• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Augmented Truncation Approximations for Countable Markov Chains

    2020-06-18 08:44:36LiWendiLiuJinpengLiuYuanyuan

    Li Wendi Liu Jinpeng Liu Yuanyuan

    (School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China)

    Abstract In this paper, we present a survey of the technique of augmented truncation approximation for countable Markov chains.The augmented truncation approximation is a useful method to investigate infinite Markov chains, which is usually used to calculate the stationary distribution and other important parameters for Markov chains.Here we first apply the augmented truncation approximation to study the stationary distribution.We adopt the ergodicity method and the perturbation method to investigate the convergence and error bounds in terms of the total variation norm and the V-norm, respectively.Then, we discuss the augmented truncation approximations of the solution of Poisson’s equation.The convergence to the solution is studied and the truncation approximations to the variance constant in central limit theorems are also considered.These results are illustrated through several examples.Finally possible extensions are discussed in concluding remarks.

    Key words Markov chain Truncation approximation Stationary distribution Poisson’s equation

    1 Introduction

    Let {Xk,k≥0} be a time-homogeneous discrete-time Markov chain (DTMC) defined on the probability space (Ω,F,P) with a countable state spaceE={0,1,2,…}.LetP=(P(i,j))i,j∈Ebe the one-step transition matrix ofXk.Suppose thatPis irreducible and positive recurrent with the unique invariant probability vectorπT=(π(0),π(1),…) such thatπTP=πT,πTe=1, whereeis a column vector of ones. For DTMCs, Poisson’s equation has the following form:

    (1.1)

    (1.2)

    To investigate augmented truncation approximations of the stationary distribution and the solution of Poisson’s equation, two important questions arise naturally:

    (i) What conditions ensure the convergence of(n)πTtoπT(or(n)ftof)?

    (ii) How to estimate the error between(n)πTandπT(or(n)fandf) for a given truncation sizen?

    The issue (i) depends on the property of the original matrixPand the way of augmentation, which may fail in some cases. Examples are given in several literatures, such as [8,15,14], to show that the augmented truncation approximation might not converge to the stationary distribution of the target solution. For the stationary distribution, Seneta [28] is the first one to treat issue (i), and later in [30], he showed that (i) is valid with respect to the total variation norm, that is

    ‖(n)πT-πT‖→0,asn→∞,

    (1.3)

    if and only if {(n)πT,n≥1} is tight, which however is not easy to verify for reality models. To avoid the tightness condition, some researchers studiedPwith special property or considered the specific augmentation such as linear augmentation, see Gibson and Seneta [8] for example. Based on (i), Tweedie [31] first addressed the issue (ii) partially. He considered two special augmentations and investigated the upper bound in (ii) for stochastically monotone and geometrically ergodic chains by using the ergodicity method. Without the specifiedPand the augmentation, Liu [15] extended Tweedie’s method to show that (1.3) holds for an arbitrary augmentation under an easily verified sufficient condition, and obtained truncation bounds for stochastically monotone discrete-time polynomially and geometrically ergodic Markov chains. The literatures mentioned above are concerned on the error bounds in the total variation norm. For a vectorV≥e(or function), we are also interested in the convergence in theV-norm, that is

    ‖(n)πT-πT‖V→0,asn→∞,

    (1.4)

    and the upper bound of‖(n)πT-πT‖V, where ‖μT‖V=supg:|g|≤V|μTg|=∑i∈E|μ(i)|V(i) denotes theV-norm for the row vectorμT.It is obvious that theV-norm becomes the usual total variation norm whenV=e.TheV-norm may bring new phenomena for the approximations of the stationary distribution. For example, Zhao and Liu [32] proved that the censored Markov chain is the best augmentation in the total variation norm. However, as was shown in [19], it is not necessarily the best one in the sense of theV-norm. Tweedie [31] proposed a computableV-normwise bound for last-column augmentation of DTMCs, which, however, need the assumption of aperiodicity and stochastic monotonicity. Masuyama [22] investigated theV-normwise error bounds for the last-column-block-augmented truncation underf-modulated and exponential drift conditions for a class of continuous-time matrix-analytical models by using the perturbation method. In [18], Liu and Li extended the perturbation method to investigate arbitrarily augmented truncation approximations of invariant probability vectors for DTMCs.

    Most of the existing literatures were only concerned about the augmented truncation approximation for the stationary distribution. In fact, compared with the study of the stationary distribution, there are relatively few studies on the solution of Poisson’s equation or other important parameters for Markov chains. Recently, Liu et al. [14] presented a computational framework for the solution of Poisson’s equation of an infinite-dimensional DTMC by developing the technique of augmented truncation approximation.

