楊風(fēng)波,張 玲,金永奎,薛新宇,張學(xué)進(jìn)
射頻制熱技術(shù)應(yīng)用現(xiàn)狀及土壤射頻消毒展望
楊風(fēng)波,張 玲※,金永奎,薛新宇,張學(xué)進(jìn)
(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
土壤消毒領(lǐng)域經(jīng)過(guò)多年發(fā)展,已經(jīng)形成較為成熟的應(yīng)用市場(chǎng)。針對(duì)化學(xué)、生物等傳統(tǒng)消毒方式已經(jīng)不能滿足目前土壤消毒多元需求的問(wèn)題,該文聚焦現(xiàn)代土壤消毒的應(yīng)用需求,較為明確的分析了傳統(tǒng)消毒方式的顯著效果及典型缺陷,基于現(xiàn)有研究基礎(chǔ),探索性的提出將射頻制熱消毒技術(shù)應(yīng)用到土壤消毒領(lǐng)域并研制對(duì)應(yīng)裝備的設(shè)想。首先,綜合歸納了射頻制熱系統(tǒng)的組成、分類及制熱性能影響因素,并分析了射頻制熱不均性的基本原因;其次,梳理總結(jié)了射頻制熱技術(shù)在工業(yè)、醫(yī)療、紡織輕工業(yè)、林業(yè)產(chǎn)品加工、農(nóng)副產(chǎn)品加工等領(lǐng)域的應(yīng)用現(xiàn)狀,并針對(duì)農(nóng)副產(chǎn)品的消毒殺菌、干燥解凍等加工的發(fā)展歷程進(jìn)行了重點(diǎn)概述;再次,基于搭建的射頻制熱試驗(yàn)平臺(tái)進(jìn)行的土壤制熱試驗(yàn)表明:電極結(jié)構(gòu)形式對(duì)土壤制熱性能的影響明顯,是制熱不均勻的顯著影響因素;此外,結(jié)合學(xué)者的研究及土壤制熱試驗(yàn),從射頻制熱系統(tǒng)自身制熱機(jī)理、土壤自身受熱特性、物料與射頻的匹配等角度深入分析了射頻這種物理制方式的應(yīng)用缺點(diǎn),根本原因及改進(jìn)方法,提出了改善土壤射頻制熱均勻性的建議;最后,針對(duì)未來(lái)土壤消毒領(lǐng)域的應(yīng)用提出了田間土壤、有機(jī)質(zhì)土壤射頻消毒裝備分開(kāi)設(shè)計(jì)的思路,并基于對(duì)射頻制熱在其他領(lǐng)域應(yīng)用缺陷的認(rèn)知,分別提出了更合適射頻制熱電極結(jié)構(gòu)形式與受熱物料的匹配方案。該文論述可為土壤射頻消毒應(yīng)用領(lǐng)域的裝備研發(fā)提供一定借鑒。
射頻;土壤消毒;熱效應(yīng);制熱均勻性;裝備研發(fā)
受射頻電磁場(chǎng)中交變場(chǎng)強(qiáng)的作用,被加熱物料分子極化并隨著高頻電磁場(chǎng)做高速旋轉(zhuǎn),偶極子做高速旋轉(zhuǎn)使得物料分子間發(fā)生劇烈摩擦,產(chǎn)生大量熱量;另外,電磁場(chǎng)中的粒子也會(huì)隨著電磁場(chǎng)方向的改變而做往復(fù)運(yùn)動(dòng),使得物料中的粒子急劇碰撞、摩擦而產(chǎn)生熱能;熱量迅速累積使得物料快速升溫,此為射頻的介電熱效應(yīng)[1]。射頻加熱是一種利用頻率在3 kHz~300 MHz范圍電磁波的介電熱效應(yīng)進(jìn)行物料加熱的方法。