δH5.38 (1H, d, J = 7.8 Hz, H-1′)] [ 21]. After acid hydrolysis of 4 with HCl/MeOH, D-allose was detected by TLC and specifi c rotation comparing with the standard. The 13 C NMR and DEPT spectrum (Table 2) of 4 revealed signals assignable to the sugar moiety and tetracylic part were very semblable to those of (23 E)-5 β,19-epoxycucurbita-6,23,25-trien-3 β-ol 3- O- β- Dallopyranoside (charantosides IV) [ 15], while the signals of side chain were signifi cantly disparate. The olefi nic carbons at δC138.9, 124.6, 126.1, 132.1 and their coupling constants in the 1 H-NMR spectrum [ δH5.48 (1H, dd, 8.4, 14.4), 6.33 (1H, dd, 10.8, 15.0), 5.91 (1H, d, 10.2)] implied that a conjugated double bond existed in the side chain. This was further confi rmed via the 1 H- 1 H COSY correlations of H-21/H-20/H-22/H-23/H-24 and the key HMBC correlations Me-21/C-17, C-20, C-22, H-22/C-21, C-24, H-24/C-22, C-23, H-26/C-24, C-25, C-27, and H-27/C-24, C-25, C-26 (Fig. 2). Therefore, the structure of the side chain was almost identical to 5 β,19-epoxy-cucurbita-6,22 E,24-trien-3 β-ol [ 22]. Based on the above observation, compound 4 was identifi ed as 5 β,19-epoxy-cucurbita-6,22 E,24-trien-3 β-ol 3- O- β- D-allopyranoside, and named momorcharacoside A.

    Compound 5 was obtained as white amorphous powder and assigned a molecular formula of C37H60O9, (HRESIMS m/z 671.4136 [M + Na] + ), indicating eight degrees of unsaturation. The 1 H NMR spectrum of 5 (Table 1) showed signals assignable to seven methyl groups [ δ H 1.54, 1.54, 1.54, 0.92, 0.89, 0.82, 0.79], one methoxy groups [ δ H 3.44], four olefi nic protons [ δH6.28 (1H, d, J = 9.6 Hz), 5.92 (1H, overlap), 5.92 (1H, overlap), 5.48 (1H, dd, J = 3.6, 9.6 Hz)], and a β-glucopyanosyl moiety [ δH4.92 (1H, d, J = 7.8 Hz, H-1′)] [ 18, 21]. The suger moiety were determined to be D-glucose on the basis of acidic hydrolysis and TLC and specifi c rotation analysis. The 13 C NMR (Table 2) showed 37 carbon signals, which were closely similar to those of 19( R)-methoxy-5 β,19-epoxycucurbita-6,23-diene-3 β,25-diol 3- O- β- D-glucopyranoside (goyaglycoside-a) [ 23] except for the signals due to the stereochemistry at C-19. Thus, the Δ δ C values [ δ C (goyaglycoside-a) -- δ C ( 5)] for the relevant signals were feckly consistent with those reported in the literature [ 19]. Therefore, compound 5 has the ( S)-confi guration at C-19, which was further confi rmed by the ROESY correlation (Fig. 3) of H-8/H-19. Based on the above proof, compound 5 was identifi ed as 19( S)-methoxy-5 β,19-epoxycucurbita-6,23-dien-3 β,25-diol 3- O- β- D-glucopyranoside, named goyaglycoside- L.

    In this study, fi ve new and fi ve known compounds were isolated from M. charantia, all of which were cucurbitanetype triterpene glycosides. All compounds were evaluated for their α-glucosidase inhibitory activities with acarbose as a positive control. Compounds 2, 5, 7, 8, and 9 showed moderate inhibitory activities with IC 50 values of 63.26 ± 3.04, 59.13 ± 4.67, 35.08 ± 4.15, 36.38 ± 3.03, 28.40 ± 2.08 μM, respectively. The IC50value of positive control (acarbose) was 87.65 ± 6.51 μM (Table 3). Interestingly, all the active compounds contained β- D-glucopyranosyl, suggesting that the presence of glucose groups may aあ ect the activity of triterpenes. However, further studies are needed to determine the structure-activity relationship of the cucurbitacene-type triterpenes. The results of this study also showed that cucurbitane-type triterpene glycosides might be the key ingredient in the hypoglycemic eあ ect of M. charantia, some of them had signifi cant blood sugar lowering eあ ect.