    The rest of this paper is organized as follows. In Section 2, we introduce the augmented truncation approximation for the stationary distribution of DTMCs. The issues (i) and (ii) in terms of the total variation norm and theV-norm are solved by using the ergodicity method and the perturbation method, respectively. In Section 3, we introduce the augmented truncation approximation for the solution of Poisson’s equation. Moreover, truncation approximations to the variance constant in CLTs are also considered in this section. In Section 4, the applications of the above results to single-death processes are given. Numerical examples show that these results are applicable and accurate. In Section 5, we discuss possible extensions of the results in this paper.

    2 Truncation approximations for the stationary distribution

    In this section, we will focus on both issues (i) and (ii) for the stationary distribution of a DTMC. We consider the bounds in terms of the total variation norm and theV-norm respectively in the following via two different methods: the ergodicity method and the perturbation method.

    Now we define some notations. LetB(E) be the set composed of all the subsets ofE.Recall that a setCis called a small set if there is a nontrivial measureνm(B) onB(E) such that

    Pm(i,B)∶=∑k∈BPm(i,k)≥νm(B)

    (2.1)

    for anyi∈Cand anyB∈B(E).A small setαis called an atom if there exists a measureνonB(E) such thatP(i,B)=ν(B) for anyi∈αandB∈B(E).

    The following three well-known drift conditions, which are the criteria for positive recurrent, polynomially ergodic chains, and geometrically ergodic chains respectively, are taken from [9] and [26].

    (i) D1(V,b,C): Suppose that there exist a finite setC, a positive constantb<∞ and a finite column vectorV≥0 such that

    PV≤V-e+bIC,

    whereICis the indicator function of setC.

    (ii) D2(V,α,c,b,C): Suppose that there exist a finite setC, positive constantscandb<∞,α<1 and a finite column vectorV≥esuch that

    PV≤V-cVα+bIC.

    (iii) D3(V,λ,b,C): Suppose that there exist a finite setC, positive constantsb<∞,λ<1 and a finite column vectorV≥esuch that

    PV≤λV+bIC.

    2.1 The ergodicity method

    Here we adopt the ergodicity method to address both the issues (i) and (ii), which requires aperiodicity. Thus, we assume that the chainPis aperiodic throughout this subsection.

    Now we defineN(C)=min{n:C?(n)E} for a finite setC.Fix any statei∈E, by the triangle inequality, we have

    (2.2)

    for anyn≥max{i,N(C)} and anym≥1.Using (18) in [31] derives

    (2.3)

    whereΔn(k)=∑j≥n+1P(k,j).The equations (2.2) and (2.3) are the starting point of the analysis of this subsection.

    In order to guarantee the convergence (1.3), we first give the following assumption.

    Assumption 2.1There exist a finite setC, a constantp∈(0,1) and a probability measureφonEsuch that for anyi∈Cand anyB?E, the equation (2.1) holds withm=1 andν1(B)=pφ(B).

    The following theorem, which follows from (2.2) and (2.3) and D1(V,b,C), gives a sufficient condition for the convergence (1.3).

    We now consider upper bounds for polynomially ergodic chains and geometrically ergodic chains as follows.

    (i) ifPsatisfies D2 (V,α,c,b,C) for a non-decreasing functionV, then there exists a computable constantRsuch that

    whereM(0)=[V1-α(0)+π(V1-α)]<∞;

    (ii) ifPsatisfies D3 (V,λ,b,C) for a non-decreasing functionV, then there exist computable constantsDandγsuch that

    where the constantsDandγare given by Theorem 1.1 in [2].

    The upper bounds obtained in Theorems 2.3 are not in a preferable form for direct applications. Now we focus on stochastically monotone chains and derive rather explicit bounds for polynomially and geometrically ergodic chains.

    Theorem 2.3([15]) Suppose thatPis dominated by a stochastically monotone transition matrixQ, i.e. ∑j>kP(i,j)≤∑j>kQ(i,j) and ∑j>kQ(i,j)≤∑j>kQ(i+1,j) for anyi,k∈Z+.Then for any arbitrary augmentation andn,m≥1,

    (i) ifQsatisfies D2 (V,α,1,b,{0}) for a non-decreasing functionV, then

    (ii) ifQsatisfies D3 (V,λ,b,{0}) for a non-decreasing functionV, then

    (2.4)

    2.2 The perturbation method

    In this subsection, we adopt the perturbation method to investigate the convergence of(n)πTtoπTin terms ofV-norm from three different aspects: Poisson’s equation, the residual matrix and the ergodicity coefficient.

    (n)πTΔf=(n)πT[(I-P)f]=(n)πT(g-πTge)=((n)πT-πT)g.

    (2.5)

    This identity enables us to establish the augmented truncation bounds if we can boundfwell. In order to estimatef, we first give the following assumption.

    Assumption 2.2LetC∈B(E) and letα?Cbe an atom. Assume thatCandαsatisfy one of the the following relations.

    (i) The setC=αis an atom.

    The witch listened to all he said and, much pleased, ended by accepting his offer; but she begged him to return to his ship for a little while as she wished to go some way further into the forest, promising to join him later on

    (iii) The setCis aνm-small set such that (2.1) holds andνm(α)>0.