相對(duì)于微波,射頻波長(zhǎng)更長(zhǎng),穿透深度更深、能量密度更大,加熱效率更高;目前,只有3個(gè)射頻和2個(gè)微波頻率被廣泛用于科學(xué)研究、醫(yī)療應(yīng)用和工業(yè)生產(chǎn)中,分別是13.56、27.12、40.68,和915、2450 MHz[1-2]。射頻制熱技術(shù)已經(jīng)在臨床醫(yī)學(xué)上發(fā)展成為了射頻消融術(shù)[3]。射頻良好的快速制熱性能使得其本身具有很好的干燥、消毒、殺菌等效果,所以射頻制熱系統(tǒng)在工業(yè)領(lǐng)域及農(nóng)副產(chǎn)品的干燥、消毒、殺菌、解凍等領(lǐng)域有著廣泛的應(yīng)用前景[4]。
在農(nóng)作物商品化種植迅猛發(fā)展條件下,作物種植密集、種植種類單一、土壤利用高度重復(fù)、土傳病害頻發(fā),使得連續(xù)在同一土壤上栽培同種作物易引起土壤病菌及自毒物質(zhì)積累、作物生長(zhǎng)發(fā)育異常,土壤連作障礙成為農(nóng)業(yè)生產(chǎn)規(guī)模化經(jīng)營(yíng)過(guò)程中常見(jiàn)問(wèn)題之一[5]。土壤連作障礙可導(dǎo)致作物減產(chǎn)20%以上,嚴(yán)重時(shí)可使作物減產(chǎn)80%[6],同時(shí)顯著降低了農(nóng)產(chǎn)品的品質(zhì)與安全性[7]。在水稻、小麥、玉米等糧食作物種植地中廣泛存在土壤連作障礙,而在蔬菜、煙草、中草藥等吃地力嚴(yán)重的經(jīng)濟(jì)作物種植地中這種現(xiàn)象更為嚴(yán)重。土壤消毒是減緩作物連作障礙影響及保持土壤生產(chǎn)力的有效途徑。目前,土壤消毒的方法有化學(xué)消毒技術(shù)、生物熏蒸技術(shù)、物理消毒技術(shù)等3大類[8]。目前,美國(guó)加州大學(xué)戴維斯分校試制了一種室內(nèi)固定密封式射頻樣機(jī),并開(kāi)展了了盒飯、果汁、墨西哥薩爾薩醬、水稻等的射頻制熱殺菌消毒研究,取得了較好效果[8];而國(guó)內(nèi)已經(jīng)有學(xué)者將射頻應(yīng)用到土壤消毒的原理試驗(yàn)中,這為土壤消毒裝備的研發(fā)提供了新思路[5]。
本文針對(duì)傳統(tǒng)消毒方式已不能滿足土壤消毒多元需求的問(wèn)題,嘗試將在工業(yè)、農(nóng)副產(chǎn)品加工等領(lǐng)域已展開(kāi)實(shí)際應(yīng)用的射頻制熱系統(tǒng)應(yīng)用到土壤消毒領(lǐng)域。本文將歸納總結(jié)射頻制熱系統(tǒng)的組成、分類及在應(yīng)用領(lǐng)域出現(xiàn)的問(wèn)題、解決的方案,結(jié)合研制的土壤射頻制熱消毒原理性試驗(yàn)系統(tǒng)平臺(tái)展開(kāi)探索性試驗(yàn),提出射頻制熱技術(shù)在土壤消毒領(lǐng)域的發(fā)展建議,為土壤射頻制熱消毒裝備研發(fā)提供基本參考。
