• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of temporal trends of human brucellosis between 2013 and 2018 in Yazd Province, Iran to predict future trends in incidence: A time-series study using ARIMA model

    2020-06-18 13:30:28VahidRahmanianSaiedBokaieKaramatollahRahmanianSaeedHosseiniAliakbarTajFirouzeh

    Vahid Rahmanian, Saied Bokaie, Karamatollah Rahmanian, Saeed Hosseini, Aliakbar Taj Firouzeh

    1Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran

    2Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran

    3Epidemiology and Zoonosis Division Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

    4Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran

    5Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    6Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    ABSTRACT

    KEYWORDS:Malta fever; Forecasting; Public health surveillance;Iran

    1. Introduction

    Brucellosis (Malta fever) is endemic in the Middle East (Iran),Africa, Latin America, Central Asia, and the Mediterranean Basin.Most provinces of Iran are endemic with brucellosis, especially the regions where human lives are in close contact with livestock[1,2].Brucellosis is a neglected zoonotic disease caused by Brucella bacteria. Transmission in humans can occur through the use of unpasteurized milk and dairy products, laboratory inhalation,accidental skin penetration, and conjunctiva contact (rarely), blood transfusion, both transplacentally and person-to-person[3,4]. Direct person-to-person transmission infrequently happens, albeit it has been described that transmission may occur via breast-feeding and sexual intercourse[5-7]. Human brucellosis is one of the common multisystem diseases with more than 500 000 cases occurring worldwide every year[8,9]. The prevalence of diseases are more than 10 cases per 100 000 population in some countries[10,11]. According to the report of the Center for Disease Control and Prevention (Iran);the distribution of human brucellosis based on cumulative incidence are as follows: very high incidence regions, (31-41 per 100 000), high incidence regions, (21-30 per 100 000), moderate incidence regions(11-20 per 100 000) and low incidence regions (0-10 per 100 000)[12].

    Many cases of the disease are reported in Iran due to long borders with endemic countries and lack of supervision on imports of livestock, a large number of tribal population, traditional husbandry methods, failure to supervise the production and distribution of dairy products and the lack of systematic implementation of vaccination, testing, and slaughter of livestock[13]. In reaction to the outbreak of human brucellosis, and according to the zoonotic and economic importance of brucellosis, a fast alert system was immediately required in the epidemic region[14]. Consequently,brucellosis surveillance systems that registered data brucellosis cases were established. Each case of human brucellosis should be reported within 7 days through the National Notifiable Disease Surveillance System by healthcare providers in Iran. Time-series analysis of existing surveillance data in infectious disease is essential in triggering novel hypotheses, the prediction of the observed events and subsequently, creating a quality control system. This form of time data can be investigated by an autoregressive integrated moving average (ARIMA) model[15]. This model can assess trend and seasonality designs with cumulative incidence of brucellosis,and is suitable for forecasting. This study was designed to determine the temporal patterns of brucellosis incidence from 2013 to 2018 in Yazd in the central region of Iran, using ARIMA models. We created a time-series model for brucellosis and forecasted the brucellosis incidence for 2019. This model will be useful for short-term forecasting the epidemic trend of human brucellosis and providing a brucellosis reference guide for interventions.

    2. Materials and methods

    2.1. Study site

    Yazd province is located in central Iran, and, based on the National Population and Housing Census, it had a population of 1138 533 in 2016. The city of Yazd is the administrative capital of Yazd province.It also consists of ten counties. Yazd has a climate that is similar to a dry desert climate. Small rains with high water evaporation,comparatively low humidity, changes in heat and temperature, are among the factors that make this province one of the driest provinces of Islamic Republic of Iran. Yazd province shares its borders with Isfahan, Semnan, Razavi Khorasan, South Khorasan, Kerman and Fars provinces. The production of 233 000 tons of raw milk during 2016 ranked the province fifteenth in the country in terms of production milk. A total of 436 980, 426 000 and 154 400 sheep,goats and cows respectively, were reported in 2016 in this province by the Yazd veterinary organization.