    Table 3 α-Glucosidase inhibitory activities of compounds 1- 10

    3 Experimental Section

    3.1 General Experimental Procedures

    UV spectra were recorded on a UV-2401PC spectrometer (Shimadzu, Kyoto, Japan). Optical rotations were measured in methanol on JASCO P-1020 digital polarimeter (Jasco, Tokyo, Japan). IR spectra were scanned on a Bruker Tensor-27 Fourier transform infrared spectrometer with KBr pellets (Bruker, German). High-resolution (HR) ESI mass spectra data were measured on a Waters API QSTAR Pulsar spectrometer. 1D and 2D NMR spectra were obtained in pyridine- d5on Bruker Ascend-400, 600 and 800 MHz NMR spectrometers with tetramethylsilane (TMS) as internal standard (Bruker, Zurich, Switzerland). Column chromatography (CC) was performed on macroporous resin (D-101, Tianjin, China), Lichroprep RP-18 (Merck, German), sephadex LH-20 (Pharmacia, USA), silica gel (200-300 mesh, Qingdao, China), and Semi-preparative HPLC was performed on an Agilent 1260 liquid chromatography system equipped with a ZORBAX SB-C18 column (5 μm, 9.4 × 250 mm, 3.0 mL/min) and a DAD detector. Fractions were detected by TLC, and spots were visualized by spraying with 10% H2SO4in EtOH, followed by heating. α-glucosidase inhibitory activity was evaluated on the basis of the ability of the compounds to decrease glucosidase activity and then inhibit the breaking of glycosidic bonds in p-nitrophenyl- α- D-glucopyranoside (PNPG). Water was purchased from wahaha group co. LTD. Acetonitrile (chromatographic grade) was purchased from OCEANPAK (Sweden). Common organic solvents are industrial grade, used after redistillation. PNPG was obtained from Sigma Chemical Co. (St. Louis, Mo, USA). α-glucosidase was purchased from Shanghai yuanye biotechnology Co., Ltd. Potassium phosphate buあ er solution (PPBS) was obtained from Shanghai Yidian Scientifi c Instrument Co., Ltd. 96-well plates was purchased from Nest biotechnology co., LTD.

    3.2 Plant Material

    Dried slices of M. charantia were purchased from the Luosiwan Chinese Herbal Medicine Market in Kunming, Yunnan Province, China, in February 2017. The material was identifi ed by associate Prof. Jian-Chao Cheng from Kunming Institute of Botany (KIB), Chinese Academy of Science (CAS). A specimen was deposited in the State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Kunming, China.

    3.3 Extraction and Isolation

    The dried fruits of M. charantia (40.0 kg) were sliced and extracted with MeOH. The solution was concentrated under reduced pressure to obtain a crude extract (25 kg), which was then successfully partitioned with petroleum ether (PE), EtOAc (EA), and n-butanol, respectively. The EtOAc fraction (2.0 kg) was subjected to the D101 macroporous resin, eluting with gradient system of MeOH/H2O (30:70, 50:50, 70:30, 90:10, 100:1) to aあ ord fi ve fractions. The fraction (MeOH/H2O 90:10, 87.0 g) was chromatographed on a silica gel column, eluting with gradient system of CHCl3/MeOH (100:1-1:1) to give four fractions (Fr.1-Fr.4). Fr.2 (16.8 g) was applied to ODS column, eluting with MeOH/H2O to give six sub fractions (Fr.2.1-Fr.2.6). Fr.2.5 (4.2 g) was separated over silica gel column (PE/EA) followed by semi-preparative HPLC (CH3CN/H2O), to yield compounds 1 (1.0 mg), 2 (1.0 mg), 3 (2.5 mg), and 10 (4.0 mg), respectively. Fr.2.6 (2.1 g) was successively purifi ed by open column CC (CHCl 3 /MeOH) and semi-preparative HPLC (CH3CN/H2O), respectively, to aあ ord compounds 4 (28.0 mg), 6 (6.0 mg), 7 (5.0 mg), 8 (1 mg), and 9 (30.0 mg). Similarly, Fr.3 (643 mg) was purifi ed by RP-HPLC with CH3CN /H2O as eluent to obtain compounds 5 (10.0 mg).