射頻制熱系統(tǒng)分為2類:?jiǎn)巍㈦p極射頻系統(tǒng)。單極射頻有正負(fù)兩極,其中1極固定,另1極為可移動(dòng)探頭并放置在需要制熱的區(qū)域,正負(fù)極接通后制熱區(qū)可快速達(dá)到制熱的目的,單極射頻制熱區(qū)域靈活,在醫(yī)療領(lǐng)域應(yīng)用較多;當(dāng)單極射頻制熱系統(tǒng)向外發(fā)射射頻電磁波時(shí),電場(chǎng)強(qiáng)度矢量和磁場(chǎng)強(qiáng)度矢量的方向均垂直于傳播方向。雙極射頻系統(tǒng)正負(fù)兩極固定、正對(duì)放置;當(dāng)雙極(電容式、平行板式)射頻制熱系統(tǒng)向兩級(jí)之間發(fā)射射頻電磁波時(shí),極板之間的場(chǎng)可視為準(zhǔn)靜場(chǎng),在極板內(nèi)部,電場(chǎng)強(qiáng)度矢量的方向是從一塊極板指向另一塊極板[9],雙極射頻系統(tǒng)制熱性能穩(wěn)定、一致性好。本文聚焦在雙極射頻制熱系統(tǒng),后文提到的射頻制熱系統(tǒng)均為雙極板式。
基于射頻發(fā)生器結(jié)構(gòu)與調(diào)整參數(shù)的不同,應(yīng)用級(jí)的雙極射頻制熱系統(tǒng)主要有2種:傳統(tǒng)自由振蕩型(電子管射頻電源,如圖1)與50Ω系統(tǒng)[10]。傳統(tǒng)的自由振蕩式射頻制熱系統(tǒng)主要由發(fā)生器、變壓器、整流器、振蕩器、儲(chǔ)能電路和工作電路組成,負(fù)載制熱系統(tǒng)由上極板、下極板、傳送帶、光纖傳感器組成[11]。根據(jù)被制熱物料的進(jìn)料方式、制熱厚度等衍生了平行板式、交錯(cuò)電極式、偏執(zhí)電極式等[10]。為有效抑制工作頻率的不穩(wěn)定性,在射頻波能量產(chǎn)生電路中設(shè)計(jì)功率放大器可有效避免射頻功率的波動(dòng),采用此設(shè)計(jì)的射頻制熱系統(tǒng)為50Ω系統(tǒng),50Ω射頻制熱系統(tǒng)由射頻發(fā)生器、射頻腔、匹配系統(tǒng)、控制面板、冷卻風(fēng)機(jī)組成[12];50Ω射頻制熱系統(tǒng)的體積約為傳統(tǒng)自由振蕩型射頻制熱系統(tǒng)的1/7,操作簡(jiǎn)單,且控制精確、制熱均勻性、穩(wěn)定性更佳,但造價(jià)昂貴,目前在實(shí)驗(yàn)室內(nèi)應(yīng)用較多。
圖1 自由振蕩式射頻制熱系統(tǒng)工作原理
1.3.1 電介質(zhì)介電特性及極化
介電特性是指在電介質(zhì)分子中的束縛電荷對(duì)外加電場(chǎng)的響應(yīng)特性,是電介質(zhì)材料抵御內(nèi)部形成電場(chǎng)的能力。介電特性是描述物料與電磁波相互作用能力的基本指標(biāo),物料介電特性是了解物料在射頻場(chǎng)中行為的有力抓手。一般來(lái)講,介電特性由磁導(dǎo)率和電容率兩部分組成;其中,物料的磁導(dǎo)率和真空磁導(dǎo)率接近,射頻場(chǎng)中物料不會(huì)被制熱[13],而電容率決定了物料的介電常數(shù)和損耗因子,是影響射頻制熱的關(guān)鍵參數(shù)[14]。
極化現(xiàn)象對(duì)電介質(zhì)材料的電容率有直接影響。從電磁學(xué)角度來(lái)說(shuō),電介質(zhì)實(shí)質(zhì)是大量微觀帶電粒子組成的電荷系統(tǒng)。在外電場(chǎng)作用下,束縛在分子內(nèi)部空間不能完全自由運(yùn)動(dòng)的電荷,產(chǎn)生局部移動(dòng)或極性按照電場(chǎng)方向轉(zhuǎn)動(dòng)的物理現(xiàn)象稱為極化。極化主要有離子位移極化、原子位移極化、熱離子等效極化和偶極子取向極化4種。偶極子取向極化是指極性分子在不斷變化的射頻場(chǎng)中旋轉(zhuǎn)、摩擦產(chǎn)熱的現(xiàn)象進(jìn)而產(chǎn)生遲滯,水分子(偶極子分子)極化是介電損耗產(chǎn)生的一種重要機(jī)制。對(duì)于射頻制熱這種物理過(guò)程,引起介電損耗的主要因素是偶極子極化和離子導(dǎo)電位移極化[15-16]。