    2.2. Data source

    This cross-sectional study employed yearly and monthly data of 1 117 laboratory-confirmed human brucellosis cases from January 2013 to December 2018 using the Yazd brucellosis national surveillance system. The cumulative incidence for human brucellosis was calculated on a monthly basis (number of human brucellosis/population size) and stated per 100 000 people. Then the monthly incidences during study period constructed the time-series model.Before the selection of the model, the trend was observed by plotting the line diagram, and this scheme shows the seasonal trend with a periodicity. Therefore, the ARIMA model was selected.

    2.3. Statistical analysis

    2.3.1. ARIMA model

    When there were no missing data in the stationary seasonal time series and when there were trend changes, periodic changes, and random disorders in the time series of infectious diseases in other regions, the ARIMA model was selected[16]. The ARIMA model was defined via three parameters (p, d, q): p was the number of autoregressive (AR) terms, d was the number of times the model was differenced, and q was the number of moving average (MA)terms[17]. Analysis of the autocorrelation functions (ACF) and partial autocorrelation functions (PACF) plots allowed estimation of the AR and MA parameters for the time series of incidence and therefore identification of plausible models[18,19]. After the identification step, lower Akaike Information Criteria (AIC) value and Bayesian information criterion (BIC) among diverse models demonstrated a preferable model from models which were expanded via diverse lags[20]. Next, the achieved ARIMA model was applied to the predicting cumulative incidence of annually and monthly separate brucellosis incidences eventually, the forecasting accuracy was evaluated via the mean absolute percentage error (MAPE), which was calculated using the formula for MAPE:

    Where: N = the number of prediction.

    2.3.2. Statistical methods

    Data analysis was performed in Stata, version 11.2 (Stata Corp,College Station, TX, USA) using commands including: time series,ARIMA and ARIMA models, forecasting, correlogram and partial correlogram graphs and portmanteau white noise test. To investigate the stationary in variance and mean, box cox regression and Dickey-Fuller test were used, respectively. The significance level of 0.05 was considered.

    2.4. Ethical considerations

    This research was approved by the Health Policy Research Center,Institute of Health, Shiraz University of Medical Sciences, (Ref:2018/01/62/19278). In using raw data from the national brucellosis surveillance system, all principles were considered to protect the confidentiality of personal information of individuals.

    3. Results

    3.1. Descriptive data

    Most of the patients (95.1%) had been detected for the first time(new cases). A total of 630 (56.4%) males and 487 (43.6%) females with the median age of 35 years (IQR: 31) ranginged from 5 to 94 years were enrolled. Also, 730 (65.4%) of the patients lived in urban regions, 661 (59.2%) of patients had a history of close contact with animals, and 908 (81.3%) had a history of consumption of unpasteurized dairy products. The trend of monthly numbers of brucellosis from the study period is displayed in Figure 1. Absolute case counts per month ranged from 1 to 58. Human brucellosis was most common in the months of March, April, May and June and overall, cumulative incidence peaked in March 2014. It was observed that the disease incidence had a periodic and seasonal trend with the peak in March and the lowest point in December. Time-series plot showed an analogous seasonal trend each year, proposing that the ARIMA model was suitable to fitting the data.

    Figure 1. Trend and distribution of human brucellosis incidence (per 100 000 population).

    3.2. ARIMA model

    This model was created by the data of brucellosis cumulative incidence from 2013 January to 2018 December. It showed that the series was non-stationary in variance, and square root transformation was used. The mean was stationary in this series (d=0). Transformed data were done on all further statistical methods. To define key parameters of the ARIMA model (p, d, q), ACF and PACF plots were drawn and it was proposed that a composition between MA (3) and AR (3) terms could be added in the model (Figure 2 and 3). In fact,the gray space in these graphs shows a 95% confidence interval and the lines that are out of this range sequentially, will be significant.The possible models for ARIMA in this study were ARIMA (3,0, 3); ARIMA (2, 0, 3); ARIMA (3, 0, 2); ARIMA (4, 0, 3) and ARIMA (3, 0, 4). After this step, the ARIMA (3, 0, 4) model was the most appropriate of all examined models, with lower AIC (25.7) and BIC (43.35) value (Table 1). In fact, in Table 1, for each potential model, a time-series analysis was performed, and the AIC and BIC values of that fitted model were extracted and then compared. The model’s fitted cumulative incidence from January 2013 to December 2018 are shown in Figure 4. In general, the predicted brucellosis cases followed an analogous pattern of actual brucellosis cases,indicating that this model could well predict human brucellosis. The MAPE value was 56.20% with standard error 0.009–0.0160 and the portmanteau test for white noise (Q=19.79, P=0.975) for the residuals of the selected model showed that the data were completely modelled. The total cumulative incidence of human brucellosis in 2019 in central Iran was predicted 5.93 per 100 000 people, and monthly incidence was 0.50, 0.44, 0.45, 0.49, 0.55, 0.58, 0.56, 0.51,0.46, 0.44, 0.45 and 0.49 per 100 000 people, respectively.