    3.3.1 Charantoside H ( 1)

    White amorphous powder; [ α]- 49.62 ( c 0.11, MeOH); UV (MeOH) λmax(log ε) 196 (4.22) nm; IR (KBr) νmax3426, 3027, 2926, 2875, 2815, 1736, 1634, 1465, 1447, 1380, 1320, 1292, 1260, 1218, 1182, 1154, 1108, 1084, 1049, 1033, 986, 953, 926, 882, 843, 801, 775, 747, 721, 696, 557, 529, 513, 467, 440, 411, 402 cm -1 ; For 1 H NMR and 13 C NMR (pyridine- d5) spectroscopic data, see Tables 1 and Table 2; HRESIMS m/z 685.4295 [M + Na] + (calcd for C38H62O9Na, 685.4286).

    3.3.2 Charantoside J ( 2)

    3.3.3 Charantoside K ( 3)

    White amorphous powder; [ α] - 35.77 ( c 0.13, MeOH); UV (MeOH) λmax(log ε) 196 (4.15) nm; IR (KBr) ν23Dmax3428, 3028, 2925, 2874, 1736, 1630, 1465, 1448, 1377, 1307, 1287, 1260, 1212, 1197, 1180, 1155, 1108, 1082, 1049, 1033, 985, 953, 941, 926, 882, 843, 803, 778, 755, 731, 691, 550, 522, 496, 467, 449, 440, 411, 402 cm -1 ; For 1 H NMR and 13 C NMR (pyridine- d5) spectroscopic data, see Tables 1 and 2; HRESIMS m/z 685.4296 [M + Na] + (calcd for C38H62O9Na, 685.4286).

    3.3.4 Momorcharacoside A ( 4)

    White amorphous powder; [ α]D24 - 53.88 ( c 0.29, MeOH); UV (MeOH) λmax(log ε) 238 (4.02), 196 (4.07), 211(3.73) nm; IR (KBr) ν max 3391, 3124, 2949, 2873, 2387, 2318, 1637, 1592, 1469, 1397, 1377, 1348, 1310, 1085, 1034, 1000, 777, 749, 684, 661, 628, 586, 531, 493, 410 cm -1 ; For 1 H NMR and 13 C NMR (pyridine- d5) spectroscopic data, see Tables 1 and 2; HRESIMS m/z 623.3926 [M + Na] + (calcd for C36H56O7Na, 623.3918).

    3.3.5 Goyaglycoside- L ( 5)

    White amorphous powder; [ α]- 71.96 ( c 0.14, MeOH); UV (MeOH) λmax(log ε) 196 (4.21) nm; IR (KBr) νmax3427, 3027, 2970, 2947, 2927, 2873, 1735, 1632, 1464, 1449, 1377, 1312, 1288, 1256, 1199, 1158, 1138, 1112, 1078, 1050, 980, 950, 941, 925, 844, 803, 778, 753, 733, 695, 579, 549, 529, 491, 466, 450, 439, 429, 412 cm -1 ; For 1 H NMR and 13 C NMR (pyridine- d5) spectroscopic data, see Tables 1 and 2; HRESIMS m/z 671.4136 [M + Na] + (calcd for C37H60O9Na, 671.4130).

    3.4 Acid Hydrolysis of Compounds 4 and 5 for Sugar Analysis

    Compounds 4 and 5 (5 mg each), were separately dissolved in 2 M HCl/CH3OH (1:1, 5 mL) and heated at 80 °C for 4 h in a water bath. CHCl 3 /H2O 1:1 (5 mL × 3) was used for extraction. The aqueous phase was neutralized with Na2CO3. Each H2O layer was concentrated in vacuo to give a monosaccharide, which was identifi ed by TLC [BuOH/acetic ether/H2O (4:1:5 upper layer)] and specifi c rotation compared with the authentic samples, All: Rf= 0.47, [ α]= + 24.4; Glc: Rf= 0.51, [ α]= + 51.9.