    DefineτC=inf{n≥1:Xn∈C} to be the first return time onC.Let Ei[·]∶=E[·|X0=i] be the conditional expectation with respect to the initial statei∈E.The following result, essentially known from [6] and [18], gives a refinement of the bounds onfin some specific circumstances.

    Proposition 2.1Suppose that Assumption 2.2 and D3 (V,f,b,C) hold. For any vectorgsatisfying that |g|≤(1-λ)V, Poisson’s equation (1.1) admits a solution, denoted by

    (2.6)

    For anyi∈E, defineΔn(i,V)=∑j>nP(i,j)(V(n)+V(j)).According to the equation (2.5) and Proposition 2.1, we get the following result on the convergence and error bounds.

    Theorem 2.4([18]) Suppose that Assumption 2.2 holds and D3 (V,λ,b,C) holds for a non-decreasing functionV.Then for an arbitrary augmentation we have

    ‖(n)πT-πT‖V≤H1(n,V),

    (2.7)

    where

    and

    Moreover,H1(n,V)→0 asn→∞, and (1.4) holds.

    Now, we derive the augmented truncation bounds through a residual matrixUdefined by

    U=Pm-υφT,

    wheremis a positive integer,υandφTare respectively a non-negative nontrivial bounded column vector and a non-negative nontrivial row vector such thatUis non-negative. The residual matrix was introduced by [11,16] to deal with the perturbation of a Markov operator.

    The following drift condition in terms ofUis crucial for the analysis of error bounds.

    D4 (V,λ,m): Suppose that there exist a finite vectorV≥eand a positive constantλ<1 such that ‖P‖V<∞ and ‖U‖V≤λ.

    Now the convergence and error bounds in terms of the residual matrix are given as follows.

    Theorem 2.5([18]) Suppose that D4 (V,λ,m) holds for a non-decreasing functionV.Then for an arbitrary augmentation we have

    ‖(n)πT-πT‖V≤H2(n,V),

    where

    and

    Moreover, if D3 (V,λ,b,C) holds, thenH2(n,V)→0 asn→∞, and (1.4) holds.

    Finally, we adopt the norm ergodicity coefficient Λ(B) to derive the augmented truncation bounds instead of drift conditions, which is defined by

    LetV≡e, then Λ(B) becomes the classical ergodicity coefficientτ(B) (see, e.g. [29,27]).

    The following result gives the convergence and error bound in terms of Λ(B).

    Theorem 2.6([18]) Suppose thatVis a non-decreasing function,πTV<∞,β=‖P‖V<∞, and Λ(Pm)≤ρmfor some positive integermand some positive constantρm<1.Then for an arbitrary augmentation,

    (i) ifβ≠1, then

    ‖(n)πT-πT‖V≤H3(n,m,V),

    where

    (ii) ifβ=1, then

    ‖(n)πT-πT‖V≤H3(n,m,V),

    where

    Moreover, if D3 (V,λ,b,C) holds, thenπTV<∞,H3(n,m,V)→0 asn→∞ and (1.4) holds.

    Remark 2.1(i) Compared with the ergodicity method, the perturbation method does not require an explicit estimate of the ergodic convergence rates and even holds for periodic DTMCs, which allows us to relax some restrictions in the ergodicity method. In addition, numerical examples, given in [18], show that the error bounds in terms of the perturbation method are more application and accurate than the bounds in terms of the ergodicity method.

    (ii) Each of three upper bounds presented in Subsection 2.2 has its own advantages. In general, the truncation boundH1(n,V) is the worst among the three types of truncation bounds, which, however, is the easiest one to apply in reality models, see [18] for numerical examples. For a specific model, we can choose to calculate the most suitable bound amongH1(n,V),H2(n,V) andH3(n,m,V).

    3 Truncation approximations for Poisson’s equation

    In this section, we will show truncation approximations of the solution of Poisson’s equation. The solution may not be unique, see [26] for details. Letjbe any fixed state inE.From (2.6), we know thatfjis a solution of Poisson’s equation (1.1), and we work with this version of the solution in the following.

    The vector(n)fjdefined above is the unique solution of Poisson’s equation (1.2). For truncation approximations, givenfj, one fundamental issue is to establish the convergence of(n)fjtofj.Sincefjis finite but may be unbounded, we can only consider the pointwise convergence, that is,(n)fj(i)→fj(i) asn→∞ for anyi∈E.

    Define the following additive functionals

    To ensure the convergence of the solution, it is necessary to make the following assumption.

    Assumption 3.1Suppose that for any initial statei∈Eandn≥max{i,j}, both of the following conditions hold:

    (i) the sequence {(n)τj} increases and converges toτjwith probability one (w.p.1), i.e.

    Pi(ω∈Ω:(n)τj(ω)↑τj(ω),asn→∞)=1;

    (ii) the sequence {(n)ζj(|(n)g|)} increases and converges toζj(|g|) w.p.1, i.e.