    Table 1. ARIMA models for human brucellosis incidence in central Iran.

    Figure 2. Autocorrelation functions (ACF) correlogram plot of the trend in human brucellosis incidence.

    Figure 3. Partial autocorrelation functions (PACF) plots of the trend in human brucellosis incidence.

    Figure 4. Observed reported cases of human brucellosis and predicted values based on final selected ARIMA model in central Iran.

    4. Discussion

    In this study, monthly cumulative incidences of brucellosis in Yazd province were forecast by an established ARIMA (3, 0, 4) model.The core benefit of this model is that it takes into attention seasonal differences, which might be valuable in predicting future monthly incidences[19,21]. Human brucellosis cases, were most common in the months of March, April, May, and June. It was observed that the disease incidence had a periodic and seasonal trend with the peak in March and the lowest point in December. In Yazd, goat and sheep are considered as the primary source of brucellosis. It seems that the transition from winter to spring and summer, and the subsequent increase in the temperature and reduced moisture content leads to increased cases of human brucellosis by affecting pasture conditions in terms of animal husbandry, cattle breeding and increased contact between humans and animals. Other studies reported seasonal distribution of human brucellosis[4,22], which is consistent with this study.

    Public health surveillance is an instrument used for assessing the health conditions and manner of the population, administrated by ministries of health. The key objective of surveillance is to provide information for action and enable policymakers to lead and manage more efficiently by providing up-to-date, supportive evidence[23]. As a customary public health activity, epidemiological surveillance of transmissible infections is a standard procedure and model predictions provide further application to public health surveillance data sources[24]. Time analysis of infections data may serve as a number of objectives. Frequently, the chief applications consist of forecasting and the progress of alert systems to discover periods or locations where contagion exceeds some thresholds[25].In this research, the ARIMA model had closely fitted incidences of brucellosis, giving it high accuracy. Therefore, the ARIMA(3, 0, 4) model can be used to forecast the next twelve months’brucellosis incidence in Yazd province. According to the findings of this study, a decreasing incidence in Yazd province in 2019 is forecast. Reductions in the incidence of human brucellosis may be associated with an increasing public awareness of the ways of transmission and prevention through the existence of a brucellosis national surveillance system and the implementation of more control programs, such as vaccination of livestock by the Yazd Veterinary Organization over recent years. The results might be attributed to public health planning and resource allocation.

    ARIMA models have been usually used in econometrics; though,their usage is increasing in health fields. Anwar et al. applied the ARIMA (4, 1, 1) × (1, 0, 1) 12 model to predict future trends in malaria incidence in Afghanistan[26]. Zhong et al. indicated ARIMA(2, 1, 0) models to predicting the incidence of pneumoconiosis in Nanjing[27]. Liu et al. used ARIMA (0, 3, 1) to predict hemorrhagic fever incidence in China[24]. Yang et al. found that the ARIMA(0, 2, 1) could forecast incidence of human brucellosis within a short-term in China[14]. Lee et al. evaluated relationship using the ARIMA model and negative binomial regression (NBR) model in forecasting bovine and human brucellosis in Korea[28]. The strengths of this study are that using statistical modeling creates a predictive instrument that can be applied to forecast brucellosis cases at a national level according to information from a passive surveillance system that can be useful for public health projecting and resource allocation.