    3.5 α-Glucosidase Inhibitory Activity

    The α-glucosidase inhibition assay was performed according to the method adapted from the literature with slight modifi cations [ 24]. α-glucosidase can cut glycosidic bonds in the PNPG to produce 4-nitrophenol (yellow), then measured its absorbance can determine the activity of enzyme. The test samples and ursolic acid (positive control) were dissolved in dimethylsulfoxide (DMSO), and then diluted with PPBS (pH 6.86) to the required concentration. The α-glucosidase (1.0 U/mL) and substrate (PNPG, 2.5 mM) were dissolved in PPBS. Sample wells included 60 μ L of PPBS, 10 μL of test substances, 30 μL of enzyme stock solution, and incubated at 37 °C for 10 min. After the preincubation phase, 40 μL of PNPG solution was added and the mixture was incubated for another 20 min at 37 °C. Finally, 80 μL Na2CO3(0.2 M) solution was added to the sample wells to stop the reaction. The absorbance of the reaction mixture was recorded at 405 nm using a microplate reader. All samples were measured in triplicate. The inhibition rate (%) was calculated by the following formula: Inhibition (%) = [1 - (Asample/Acontrol)] × 100.

    Acknowledgements The work was supported by a program of the National Natural Science Foundation of China (Nos. 31872675 and 81373288) and the cooperation program between Chinese Academy of Sciences and Guangdong Province (2013B09110011).

    Compliance with Ethical Standards

    Conflict of interest All authors declare no confl ict of interest.

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons.org/licen ses/by/4.0/.

    References

    1. G.H. Wu, Y.X. Zang, Y.X. Liu, Chinese Health Management Dictionary (2001), 468 pp

    2. IDF diabetes atlas (2019), https ://www.diabe tesat las.org/. Accessed 6 Feb 2020

    3. E.K. Stuermer, M. Besser, N. Terberger, V. Koester, H.S. Bachmann, A.L. Severing, Naunyn-Schmiedebergs Arch. Pharmacol. 392, 371-380 (2019)

    4. E.L. Peter, F.M. Kasali, S. Deyno, A. Mtewa, P.B. Nagendrappa, C.U. Tolo, P.E. Ogwang, D. Sesaazi, J. Ethnopharmacol. 231, 311-324 (2019)

    5. C. Zhang, M. Huang, R. Hong, H. Chen, Int. J. Biol. Macromol. 122, 619-627 (2019)

    6. S.R. Shivanagoudra, W.H. Perera, J.L. Perez, G. Athrey, Y.X. Sun, G.K. Jayaprakasha, B.S. Patil, Bioorg. Chem. 87, 31-42 (2019)

    7. S. Jiang, L. Xu, Y. Xu, Y.S. Guo, L. Wei, X.T. Li, W. Song, Electron. J. Biotechnol. 43, 41-47 (2020)

    8. G. Chhabra, A. Dixit, Bioinformation 9, 766-770 (2013)

    9. B. Shan, J.H. Xie, J.H. Zhu, Y. Peng, Food Bioprod. Process. 90, 579-587 (2012)

    10. S. Jia, M. Shen, F. Zhang, J. Xie, Int. J. Mol. Sci. 18, 2555 (2017)

    11. P.C. Hsiao, C.C. Liaw, S.Y. Hwang, H.L. Cheng, L.J. Zhang, C.C. Shen, F.L. Hsu, Y.H. Kuo, J. Agric. Food Chem. 61, 2979-2986 (2013)

    12. S.Y. Lee, S.H. Eom, Y.K. Kim, N.I. Park, S.U. Park, J. Med. Plants Res. 3, 1264-1269 (2009)

    13. J. Yue, Y. Sun, J. Xu, X. Zhang, Y. Zhao, J. Nat. Med. 74, 41 (2020)

    14. J. Qi, X. Cao, Y. Sun, L. Cheng, Patent No. CN107556362A (2018)

    15. T. Akihisa, N. Higo, H. Tokuda, M. Ukiya, H. Akazawa, Y. Tochigi, Y. Kimura, T. Suzuki, H. Nishino, J. Nat. Prod. 70, 1233-1239 (2007)