1.3.2 射頻制熱的基本特點(diǎn)
射頻制熱的效率和被制熱物料材質(zhì)的介電性能有關(guān),包括介電常數(shù)、介電損耗因子、比熱容、熱導(dǎo)率等[17]。
由于制熱過(guò)程是以光速傳播并貫穿物料,使得射頻制熱過(guò)程具有快速、整體無(wú)死角的特點(diǎn),規(guī)避了傳統(tǒng)物理制熱方式內(nèi)、外不均的弊端[18]。介電常數(shù)和物料含水率呈非線性正相關(guān)函數(shù)關(guān)系,而活體害蟲(chóng)、細(xì)菌的含水率顯著高于儲(chǔ)藏的農(nóng)產(chǎn)品,所以射頻對(duì)害蟲(chóng)、細(xì)菌有選擇性加速制熱的特點(diǎn)[19]。在工作頻段內(nèi),射頻能量不足以破壞物料分子間的化學(xué)鍵[20],制熱過(guò)程中農(nóng)產(chǎn)品的化學(xué)性質(zhì)不會(huì)改變,這確保了農(nóng)產(chǎn)品的品質(zhì)安全。一般來(lái)講,不規(guī)則物理形狀物料不同部位含水率不同,而物料的介電損耗因子隨著含水率的增大而增大,射頻制熱過(guò)程含水率大的部位產(chǎn)熱量大、制熱速率快、水分蒸發(fā)快、含水率下降快,進(jìn)而維持了不規(guī)則物料各部位水分的動(dòng)態(tài)平衡[21]。此外,電磁波在物料中的穿透深度與頻率大小成反比。當(dāng)電磁波的穿透深度小于物料厚度的1.5倍時(shí),能量會(huì)集中在距物料表面1倍穿透深度的位置,該部分物料就會(huì)被過(guò)度制熱[22],而射頻的顯著優(yōu)點(diǎn)是射頻的頻率較低,能穿透到物料內(nèi)部更深處;當(dāng)連續(xù)處理具有規(guī)則幾何形狀且尺寸較大的物料時(shí),射頻制熱技術(shù)優(yōu)勢(shì)明顯。
1.3.3 射頻制熱不均性的原因
射頻制熱技術(shù)相對(duì)于傳統(tǒng)制熱技術(shù)優(yōu)勢(shì)明顯,但也面臨著迫切需要解決制熱均勻性較差的問(wèn)題。局部過(guò)熱一方面會(huì)降低其熱處理效率,另一方面過(guò)熱也導(dǎo)致了工業(yè)領(lǐng)域廢品率增高,農(nóng)產(chǎn)品加工焦糊、風(fēng)味惡化等[23-25]。
制熱不均勻的主要原因:1)電磁場(chǎng)本身的不均勻;一般來(lái)講,電磁波能夠均勻滲透到均勻物料的內(nèi)部,當(dāng)2個(gè)電極之間電磁場(chǎng)本身分布不均勻,物料就不被均勻制熱[26];2)射頻自身的選擇性制熱特性;不同物料、含水率對(duì)應(yīng)的介電常數(shù)存在差異,物料中一旦有高溫區(qū)域形成,射頻能量就會(huì)加速向該區(qū)域聚集,導(dǎo)致對(duì)應(yīng)區(qū)域被過(guò)度制熱[18];3)物料的形狀、尺寸效應(yīng)影響;射頻電磁波對(duì)物料進(jìn)行制熱時(shí)在物料之間會(huì)產(chǎn)生反射、折射、穿透和吸收等現(xiàn)象;射頻能量易在幾何尺寸突變的部位聚集[1],從而發(fā)生過(guò)度制熱的問(wèn)題;4)物料的邊角效應(yīng);射頻制熱過(guò)程中,易向物料邊緣角落區(qū)聚集,導(dǎo)致該區(qū)域過(guò)熱、升溫快,在高含水物料中這種效應(yīng)尤為明顯[27]。