    The limitation of this study is that we assumed that size populations were stable on an annual basis, while not completely accurate.On the other hand, this can lead to a non-differential bias since the comparatively large denominators had negligible effect on the monthly cumulative incidence as a covariate in the model.

    In summary, the study showed that the ARIMA (3, 0, 4) model can be used to predict human brucellosis patterns in Yazd province,complementing current surveillance systems, and may be better for health policy-makers and planners. The model provides a means to better knowledge of human brucellosis dynamics in a resourcelimited context with minimal data input, yielding predictions that can be applied for public health scheming nationwide. Timeseries analysis with ARIMA models are appropriate for short-term forecasting, so we suggest in future studies, other time-series models that do not have this limitation can be used for long-term prediction of time series in brucellosis.

    Conflict of interest statement

    We declare that we have no con flict of interest.

    Acknowledgement

    This study was derived from MPH thesis from Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran. It is necessary to appreciate all who worked with us in this study, especially staff who worked in the brucellosis surveillance system and the Health Deputy of Yazd University of Medical Sciences. Furthermore, the authors hereby would like to express their gratitude and appreciation to Dr. Behnam Honarvar,Associated Professor of Ccommunity Mmedicine at Shiraz University of Medical Sciences, who advised and collaborated on implementing this study in different stages and sections. This study was conducted using existing data from the primary health care system and did not impose additional costs.