    Pi(ω∈Ω:(n)ζj(|(n)g|)(ω)↑ζj(|g|)(ω),asn→∞)=1.

    Now we give the convergence of the solution, please refer to [14] for the proof.

    Theorem 3.1([14]) If Assumption 3.1 holds, then we have, for anyi∈E,

    where(n)fj(j)=fj(j)=0.

    Letg=eiin (3.3) of [14], we have the following interesting corollary directly.

    Corollary 3.1If Assumption 3.1 holds, then we have, for anyi∈E,

    The solution of Poisson’s equation can be used to express the variance constant, which is a very important parameter in CLTs. Therefore, based on Theorem 3.1, we now consider the convergence of the variance constant. Recall that a CLT holds if there exists a constant0≤σ2(g)<∞such that for any initial distribution

    whereN(0,σ2(g)) denotes a normal random variable, “?” means convergence in distribution, and the constantσ2(g) is called the variance constant. From [26], we immediately know that ifπT|g|<∞, then a CLT holds if for some (then for all)l∈E,

    (3.1)

    and if a CLT holds, then the variance constant is given by

    The result on variance constant is given as follows, please refer to [14] for details.

    where(n)σ2((n)g) is the variance constant of the chain(n)Xk.

    According to the sample path analysis, we show that Assumption 3.1 holds for two types of truncation approximation schemes: the censored chain and the linear augmented truncation.

    The transition matrix of the censored Markov chain on(n)Eis given by (see e.g. Page 118 of [12])

    (3.2)

    wherePE1,E2=(P(i,j))i∈E1,j∈E2forE1,E2∈B(E), and(n)ECis the complement set of(n)E.

    For the fixed statej, the transition matrix of the (j+1)th column augmented Markov chain is given by (see, e.g. [30])

    (3.3)

    where(n)ejis a (n+1)-vector with unity in the (j+1)th position, zeros elsewhere.

    4 Applications

    In this section, we will apply our results to the single-death process, which is classical asymmetric Markov process including the birth-death process and the embeddedM/G/1 queue. The single-death process has a special transition matrixPgiven byP(i,i-1)>0 for alli≥1 andP(i,i-k)=0 for alli≥k≥2.We will give the error bounds for the stationary distribution of the embeddedM/G/1 queue and the exact expression of the solution of Poisson’s equation for a general single-death process, respectively.

    4.1 The embeddedM/G/1 queue

    First, we consider a general transition matrix ofM/G/1 form (see, e.g. [17]) given by

    (4.1)

    which includes the transition matrix of the embeddedM/G/1 queue as a special case.

    We will make the following assumption.

    Assumption 4.1Assume that

    (i) the transition matrix (4.1) is irreducible;

    (iii) min{φA,φB}>1 andφA<∞.

    From Proposition 3.1 in page 318 of [1], it is not hard to derive that the chain is positive recurrent if and only if (i) and (ii) of Assumption 4.1 hold. Assumption (iii) is imposed in order to find a drift condition D3 (V,λ,b,C).

    To apply Theorem 2.3 (ii), we need to make some assumptions in addition to Assumption 4.1. We assume thatPis aperiodic andA(φA)=∞ andB(φA)<∞.Then there exists a unique solution (s0,z0) to the following equation

    Now we determine the value of the parameterd.Define an atomαbyα={0}.IfC?α, thenCis an atom. From Proposition 2.1, we know thatd=0.Otherwise, ifC={0,…,k} fork≥1, we can obtain that for anyi∈C

    Letν(B)=χ1ωα(B) for anyB∈B(E), where

    Obviously,ν(B) is a nontrivial measure onB(E).Furthermore, ifχ1>0, thenCis a small set, and from Proposition 2.1, we know that

    Based on the above arguments, applying Theorem 2.4 yields an upper boundH1(V,n) directly.

    4.2 General single-death processes

    Now, we consider the explicit expression of the stationary distribution and the solution of Poisson’s equation for single-death processes. To solve Poisson’s equation, we need to introduce the following notations (see e.g. [33]):

    and

    We simply denotehmbyhm(e).

    The result can be found in the survey paper [33]. However, the arguments in the proof are new.

    Proposition 4.1Suppose that the single-death processXkis irreducible and positive recurrent. Then, there exists a unique invariant probability given by

    (4.2)

    Using the induction, for the case ofi=1, we have

    Assume that (4.2) holds for allm≤i

    in which the fourth equation follows by using the fact

    It follows fromπTe=1 that

    Then from Corollary 3.1, we obtain the assertion.

    In the following theorem, we present the explicit expression of the solution of Poisson’s equation for general single-death processes.