經(jīng)過(guò)半個(gè)多世紀(jì)的發(fā)展,射頻制熱技術(shù)在工業(yè)、醫(yī)療、紡織輕工業(yè)、林業(yè)產(chǎn)品加工、農(nóng)副產(chǎn)品加工等領(lǐng)域都得到了較好的發(fā)展。
在工業(yè)應(yīng)用方面,發(fā)展出了一種射頻焊接技術(shù)(介電焊),廣泛用于汽車、醫(yī)療器械、家電行業(yè)等領(lǐng)域用的塑料[28];介電焊利用射頻能量作用于材料的局部連接區(qū)域,使材料極性分子在射頻電場(chǎng)下發(fā)生頻繁振動(dòng)產(chǎn)生熱量,使得介于電極之間的塑料材料同時(shí)達(dá)到熔化狀態(tài),進(jìn)而達(dá)到將2個(gè)材料焊接在一起的目的[29]。在醫(yī)療領(lǐng)域方面,利用射頻制熱的可選擇性特點(diǎn),不同的電極結(jié)構(gòu)及改變不均勻電場(chǎng)的分布可以加熱不同的部位,進(jìn)而滿足不同的治療目的;如射頻手術(shù)刀、射頻消融、婦科治療儀等都是射頻治療手段的具體利用[30]。在紡織輕工業(yè)領(lǐng)域,對(duì)原材料如麻類等的脫膠工藝中增加射頻處理環(huán)節(jié),利用射頻選擇性快速加熱特點(diǎn),使纖維的溫度快速升高,加速了果膠等物質(zhì)的溶解,改善了脫膠效果[31];另一方面,在紡染制品的烘干過(guò)程中介入射頻加熱,同時(shí)將其放在輸送帶上進(jìn)行周期性運(yùn)行,被烘物沒(méi)有機(jī)械損傷,且烘后被烘物含水率均勻,手感、外觀和白度較好[32]。在林業(yè)產(chǎn)品加工領(lǐng)域,射頻技術(shù)的應(yīng)用主要有木材膠合(板件覆面貼合、板件封邊、彎曲膠合刨花預(yù)熱等)和木材干燥2個(gè)方面[33-34];另外木材干燥一般會(huì)和熱風(fēng)干燥、真空干燥方式混合使用,這大大改善了常規(guī)射頻制熱的均勻性。在農(nóng)副產(chǎn)品加工領(lǐng)域方面,射頻制熱技術(shù)有著廣泛應(yīng)用。射頻制熱技術(shù)在農(nóng)副產(chǎn)品加工領(lǐng)域的應(yīng)用起始于20世紀(jì)40年代,用于肉制品的烹飪、蔬菜脫水、面包處理等[35];20世紀(jì)60年代,射頻制熱技術(shù)集中應(yīng)用在解凍方面[36];20世紀(jì)70年代,研究的熱點(diǎn)是果汁射頻殺菌處理[37];20世紀(jì)80年代,射頻被應(yīng)用于西餅的焙后干燥處理,并得到了商業(yè)應(yīng)用[38]。進(jìn)入21世紀(jì)以后,隨著紅外熱成像、光纖測(cè)溫、介電特性測(cè)量及計(jì)算機(jī)模擬技術(shù)的出現(xiàn),使得射頻在農(nóng)副產(chǎn)品加工中的進(jìn)一步研究、應(yīng)用成為可能,也成為熱點(diǎn)。