    精品人妻在线不人妻| 亚洲伊人久久精品综合| 欧美性感艳星| 热re99久久精品国产66热6| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 99热网站在线观看| 毛片一级片免费看久久久久| 在线观看www视频免费| 青春草视频在线免费观看| 免费av不卡在线播放| 大香蕉久久成人网| 多毛熟女@视频| 亚洲四区av| 国产日韩欧美亚洲二区| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 五月天丁香电影| 久久久a久久爽久久v久久| 国产成人精品在线电影| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 国产精品一二三区在线看| 午夜视频国产福利| 日韩av不卡免费在线播放| 一级片'在线观看视频| 欧美人与性动交α欧美软件 | 国产成人免费观看mmmm| 国内精品宾馆在线| 亚洲精品久久成人aⅴ小说| av.在线天堂| 日日撸夜夜添| 99国产精品免费福利视频| 人成视频在线观看免费观看| 国国产精品蜜臀av免费| 国产日韩欧美视频二区| 捣出白浆h1v1| 日韩中字成人| 在线观看免费高清a一片| 国产一级毛片在线| 看十八女毛片水多多多| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 国产深夜福利视频在线观看| 色94色欧美一区二区| 少妇被粗大猛烈的视频| 9191精品国产免费久久| 多毛熟女@视频| 曰老女人黄片| 人妻 亚洲 视频| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 日韩制服丝袜自拍偷拍| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 日韩精品有码人妻一区| 婷婷色综合www| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 亚洲国产精品成人久久小说| 丝袜在线中文字幕| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲一码二码三码区别大吗| 国产极品天堂在线| 国产国语露脸激情在线看| 亚洲一级一片aⅴ在线观看| 美女xxoo啪啪120秒动态图| 黑人猛操日本美女一级片| 成人无遮挡网站| 天堂俺去俺来也www色官网| 丝瓜视频免费看黄片| 国产精品国产av在线观看| 满18在线观看网站| 大码成人一级视频| videossex国产| 男人爽女人下面视频在线观看| 999精品在线视频| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 1024视频免费在线观看| 我的女老师完整版在线观看| av电影中文网址| 成年av动漫网址| h视频一区二区三区| 久久人妻熟女aⅴ| av片东京热男人的天堂| 丰满少妇做爰视频| 高清在线视频一区二区三区| 免费av中文字幕在线| av不卡在线播放| 少妇精品久久久久久久| 欧美xxⅹ黑人| 日韩中文字幕视频在线看片| 午夜福利视频精品| 国产黄色视频一区二区在线观看| 亚洲精品中文字幕在线视频| 久久国产精品男人的天堂亚洲 | 在线观看美女被高潮喷水网站| 在线观看www视频免费| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕| 中文字幕最新亚洲高清| 99热这里只有是精品在线观看| av视频免费观看在线观看| 日韩av不卡免费在线播放| 精品一区在线观看国产| av不卡在线播放| 久久久久久人妻| 婷婷色麻豆天堂久久| 精品久久久久久电影网| 大片免费播放器 马上看| 黄色 视频免费看| 日韩成人伦理影院| 一级片免费观看大全| 国产精品人妻久久久影院| 久久韩国三级中文字幕| 欧美成人午夜精品| 国产淫语在线视频| 最后的刺客免费高清国语| 久久久a久久爽久久v久久| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 成人二区视频| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 欧美bdsm另类| 久久精品国产综合久久久 | 免费久久久久久久精品成人欧美视频 | 亚洲欧美日韩卡通动漫| 亚洲av在线观看美女高潮| 最近最新中文字幕大全免费视频 | 日韩熟女老妇一区二区性免费视频| 久久久久久伊人网av| 男人爽女人下面视频在线观看| 美女国产高潮福利片在线看| 国产一级毛片在线| 看十八女毛片水多多多| 亚洲精品色激情综合| 国产亚洲最大av| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 精品国产一区二区三区久久久樱花| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 天天操日日干夜夜撸| 国产日韩一区二区三区精品不卡| 18禁观看日本| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 免费观看av网站的网址| 丰满乱子伦码专区| 国产欧美日韩一区二区三区在线| 国产精品.久久久| 精品久久久久久电影网| 嫩草影院入口| 精品一区二区三卡| 超色免费av| 丝袜美足系列| 日韩精品免费视频一区二区三区 | 免费日韩欧美在线观看| 亚洲精品一二三| 久久久久精品久久久久真实原创| 99久国产av精品国产电影| 中国美白少妇内射xxxbb| 国产麻豆69| 曰老女人黄片| 看免费成人av毛片| 一本色道久久久久久精品综合| 侵犯人妻中文字幕一二三四区| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 秋霞伦理黄片| 看非洲黑人一级黄片| 日本欧美国产在线视频| 欧美+日韩+精品| 成人国语在线视频| 人妻系列 视频| 人人妻人人澡人人爽人人夜夜| 国产精品免费大片| 香蕉精品网在线| 制服丝袜香蕉在线| 欧美日韩视频高清一区二区三区二| 国产乱人偷精品视频| 久久免费观看电影| 久久韩国三级中文字幕| h视频一区二区三区| 日韩伦理黄色片| 女性被躁到高潮视频| 91精品三级在线观看| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 国产av精品麻豆| av一本久久久久| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 