    Theorem 4.1Suppose that the single-death processXkis irreducible and positive recurrent. If the functiongsatisfiesπT|g|<∞, then for any fixed statej∈E, we have

    ProofIn the follows we will solve (1.2) with(n)fj(j)=0.From Corollary 2.3 in [33], one easily shows

    Since(n)f(j)=0, by using the induction, it follows that

    and

    Then, we obtain the solution of Poisson’s equation (1.2).

    From Theorem 3.1, we have, fori

    The case ofi>jcan be verified similarly. Thus the assertion is proved.

    5 Concluding remarks

    The technique of the augmented truncation approximation provides us an efficient way to approximate the steady performance measures, such as stationary distribution and the solution of Poisson’s equation, for infinitely countable DTMCs. It is direct to extend these results from DTMCs to CTMCs with bounded generators. However, as has been shown in [14] and [18], one has to be careful with the unbounded cases which may cause essential difference from the discrete-time cases.

    Markov chains considered in this paper are on one-dimensional countable state space. Naturally, we want to extend the technique of the augmented truncation approximation to a Markov chain on a high-dimensional or continuous state space. In [3], Bean and Latouche investigated the issue (i) of a two-dimensional quasi-birth-and-death process, but the issue (ii) is still an open problem. Jiang et al. [10] applied the augmented truncation approximation to study quasi-birth-and-death processes on a continuous state space. However, both the issues (i) and (ii) have not be studied for continuous state Markov chains. It is a quite interesting topic which is worthy of further research.

    The quasi-stationary distribution has been used for modelling the long-term behaviour of stochastic systems, which, in some sense, terminate, but appear to be stationary over an reasonable time scale. The augmented truncation approximation can be also used to compute the quasi-stationary distribution for an absorbing transient Markov chain, see e.g. [5]. Recently, we [13] have made some progress in approximate the quasi-stationary distribution for Markov-modulated Markov chains. However, many issues in this area keeps unsolved, which may be a topic for our research.