    16. H. Okabe, Y. Miyahara, T. Yamauchi, Tetrahedron. Lett. 23, 77-80 (1982)

    17. Y. Liu, Z. Ali, I.A. Khan, Planta Med. 74, 1291-1294 (2008)

    18. S. Nakamura, T. Murakami, J. Nakamura, H. Kobayashi, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 54, 1545-1550 (2006)

    19. K. Zeng, Y.N. He, D. Yang, J.Q. Cao, X.C. Xia, S.J. Zhang, X.L. Bi, Y.Q. Zhao, Eur. J. Med. Chem. 81, 176-180 (2014)

    20. C.C. Liaw, H.C. Huang, P.C. Hsiao, L.J. Zhang, Z.H. Lin, S.Y. Hwang, F.L. Hsu, Y.H. Kuo, Planta Med. 81, 62-70 (2015)

    21. J. Yue, Y. Sun, J. Xu, J. Cao, G. Chen, H. Zhang, X. Zhang, Y. Zhao, Phytochemistry 157, 21-27 (2019)

    22. J.Q. Cao, B.Y. Zhang, Y.Q. Zhao, Chin. Herb. Med. 5, 234-236 (2013)

    23. T. Murakami, A. Emoto, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 49, 54-63 (2001)

    24. J.L. Perez, G.K. Jayaprakasha, B.S. Patil, Food Chem. 288, 178-186 (2019)

    国产精华一区二区三区| 别揉我奶头 嗯啊视频| 啦啦啦观看免费观看视频高清| 一个人看的www免费观看视频| 国产精品久久久久久亚洲av鲁大| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 国产av一区在线观看免费| 亚洲最大成人中文| 国产一区二区在线观看日韩| 69av精品久久久久久| 国产日本99.免费观看| 免费人成在线观看视频色| 在线天堂最新版资源| 亚洲片人在线观看| 免费搜索国产男女视频| 最新在线观看一区二区三区| 国产av麻豆久久久久久久| 亚洲电影在线观看av| 久久精品久久久久久噜噜老黄 | av在线天堂中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产综合懂色| 白带黄色成豆腐渣| 丰满的人妻完整版| 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| www日本黄色视频网| 免费看美女性在线毛片视频| 久久久久性生活片| 欧美日本视频| 亚洲自拍偷在线| 中文字幕熟女人妻在线| 老司机午夜福利在线观看视频| 丁香六月欧美| 最好的美女福利视频网| 性色av乱码一区二区三区2| 精品无人区乱码1区二区| 免费人成在线观看视频色| 我的老师免费观看完整版| 宅男免费午夜| 国产人妻一区二区三区在| 亚洲欧美日韩高清在线视频| 国内少妇人妻偷人精品xxx网站| 波多野结衣高清作品| 禁无遮挡网站| 欧美潮喷喷水| 中文字幕av成人在线电影| 哪里可以看免费的av片| 老司机午夜十八禁免费视频| 国产精品不卡视频一区二区 | 亚洲人成网站在线播| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| a级毛片a级免费在线| 日韩 亚洲 欧美在线| 精品久久久久久久久久免费视频| 在线天堂最新版资源| 在线免费观看的www视频| 啪啪无遮挡十八禁网站| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产国拍精品亚洲av在线观看| 最近在线观看免费完整版| 国产在视频线在精品| 在线a可以看的网站| 国产精品久久久久久精品电影| 毛片一级片免费看久久久久 | 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 亚洲自偷自拍三级| av女优亚洲男人天堂| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 91九色精品人成在线观看| 免费看a级黄色片| 午夜亚洲福利在线播放| 内射极品少妇av片p| 波野结衣二区三区在线| 国产高清视频在线播放一区| 久久精品国产自在天天线| 少妇的逼好多水| 搡老妇女老女人老熟妇| 十八禁人妻一区二区| 免费在线观看亚洲国产| 国产久久久一区二区三区| 中文字幕av在线有码专区| 丁香欧美五月| 99久久精品热视频| 亚洲内射少妇av| 91久久精品国产一区二区成人| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 久久人人爽人人爽人人片va | 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| a在线观看视频网站| 男女那种视频在线观看| 亚洲av成人不卡在线观看播放网| 观看美女的网站| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 亚洲av成人av| 