從以上文獻(xiàn)資料可以得出射頻制熱技術(shù)在工業(yè)、醫(yī)療、紡織輕工業(yè)、林業(yè)產(chǎn)品加工、農(nóng)副產(chǎn)品加工等領(lǐng)域的應(yīng)用有差異。介電焊、醫(yī)療方面很好利用了射頻選擇性加熱的特點(diǎn),使得射頻在這些領(lǐng)域得到了成熟應(yīng)用。在紡織輕工業(yè)及林業(yè)產(chǎn)品加工方面,一方面應(yīng)用射頻選擇性加熱的特點(diǎn)在局部工藝上進(jìn)行應(yīng)用,取得了很好的局部迅速加熱的效果;另一方面,將熱風(fēng)、真空加熱或者物料周期運(yùn)動(dòng)等和射頻加熱進(jìn)行結(jié)合,也獲得了較好的射頻制熱效果。而在農(nóng)副產(chǎn)品加工方面,對(duì)射頻的功能應(yīng)用需求更多元,應(yīng)用種類更多、對(duì)比研究資料更為詳實(shí)。鑒于此,下文對(duì)射頻在農(nóng)副產(chǎn)品加工領(lǐng)域的應(yīng)用進(jìn)行概述,為土壤射頻消毒裝備的研發(fā)提供參考。
2.2.1 干燥、解凍
蘇州制茶廠研發(fā)了一套茶葉射頻干燥機(jī),2 min內(nèi)可將花胚茶葉制熱到60~70 ℃,且不發(fā)生外表焦脆內(nèi)部溫涼的現(xiàn)象,氨基酸、茶多酚、葉綠素等關(guān)鍵指標(biāo)均不低于傳統(tǒng)工藝干燥的茶葉[39]。紅棗的外觀質(zhì)量是決定消費(fèi)者購(gòu)買意愿的首要因素[40],采用射頻技術(shù)進(jìn)行預(yù)處理后干燥時(shí)間比紅外干燥最低縮短了21.2%,總體來(lái)講,射頻預(yù)處理顯著提升了紅棗的干燥效率,同時(shí)產(chǎn)品質(zhì)量得到提升[41]。凌錚錚等[42]針對(duì)小顆粒(含粉料)設(shè)計(jì)了一款干燥機(jī),以射頻制熱為主要熱源、輔助以翅片制熱管進(jìn)行干燥,加之以數(shù)控系統(tǒng)的控制,有效緩解了小顆粒物料(如玉米)的受熱不均問(wèn)題,提高了產(chǎn)品質(zhì)量。
目前,常用的傳統(tǒng)解凍方法是空氣自然解凍和水解凍??諝庾匀唤鈨鰳O慢,易發(fā)生微生物感染[43];水解凍效率較高,但水和肉類直接接觸,也極易發(fā)生微生物感染[44]。水產(chǎn)品的新型解凍方式有微波、射頻解凍等,其中微波解凍最流行,但冷凍水產(chǎn)品多為復(fù)合物質(zhì),加之微波穿透深度淺,易出現(xiàn)解凍不均勻、局部水溶解現(xiàn)象[45];Llave等[46]選用1 kW,13.56 MHz的射頻解凍系統(tǒng)將冷凍金槍魚(yú)從?40 ℃解凍至?3 ℃,耗時(shí)相當(dāng)于傳統(tǒng)解凍時(shí)間的1/3,低脂金槍魚(yú)末態(tài)溫度分布較均勻。在肉類解凍方面,研究發(fā)現(xiàn)當(dāng)凍肉在射頻系統(tǒng)的電極中移動(dòng)時(shí),凍肉表面及角落的高溫進(jìn)一步降低[47]。對(duì)于上下極板這種射頻制熱結(jié)構(gòu),Birla等[48]利用軟件FEMLAB對(duì)球形物體的射頻制熱進(jìn)行研究,結(jié)果表明運(yùn)動(dòng)和旋轉(zhuǎn)是解決球形物體制熱不均勻的唯一方案。
2.2.2 消毒、殺菌