    九九在线视频观看精品| 91久久精品电影网| 波野结衣二区三区在线| 少妇熟女aⅴ在线视频| 欧美绝顶高潮抽搐喷水| 日韩一区二区视频免费看| 啦啦啦观看免费观看视频高清| 欧美国产日韩亚洲一区| 校园春色视频在线观看| 精品国内亚洲2022精品成人| 国产成人freesex在线 | 嫩草影视91久久| 男人舔奶头视频| 久久久久久九九精品二区国产| 一进一出抽搐gif免费好疼| 中文字幕av成人在线电影| 在线a可以看的网站| 在线观看66精品国产| 亚洲电影在线观看av| 国内精品美女久久久久久| 国产熟女欧美一区二区| 欧美三级亚洲精品| 身体一侧抽搐| 人人妻人人澡欧美一区二区| 精品久久久久久久久亚洲| 男人舔女人下体高潮全视频| 男女下面进入的视频免费午夜| 一级a爱片免费观看的视频| 久久精品人妻少妇| av天堂在线播放| 看非洲黑人一级黄片| 国产伦精品一区二区三区视频9| 免费av毛片视频| 久久精品综合一区二区三区| a级毛片免费高清观看在线播放| 黄色视频,在线免费观看| 国产精品女同一区二区软件| 最近中文字幕高清免费大全6| 插阴视频在线观看视频| 人妻少妇偷人精品九色| 简卡轻食公司| 99热这里只有是精品在线观看| a级毛色黄片| 一卡2卡三卡四卡精品乱码亚洲| 在线播放国产精品三级| 色尼玛亚洲综合影院| 老师上课跳d突然被开到最大视频| 十八禁国产超污无遮挡网站| 99精品在免费线老司机午夜| 亚洲中文日韩欧美视频| 亚洲欧美成人精品一区二区| 国产精品99久久久久久久久| 天天一区二区日本电影三级| 网址你懂的国产日韩在线| 黄色日韩在线| 欧美最新免费一区二区三区| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 午夜影院日韩av| 搡女人真爽免费视频火全软件 | 日韩av在线大香蕉| 最后的刺客免费高清国语| 午夜福利视频1000在线观看| 中文字幕精品亚洲无线码一区| 国产视频内射| 校园春色视频在线观看| 精品久久久久久久久久免费视频| 成人精品一区二区免费| 国产伦一二天堂av在线观看| 成人高潮视频无遮挡免费网站| 99视频精品全部免费 在线| 亚洲成人久久性| 22中文网久久字幕| 欧美日韩在线观看h| 国产一区二区在线av高清观看| 观看美女的网站| 在线免费十八禁| 男人狂女人下面高潮的视频| 国产aⅴ精品一区二区三区波| 人人妻人人看人人澡| 网址你懂的国产日韩在线| 国产乱人视频| av国产免费在线观看| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看| 97超视频在线观看视频| 舔av片在线| 亚洲精品久久国产高清桃花| 在线免费十八禁| 久久九九热精品免费| 在线免费观看不下载黄p国产| 成人鲁丝片一二三区免费| 日本在线视频免费播放| 欧美日韩国产亚洲二区| 久久久久国产精品人妻aⅴ院| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 我的女老师完整版在线观看| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 禁无遮挡网站| 国产美女午夜福利| 亚洲国产精品国产精品| 联通29元200g的流量卡| 一个人看的www免费观看视频| 国语自产精品视频在线第100页| 欧美日韩综合久久久久久| 男女啪啪激烈高潮av片| 日韩制服骚丝袜av| 天堂动漫精品| 国产精品一区二区免费欧美| 免费看光身美女| 日韩欧美 国产精品| 久久中文看片网| 97热精品久久久久久| 女人被狂操c到高潮| 如何舔出高潮| 欧美成人一区二区免费高清观看| 成人av在线播放网站| 国产在视频线在精品| 久久精品国产鲁丝片午夜精品| 无遮挡黄片免费观看| 国产中年淑女户外野战色| 性插视频无遮挡在线免费观看| 国产欧美日韩一区二区精品| 一级毛片aaaaaa免费看小| 欧美丝袜亚洲另类| 校园人妻丝袜中文字幕| 精品午夜福利视频在线观看一区| 可以在线观看毛片的网站| 日本-黄色视频高清免费观看| eeuss影院久久| 日日摸夜夜添夜夜爱| 男插女下体视频免费在线播放| 国产色爽女视频免费观看| 小说图片视频综合网站| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 欧美高清性xxxxhd video| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 午夜福利视频1000在线观看| 在线国产一区二区在线| 欧美又色又爽又黄视频| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 亚洲欧美成人综合另类久久久 | av天堂在线播放| or卡值多少钱| 国产91av在线免费观看| 日本-黄色视频高清免费观看| 长腿黑丝高跟| 午夜爱爱视频在线播放| 欧美日本视频| av专区在线播放| 最近最新中文字幕大全电影3| 直男gayav资源| 成人av在线播放网站| 欧美日本亚洲视频在线播放| a级一级毛片免费在线观看| 精品久久久久久久久久久久久| 在线免费观看不下载黄p国产| 亚洲av免费在线观看| 午夜福利在线观看免费完整高清在 | 天堂影院成人在线观看| 国产精品一区二区免费欧美| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 无遮挡黄片免费观看| 成年女人看的毛片在线观看| 国产伦精品一区二区三区四那| 91在线精品国自产拍蜜月| 欧美日韩综合久久久久久| 尤物成人国产欧美一区二区三区| 国内精品宾馆在线| 亚洲精品影视一区二区三区av| 十八禁网站免费在线| 亚洲av电影不卡..