97超级碰碰碰精品色视频在线观看| 国产精品99久久久久久久久| 久久久久久久久大av| 高清毛片免费观看视频网站| 午夜精品一区二区三区免费看| 91久久精品电影网| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影| 国产一区二区在线av高清观看| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看| 少妇丰满av| 中国美女看黄片| 99热这里只有是精品50| 国产高清视频在线播放一区| 俄罗斯特黄特色一大片| 直男gayav资源| 中文亚洲av片在线观看爽| 99久久精品热视频| 69人妻影院| 午夜日韩欧美国产| 成人三级黄色视频| 国产黄色小视频在线观看| 校园春色视频在线观看| av在线蜜桃| 国产三级黄色录像| 人妻久久中文字幕网| 亚洲av二区三区四区| 亚洲,欧美精品.| 99在线视频只有这里精品首页| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 精品人妻一区二区三区麻豆 | 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 国产av不卡久久| 一级黄片播放器| 中文资源天堂在线| 欧美午夜高清在线| 精品无人区乱码1区二区| 欧美精品啪啪一区二区三区| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 人妻制服诱惑在线中文字幕| 丰满的人妻完整版| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品女同一区二区软件 | 黄色日韩在线| 亚洲av电影在线进入| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 午夜亚洲福利在线播放| 看免费av毛片| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 国产日本99.免费观看| 精品福利观看| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看 | 能在线免费观看的黄片| 亚洲经典国产精华液单 | 国产精品人妻久久久久久| av中文乱码字幕在线| 91久久精品国产一区二区成人| 国产色婷婷99| 中文字幕人成人乱码亚洲影| 热99re8久久精品国产| 激情在线观看视频在线高清| 有码 亚洲区| 亚洲av不卡在线观看| 国产老妇女一区| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 成人国产一区最新在线观看| 日日干狠狠操夜夜爽| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 一个人观看的视频www高清免费观看| 国产成人a区在线观看| 国产三级在线视频| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 一进一出抽搐动态| av在线老鸭窝| 国产白丝娇喘喷水9色精品| 亚洲国产精品sss在线观看| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 国产探花在线观看一区二区| 国产精品一区二区性色av| 男女床上黄色一级片免费看| 桃红色精品国产亚洲av| 观看免费一级毛片| 亚洲第一区二区三区不卡| 深夜精品福利| 国产精华一区二区三区| 真实男女啪啪啪动态图| 一级黄色大片毛片| 亚洲综合色惰| 亚洲五月婷婷丁香| 十八禁国产超污无遮挡网站| 757午夜福利合集在线观看| 丁香欧美五月| 欧美成人性av电影在线观看| 极品教师在线视频| 欧美精品啪啪一区二区三区| 久久精品国产自在天天线| 狠狠狠狠99中文字幕| 久久99热6这里只有精品| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 日本免费a在线| 极品教师在线视频| 老熟妇乱子伦视频在线观看| 日韩欧美精品v在线| 欧美成人a在线观看| 日日夜夜操网爽| 国内揄拍国产精品人妻在线| 女人被狂操c到高潮| 国产一区二区三区视频了| 嫩草影院新地址| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 国产单亲对白刺激| av在线蜜桃| 免费人成视频x8x8入口观看| 91九色精品人成在线观看| 亚州av有码| 一级av片app| 日韩欧美 国产精品| 久久6这里有精品| 美女被艹到高潮喷水动态| 草草在线视频免费看| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 成年女人永久免费观看视频| 色尼玛亚洲综合影院| 久久欧美精品欧美久久欧美| 在现免费观看毛片| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影在线进入| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类 | 草草在线视频免费看| 99久久精品国产亚洲精品| 国产老妇女一区| 国产黄色小视频在线观看| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三| 男人狂女人下面高潮的视频| 国产三级中文精品| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 嫩草影院入口| 白带黄色成豆腐渣| av视频在线观看入口| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 