99九九在线精品视频| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 在线精品无人区一区二区三| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 亚洲成人av在线免费| 精品一区在线观看国产| 亚洲国产精品国产精品| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 18禁国产床啪视频网站| 成人国语在线视频| 国产精品久久久久久精品古装| 免费观看av网站的网址| 日韩成人av中文字幕在线观看| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 人人妻人人澡人人看| 咕卡用的链子| 国产毛片在线视频| 黑人高潮一二区| 如何舔出高潮| 天天操日日干夜夜撸| 午夜福利视频精品| 热99久久久久精品小说推荐| 最近最新中文字幕免费大全7| 性色av一级| 日本黄大片高清| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 一区二区av电影网| 99热全是精品| av.在线天堂| 一区二区三区四区激情视频| 国产av一区二区精品久久| 亚洲av.av天堂| a级毛色黄片| 肉色欧美久久久久久久蜜桃| 两个人看的免费小视频| 成人二区视频| 亚洲第一区二区三区不卡| 啦啦啦中文免费视频观看日本| 日韩精品免费视频一区二区三区 | 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 99九九在线精品视频| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 国产精品嫩草影院av在线观看| 十八禁网站网址无遮挡| 高清av免费在线| 高清毛片免费看| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 精品酒店卫生间| 国产日韩一区二区三区精品不卡| 日韩视频在线欧美| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| 丰满少妇做爰视频| 在线天堂中文资源库| 91久久精品国产一区二区三区| 午夜福利视频在线观看免费| 欧美日韩精品成人综合77777| 97人妻天天添夜夜摸| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 热99久久久久精品小说推荐| 五月玫瑰六月丁香| 成年av动漫网址| 亚洲美女黄色视频免费看| 欧美精品亚洲一区二区| 久久久久久久久久人人人人人人| 26uuu在线亚洲综合色| 性色avwww在线观看| 捣出白浆h1v1| 丰满迷人的少妇在线观看| 日韩电影二区| 草草在线视频免费看| 999精品在线视频| 亚洲av中文av极速乱| 五月天丁香电影| 人体艺术视频欧美日本| 久久 成人 亚洲| 免费在线观看完整版高清| 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 亚洲精品色激情综合| 国产精品成人在线| 一级片'在线观看视频| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 高清欧美精品videossex| 亚洲成色77777| 免费观看性生交大片5| 日韩成人伦理影院| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| 欧美亚洲日本最大视频资源| 久久99蜜桃精品久久| 99热6这里只有精品| 22中文网久久字幕| 免费日韩欧美在线观看| 日本午夜av视频| 国产免费一区二区三区四区乱码| 久久鲁丝午夜福利片| 两个人看的免费小视频| 18+在线观看网站| 欧美另类一区| h视频一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲国产毛片av蜜桃av| 少妇人妻久久综合中文| 国产精品一二三区在线看| 波野结衣二区三区在线| 黑人高潮一二区| 香蕉精品网在线| freevideosex欧美| 97人妻天天添夜夜摸| 亚洲精品aⅴ在线观看| xxxhd国产人妻xxx| 国产淫语在线视频| 亚洲综合色网址| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看av| 久久人人97超碰香蕉20202| 一区在线观看完整版| 妹子高潮喷水视频| 亚洲美女黄色视频免费看| 久久久精品区二区三区| 久久99蜜桃精品久久| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩另类电影网站| 22中文网久久字幕| 欧美精品亚洲一区二区| 精品人妻偷拍中文字幕| 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频 | 插逼视频在线观看| 精品久久久精品久久久| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 90打野战视频偷拍视频| 久久午夜福利片| 国产成人精品在线电影| 99九九在线精品视频| 色网站视频免费| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 亚洲经典国产精华液单| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区 | 亚洲av日韩在线播放| 五月天丁香电影| 精品福利永久在线观看| av女优亚洲男人天堂| 永久免费av网站大全| 曰老女人黄片| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 欧美精品一区二区免费开放| 飞空精品影院首页| 视频区图区小说| 日韩制服丝袜自拍偷拍| 久久久久久伊人网av| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 久久ye,这里只有精品| 在线观看人妻少妇| 国产精品无大码| 少妇 在线观看| 男的添女的下面高潮视频| 51国产日韩欧美| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 婷婷色综合大香蕉| 久久精品国产亚洲av天美| 日本vs欧美在线观看视频| 丝袜喷水一区| 少妇的逼好多水| 国产又色又爽无遮挡免| 