在线观看| 波多野结衣高清无吗| 色在线成人网| 精品一区二区免费观看| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 变态另类丝袜制服| 亚洲av熟女| 久久午夜亚洲精品久久| 国产精品嫩草影院av在线观看| 久久韩国三级中文字幕| 丝袜美腿在线中文| 岛国在线免费视频观看| 亚洲最大成人av| 97超视频在线观看视频| 久久精品综合一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲18禁久久av| 国产高清视频在线观看网站| 国产精品女同一区二区软件| 欧美激情在线99| 午夜亚洲福利在线播放| 嫩草影院入口| 午夜爱爱视频在线播放| 免费看av在线观看网站| 国产精品永久免费网站| 赤兔流量卡办理| 白带黄色成豆腐渣| 亚洲成人久久性| 波多野结衣高清无吗| 男女下面进入的视频免费午夜| 亚洲av免费在线观看| 黄色视频,在线免费观看| 少妇裸体淫交视频免费看高清| 日本五十路高清| 悠悠久久av| 亚洲精品一区av在线观看| 亚洲成人中文字幕在线播放| 美女大奶头视频| 深夜a级毛片| 男女下面进入的视频免费午夜| 波多野结衣高清作品| 我要搜黄色片| 国产亚洲av嫩草精品影院| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 草草在线视频免费看| av卡一久久| 亚洲人成网站在线播| 少妇高潮的动态图| 2021天堂中文幕一二区在线观| 国产av不卡久久| 毛片女人毛片| 精品人妻一区二区三区麻豆 | 亚洲专区国产一区二区| 久久亚洲精品不卡| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| 寂寞人妻少妇视频99o| 我的女老师完整版在线观看| 亚洲婷婷狠狠爱综合网| 欧美成人精品欧美一级黄| 国产精品野战在线观看| av在线蜜桃| 一区福利在线观看| 国产高清有码在线观看视频| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久成人av| 精品一区二区三区av网在线观看| 少妇熟女aⅴ在线视频| ponron亚洲| 深夜a级毛片| 成人漫画全彩无遮挡| 男人和女人高潮做爰伦理| 亚洲av电影不卡..在线观看| 欧美高清成人免费视频www| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| av卡一久久| 久久久久性生活片| 97超碰精品成人国产| 国产乱人视频| 有码 亚洲区| 一进一出抽搐动态| 可以在线观看毛片的网站| 欧美一区二区精品小视频在线| 最新中文字幕久久久久| 亚洲精品国产成人久久av| 免费搜索国产男女视频| 男人狂女人下面高潮的视频| 免费av观看视频| 亚洲色图av天堂| 精品乱码久久久久久99久播| 国产成年人精品一区二区| 男人的好看免费观看在线视频| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 你懂的网址亚洲精品在线观看 | 国产黄a三级三级三级人| 久久午夜福利片| 一进一出抽搐动态| 国产午夜精品论理片| 免费无遮挡裸体视频| 成人毛片a级毛片在线播放| 哪里可以看免费的av片| 一边摸一边抽搐一进一小说| 蜜桃久久精品国产亚洲av| 婷婷亚洲欧美| 搡老岳熟女国产| 久久久精品94久久精品| 欧美xxxx性猛交bbbb| 成人永久免费在线观看视频| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 国产av在哪里看| 女人十人毛片免费观看3o分钟| 国产精品嫩草影院av在线观看| 亚洲精品456在线播放app| a级一级毛片免费在线观看| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站| 欧美3d第一页| 看免费成人av毛片| 一区福利在线观看| 亚洲欧美清纯卡通| 久久久久久久久久久丰满| 女同久久另类99精品国产91| 黑人高潮一二区| 国产人妻一区二区三区在| 国产精品一区二区免费欧美| 欧美区成人在线视频| 一区福利在线观看| 久久精品综合一区二区三区| 嫩草影院入口| 97超级碰碰碰精品色视频在线观看| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 搡老岳熟女国产| 亚洲av熟女| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 国产探花极品一区二区| 看非洲黑人一级黄片| 最近手机中文字幕大全| 欧美成人免费av一区二区三区| 日本-黄色视频高清免费观看| 国产一区二区激情短视频| 欧美成人免费av一区二区三区| 国产高清不卡午夜福利| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 在线a可以看的网站| 哪里可以看免费的av片| 成人欧美大片| 国产欧美日韩精品亚洲av| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 如何舔出高潮| 五月伊人婷婷丁香| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| 精品人妻熟女av久视频| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| av天堂中文字幕网| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 午夜亚洲福利在线播放| 久久久久国产精品人妻aⅴ院| 亚洲av第一区精品v没综合| 欧美人与善性xxx| 久久综合国产亚洲精品| 久久久久免费精品人妻一区二区| 淫秽高清视频在线观看| 亚洲无线观看免费| 亚洲av一区综合| 国产精品不卡视频一区二区| 国产精品精品国产色婷婷| 赤兔流量卡办理| 97在线视频观看| 久久久精品大字幕| 国产av不卡久久| 国产探花在线观看一区二区| 床上黄色一级片| 日韩一区二区视频免费看| 欧美精品国产亚洲| 成人精品一区二区免费| 日韩强制内射视频| 特级一级黄色大片| 国产高清有码在线观看视频| 国产精品1区2区在线观看.| 欧美激情在线99| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| 特级一级黄色大片| 日韩av在线大香蕉| av福利片在线观看| 亚洲va在线va天堂va国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 最近在线观看免费完整版| 夜夜看夜夜爽夜夜摸| 亚洲最大成人手机在线| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| av天堂在线播放| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 老司机福利观看| 亚洲自拍偷在线| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 国产三级在线视频| aaaaa片日本免费| 成人特级黄色片久久久久久久| 