亚洲美女搞黄在线观看 | 悠悠久久av| 久久亚洲真实| 国产熟女xx| 亚洲内射少妇av| 中文在线观看免费www的网站| 亚洲精品日韩av片在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 18美女黄网站色大片免费观看| 午夜日韩欧美国产| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 久久精品久久久久久噜噜老黄 | 91在线观看av| 九九热线精品视视频播放| 国产精品一区二区免费欧美| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品 | 亚洲第一电影网av| 一区福利在线观看| 99热这里只有是精品在线观看 | 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 亚洲无线观看免费| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 日韩欧美三级三区| 精品人妻一区二区三区麻豆 | 亚洲av二区三区四区| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 色哟哟·www| 国产综合懂色| 久久久久久久久大av| 国产精品嫩草影院av在线观看 | 婷婷亚洲欧美| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 日韩中文字幕欧美一区二区| 亚洲最大成人av| 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 亚洲五月婷婷丁香| 国产精品1区2区在线观看.| 国产精品女同一区二区软件 | av天堂在线播放| 可以在线观看的亚洲视频| 国内精品美女久久久久久| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6 | 黄色日韩在线| 中亚洲国语对白在线视频| 国内精品一区二区在线观看| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 免费电影在线观看免费观看| 国内久久婷婷六月综合欲色啪| av在线观看视频网站免费| 欧美成狂野欧美在线观看| 国产毛片a区久久久久| 舔av片在线| 国产探花在线观看一区二区| 国产成年人精品一区二区| 日韩欧美在线二视频| 午夜免费成人在线视频| 国产成人av教育| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 九色成人免费人妻av| 久久久久性生活片| 伊人久久精品亚洲午夜| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 久久久久久久亚洲中文字幕 | 99久久无色码亚洲精品果冻| 亚洲第一欧美日韩一区二区三区| www.www免费av| 99久国产av精品| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站 | 内地一区二区视频在线| 又紧又爽又黄一区二区| 亚洲av免费在线观看| 在线免费观看不下载黄p国产 | 免费一级毛片在线播放高清视频| 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 给我免费播放毛片高清在线观看| 人人妻人人看人人澡| 日本黄大片高清| 色精品久久人妻99蜜桃| 波野结衣二区三区在线| 久久6这里有精品| 欧美+日韩+精品| 欧美日韩中文字幕国产精品一区二区三区| 国产色婷婷99| 长腿黑丝高跟| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 国产精品永久免费网站| 精品一区二区免费观看| 又爽又黄a免费视频| 日本 av在线| 久久草成人影院| 亚洲美女黄片视频| 国产69精品久久久久777片| 波多野结衣高清无吗| 亚洲国产色片| 三级国产精品欧美在线观看| 99在线视频只有这里精品首页| 国产午夜福利久久久久久| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久人妻精品电影| 免费看光身美女| 极品教师在线免费播放| 亚洲,欧美,日韩| 18禁在线播放成人免费| 久久精品国产亚洲av涩爱 | 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 丁香欧美五月| 中文字幕免费在线视频6| 成人三级黄色视频| 如何舔出高潮| 午夜a级毛片| 久久伊人香网站| 91av网一区二区| 久久草成人影院| 亚洲国产精品sss在线观看| 美女高潮的动态| 欧美又色又爽又黄视频| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 色综合欧美亚洲国产小说| 日韩成人在线观看一区二区三区| 国产精品久久久久久久久免 | 最近视频中文字幕2019在线8| 日韩欧美在线乱码| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 亚洲av第一区精品v没综合| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 欧美精品啪啪一区二区三区| 久久午夜福利片| 国产亚洲精品久久久久久毛片| 日本一二三区视频观看| 又黄又爽又免费观看的视频| 亚洲性夜色夜夜综合| 午夜激情福利司机影院| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 亚洲av一区综合| 观看免费一级毛片| 午夜a级毛片| 夜夜夜夜夜久久久久| 久久精品91蜜桃| 99国产综合亚洲精品| 国产色婷婷99| 国产欧美日韩一区二区三| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 国产成人a区在线观看| 午夜福利高清视频| 此物有八面人人有两片| 18美女黄网站色大片免费观看| 国产精品一区二区免费欧美| 国产高清有码在线观看视频| 国产日本99.