两个人看的免费小视频| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 国产av码专区亚洲av| 国产亚洲精品久久久com| 满18在线观看网站| 少妇 在线观看| 两性夫妻黄色片 | 男女边摸边吃奶| 久久99热6这里只有精品| 一区在线观看完整版| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www| 精品一区二区三卡| 欧美精品av麻豆av| 欧美激情国产日韩精品一区| 在线观看免费高清a一片| 九九在线视频观看精品| 亚洲国产色片| 欧美日韩成人在线一区二区| 亚洲精品456在线播放app| 国产国语露脸激情在线看| 丁香六月天网| 国产精品三级大全| 人人妻人人爽人人添夜夜欢视频| 一二三四中文在线观看免费高清| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 最新的欧美精品一区二区| 久热久热在线精品观看| 亚洲美女视频黄频| 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 亚洲性久久影院| 黄色毛片三级朝国网站| 一级毛片黄色毛片免费观看视频| 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 久久久久久人人人人人| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 精品酒店卫生间| 欧美激情 高清一区二区三区| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 熟妇人妻不卡中文字幕| 大片电影免费在线观看免费| 久久av网站| 91精品伊人久久大香线蕉| av.在线天堂| 少妇人妻精品综合一区二区| 日韩伦理黄色片| 少妇精品久久久久久久| 亚洲av电影在线观看一区二区三区| 亚洲中文av在线| 国内精品宾馆在线| 国产精品成人在线| 男女午夜视频在线观看 | 成年人免费黄色播放视频| 9191精品国产免费久久| 久久久亚洲精品成人影院| 国产成人欧美| 中国三级夫妇交换| 国产不卡av网站在线观看| 国精品久久久久久国模美| 狠狠婷婷综合久久久久久88av| 青春草国产在线视频| 一个人免费看片子| 久久免费观看电影| 亚洲国产色片| 国产成人精品久久久久久| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 观看美女的网站| 在线精品无人区一区二区三| 丰满迷人的少妇在线观看| 热99久久久久精品小说推荐| av一本久久久久| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 欧美另类一区| 午夜免费观看性视频| 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 一二三四在线观看免费中文在 | 久久影院123| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 久久婷婷青草| 国产精品欧美亚洲77777| 亚洲国产看品久久| 一本—道久久a久久精品蜜桃钙片| av在线app专区| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 一级毛片 在线播放| 十八禁高潮呻吟视频| 色婷婷av一区二区三区视频| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| 精品国产一区二区三区四区第35| 久久青草综合色| 欧美xxⅹ黑人| 香蕉精品网在线| 啦啦啦在线观看免费高清www| 人妻一区二区av| 亚洲综合精品二区| 国产精品成人在线| 久久久久久久亚洲中文字幕| 18禁国产床啪视频网站| 97在线视频观看| 人妻 亚洲 视频| 国产片内射在线| 国产成人一区二区在线| 国产亚洲精品久久久com| 欧美精品一区二区免费开放| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 亚洲一码二码三码区别大吗| 赤兔流量卡办理| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 婷婷色av中文字幕| 大码成人一级视频| 黄色配什么色好看| 国产精品久久久久久精品电影小说| 99香蕉大伊视频| 成年动漫av网址| 国产成人免费无遮挡视频| 一级片免费观看大全| 黑人巨大精品欧美一区二区蜜桃 | 国产成人精品一,二区| 大码成人一级视频| 免费人成在线观看视频色| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久精品精品| 在线看a的网站| 亚洲精品国产av蜜桃| 国国产精品蜜臀av免费| 亚洲成人av在线免费| 久久久精品区二区三区| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 少妇的丰满在线观看| 80岁老熟妇乱子伦牲交| 少妇猛男粗大的猛烈进出视频| 一级,二级,三级黄色视频| 日日啪夜夜爽| 欧美日韩视频高清一区二区三区二| 日本黄大片高清| 天天躁夜夜躁狠狠躁躁| 欧美精品av麻豆av| 狠狠婷婷综合久久久久久88av| 黄色 视频免费看| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花| 在线观看www视频免费| 大码成人一级视频| 女人久久www免费人成看片| 亚洲精品第二区| 亚洲精品乱久久久久久| 国产欧美亚洲国产| 久久久久国产精品人妻一区二区| 亚洲综合色惰| 亚洲精品美女久久久久99蜜臀 | 国产极品粉嫩免费观看在线| 国产又色又爽无遮挡免| 又黄又粗又硬又大视频| 国产一区二区在线观看日韩| 午夜免费男女啪啪视频观看| 99久久精品国产国产毛片| 看非洲黑人一级黄片| 热99久久久久精品小说推荐| 高清欧美精品videossex| 最黄视频免费看| 国产精品人妻久久久久久| 高清欧美精品videossex| 欧美bdsm另类| 18禁国产床啪视频网站| 五月天丁香电影| 国产一区二区在线观看av| 亚洲久久久国产精品| a 毛片基地| 色吧在线观看| 国产在线免费精品| 秋霞在线观看毛片| 国产精品人妻久久久影院| 久久久久久久久久久免费av| 建设人人有责人人尽责人人享有的| 五月玫瑰六月丁香| 亚洲成色77777| 成人二区视频| 一级毛片电影观看| 日本-黄色视频高清免费观看| 精品99又大又爽又粗少妇毛片| 亚洲国产精品一区三区|