国产精品嫩草影院av在线观看| 99久久久亚洲精品蜜臀av| 国产片特级美女逼逼视频| 国产白丝娇喘喷水9色精品| 97热精品久久久久久| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 亚洲人与动物交配视频| 欧美日韩在线观看h| 欧美丝袜亚洲另类| avwww免费| 特大巨黑吊av在线直播| 亚洲av.av天堂| 精品久久久噜噜| 哪里可以看免费的av片| 搡老熟女国产l中国老女人| 中文字幕熟女人妻在线| 黄色一级大片看看| 日本一二三区视频观看| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 亚洲不卡免费看| 色综合亚洲欧美另类图片| 国产在线精品亚洲第一网站| 精品久久国产蜜桃| 熟妇人妻久久中文字幕3abv| 免费搜索国产男女视频| 国产成人精品久久久久久| 亚洲欧美日韩高清专用| 男人舔奶头视频| 久久精品国产99精品国产亚洲性色| av国产免费在线观看| 色尼玛亚洲综合影院| 日韩三级伦理在线观看| 日日摸夜夜添夜夜添小说| 变态另类丝袜制服| 亚洲成人久久性| 麻豆国产av国片精品| 日韩精品青青久久久久久| 在线看三级毛片| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区久久| 亚洲中文日韩欧美视频| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 97人妻精品一区二区三区麻豆| 欧美国产日韩亚洲一区| 国产高清视频在线观看网站| 午夜免费男女啪啪视频观看 | 你懂的网址亚洲精品在线观看 | 午夜免费激情av| 免费在线观看影片大全网站| 久久人人爽人人片av| 亚洲成人精品中文字幕电影| 又爽又黄a免费视频| 国产av不卡久久| 色5月婷婷丁香| 一个人免费在线观看电影| 成年版毛片免费区| 亚洲欧美清纯卡通| av天堂在线播放| 国产精品久久电影中文字幕| 久久精品影院6| 亚洲性久久影院| 久久韩国三级中文字幕| 永久网站在线| 麻豆av噜噜一区二区三区| 一a级毛片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产成年人精品一区二区| 国产精品人妻久久久久久| 99国产精品一区二区蜜桃av| 99视频精品全部免费 在线| 亚洲va在线va天堂va国产| 中文字幕av成人在线电影| 久久久国产成人精品二区| 亚洲综合色惰| 国产精品电影一区二区三区| 69人妻影院| 成年女人看的毛片在线观看| 色视频www国产| 国产成人91sexporn| 男人舔奶头视频| 亚洲av不卡在线观看| 亚洲精品色激情综合| 亚洲中文日韩欧美视频| 天天躁日日操中文字幕| 精品人妻偷拍中文字幕| 如何舔出高潮| 欧美精品国产亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av| 波多野结衣高清无吗| 内地一区二区视频在线| 成年女人永久免费观看视频| 免费看光身美女| 亚洲va在线va天堂va国产| 男人舔奶头视频| 亚洲精品乱码久久久v下载方式| 五月玫瑰六月丁香| 精品少妇黑人巨大在线播放 | 欧美激情在线99| 身体一侧抽搐| 99久国产av精品| 国产精品国产三级国产av玫瑰| 97超碰精品成人国产| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 51国产日韩欧美| 搡老岳熟女国产| 午夜精品一区二区三区免费看| 我要搜黄色片| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 一a级毛片在线观看| 99精品在免费线老司机午夜| 69人妻影院| 三级国产精品欧美在线观看| 成人鲁丝片一二三区免费| 99热只有精品国产| 中文字幕av在线有码专区| 美女内射精品一级片tv| 日韩人妻高清精品专区| 亚洲人成网站在线播| 麻豆国产97在线/欧美| 日本熟妇午夜| 久久久色成人| 少妇被粗大猛烈的视频| 国产精品野战在线观看| 69av精品久久久久久| 寂寞人妻少妇视频99o| 久久草成人影院| 久久人人爽人人爽人人片va| 内射极品少妇av片p| 春色校园在线视频观看| 99国产极品粉嫩在线观看| 精品人妻一区二区三区麻豆 | 可以在线观看毛片的网站| 91久久精品国产一区二区成人| 国内少妇人妻偷人精品xxx网站| 亚洲久久久久久中文字幕| 成年女人永久免费观看视频| av天堂中文字幕网| 桃色一区二区三区在线观看| 欧美日本亚洲视频在线播放| 午夜久久久久精精品| 国产精品女同一区二区软件| 亚洲中文字幕一区二区三区有码在线看| 99热这里只有是精品在线观看| 99热只有精品国产| 人妻制服诱惑在线中文字幕| 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 内地一区二区视频在线| 噜噜噜噜噜久久久久久91| 在线天堂最新版资源| 成年免费大片在线观看| 高清日韩中文字幕在线| 国产亚洲精品综合一区在线观看| 午夜福利在线观看吧| 日本与韩国留学比较| 国产aⅴ精品一区二区三区波| 最近视频中文字幕2019在线8| 夜夜看夜夜爽夜夜摸| 如何舔出高潮| 成人特级av手机在线观看| 成年版毛片免费区| 99热全是精品| 高清日韩中文字幕在线| 一个人看视频在线观看www免费| 亚洲国产色片| 亚洲欧美成人综合另类久久久 | 国产欧美日韩精品一区二区| 精品久久久久久久末码| av天堂在线播放| 久久久精品大字幕| 99久久无色码亚洲精品果冻| 亚洲真实伦在线观看| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩卡通动漫| 此物有八面人人有两片| 国产综合懂色| av视频在线观看入口| 此物有八面人人有两片| 久久久久久久亚洲中文字幕| 日本爱情动作片www.在线观看 | 亚洲人成网站在线播| 久久久精品欧美日韩精品| 熟女电影av网| 人妻久久中文字幕网| 国产一区二区亚洲精品在线观看| 婷婷精品国产亚洲av| 啦啦啦啦在线视频资源| 亚洲精品粉嫩美女一区| 九九在线视频观看精品| 欧美丝袜亚洲另类| 九色成人免费人妻av| 黄色配什么色好看| 99在线视频只有这里精品首页| 久久久成人免费电影| 91狼人影院| 麻豆国产av国片精品| 免费av毛片视频| 国产精品99久久久久久久久| 亚洲国产精品成人久久小说 | 99久国产av精品国产电影| 看非洲黑人一级黄片|