免费观看| 免费无遮挡裸体视频| 制服丝袜大香蕉在线| 亚洲av中文字字幕乱码综合| 精品乱码久久久久久99久播| 欧美高清性xxxxhd video| 色在线成人网| 亚洲人与动物交配视频| 人妻夜夜爽99麻豆av| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看 | 免费人成在线观看视频色| 久久国产乱子免费精品| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 中文字幕熟女人妻在线| 亚洲国产欧美人成| 女人被狂操c到高潮| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲黑人精品在线| 国产午夜精品论理片| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 夜夜看夜夜爽夜夜摸| 日本 欧美在线| 国产白丝娇喘喷水9色精品| 一个人免费在线观看电影| netflix在线观看网站| 亚洲国产欧美人成| 国内精品久久久久精免费| 国产高清视频在线观看网站| 国产 一区 欧美 日韩| 久久中文看片网| 观看免费一级毛片| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 深夜a级毛片| 欧美丝袜亚洲另类 | 亚洲一区二区三区色噜噜| 在现免费观看毛片| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 在线播放无遮挡| 一区二区三区四区激情视频 | 两人在一起打扑克的视频| 国产一区二区在线观看日韩| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| 亚洲精品一卡2卡三卡4卡5卡| av女优亚洲男人天堂| 精华霜和精华液先用哪个| 精品久久久久久久久久免费视频| av在线天堂中文字幕| 精品不卡国产一区二区三区| 精品熟女少妇八av免费久了| 一区福利在线观看| 看片在线看免费视频| 免费观看人在逋| 在线观看免费视频日本深夜| 午夜激情欧美在线| 国产精品av视频在线免费观看| 99久久精品一区二区三区| 狠狠狠狠99中文字幕| 身体一侧抽搐| 免费看日本二区| 日韩欧美三级三区| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 1024手机看黄色片| 少妇高潮的动态图| 网址你懂的国产日韩在线| 男女床上黄色一级片免费看| 99热这里只有精品一区| 搡女人真爽免费视频火全软件 | 色5月婷婷丁香| 少妇的逼好多水| 免费一级毛片在线播放高清视频| 丰满人妻一区二区三区视频av| 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 最近在线观看免费完整版| 成人av一区二区三区在线看| 亚洲国产色片| 国产精品综合久久久久久久免费| 一级作爱视频免费观看| 午夜福利高清视频| 亚洲人成电影免费在线| 午夜福利高清视频| 久99久视频精品免费| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 国产一区二区三区视频了| 欧美成狂野欧美在线观看| av福利片在线观看| 毛片一级片免费看久久久久 | 亚洲三级黄色毛片| 最近视频中文字幕2019在线8| 一级黄色大片毛片| 欧美丝袜亚洲另类 | 99在线视频只有这里精品首页| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 91久久精品国产一区二区成人| 成人国产一区最新在线观看| 高清在线国产一区| 麻豆国产97在线/欧美| 亚洲色图av天堂| 国产美女午夜福利| 久久精品国产清高在天天线| 国产伦在线观看视频一区| 禁无遮挡网站| 欧美bdsm另类| 亚洲久久久久久中文字幕| 热99在线观看视频| 成人亚洲精品av一区二区| 久久伊人香网站| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 黄色女人牲交| 欧美另类亚洲清纯唯美| 热99在线观看视频| 九色国产91popny在线| 男女床上黄色一级片免费看| 免费在线观看日本一区| 五月玫瑰六月丁香| 免费人成在线观看视频色| 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 亚洲无线在线观看| 91狼人影院| 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 色精品久久人妻99蜜桃| 日本黄大片高清| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 自拍偷自拍亚洲精品老妇| 欧美另类亚洲清纯唯美| www.色视频.com| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 97碰自拍视频| 男人狂女人下面高潮的视频| 欧美精品国产亚洲| 亚洲专区国产一区二区| 成年女人毛片免费观看观看9| 国产成人福利小说|