大豆常用消毒方法是采用甲基溴、磷化氫熏蒸[49],而甲基溴這種臭氧耗竭劑對(duì)大氣臭氧層有明顯破壞作用。從2007年起,甲基溴的替代產(chǎn)品磷化氫在中國(guó)開(kāi)始推廣應(yīng)用[50],而國(guó)際糧農(nóng)組織研究表明越來(lái)越多品系的害蟲(chóng)對(duì)磷化氫產(chǎn)生了嚴(yán)重的抗藥性[51]。黃智[52]基于COMSOL多場(chǎng)分析平臺(tái)求解了射頻制熱大豆物料的電磁能—熱能轉(zhuǎn)化方程及傳熱平衡方程,并結(jié)合溫度測(cè)試分析了射頻對(duì)害蟲(chóng)、大豆的選擇性制熱特性,探索了采用輔助材料改善射頻制熱均勻性的可行性。
核桃在儲(chǔ)藏中的損失率高達(dá)20~25%,蟲(chóng)害是導(dǎo)致?lián)p失的重要因素[53]。中國(guó)核桃倉(cāng)儲(chǔ)害蟲(chóng)有米娥、蘋(píng)果蠢娥、臍橙蠕蟲(chóng)等[54-55]。Wang等[56-57]選擇美國(guó)核桃最常見(jiàn)、耐熱性最強(qiáng)的臍橙蠕進(jìn)行了射頻殺蟲(chóng)研究,研究表明射頻的選擇性制熱發(fā)揮了重要作用,害蟲(chóng)體溫比核桃仁內(nèi)核溫度最高多出20 ℃,在核桃仁氣味、顏色、口感均無(wú)明顯改變的情況下,射頻可以在短時(shí)間內(nèi)將核桃害蟲(chóng)滅殺[58]。楊莉玲[4]針對(duì)新疆主栽核桃品種“溫185”為試驗(yàn)對(duì)象,討論了核桃果仁的介電特性、儲(chǔ)藏害蟲(chóng)及蟲(chóng)卵的熱致死及核桃顏色的變化規(guī)律,并針對(duì)射頻電磁場(chǎng)邊緣效應(yīng)和諧波效應(yīng)導(dǎo)致的射頻能量空間分布不均勻的問(wèn)題,采取了熱風(fēng)輔助制熱,比單一射頻制熱的溫度平均標(biāo)準(zhǔn)差降低1~2 ℃。
脫水蔬菜、水果及其粉制品的水分低,而在低水分活度條件下病原菌、致病菌可以存活數(shù)月乃至數(shù)年,這對(duì)人體健康威脅很大[59]。低水分的蔬菜切片、粉制品一般是由暖風(fēng)或冷凍干燥脫水制成的,與中、高水分食品相比,其微生物耐熱性更強(qiáng)[60]。鑒于此,行業(yè)內(nèi)已有研究人員將密封的低水活度食品放入射頻處理腔中極板間進(jìn)行制熱殺菌[61]。趙偉等[59]將椰菜粉用塑料袋密封好之后,采用射頻制熱處理,并采用定時(shí)翻轉(zhuǎn)改善制熱均勻性,取得了較好的消毒效果。劉家璇等[62]采用射頻制熱消毒預(yù)處理、熱風(fēng)干燥的混合方式干燥杏果,研究結(jié)果表明,適當(dāng)?shù)纳漕l預(yù)處理可以顯著提升水分有效擴(kuò)散系數(shù),消毒處理時(shí)間減少最高可達(dá)到35.7%。
本節(jié)對(duì)土壤消毒技術(shù)的發(fā)展現(xiàn)狀進(jìn)行基本論述,基于現(xiàn)代農(nóng)業(yè)對(duì)農(nóng)產(chǎn)品質(zhì)量的現(xiàn)實(shí)需求闡述現(xiàn)有土壤消毒技術(shù)的不足;提出將射頻制熱技術(shù)應(yīng)用到土壤消毒領(lǐng)域的設(shè)想;考慮到射頻制熱技術(shù)在土壤消毒領(lǐng)域的應(yīng)用還處于起步階段,參考資料較少,作者在實(shí)驗(yàn)室環(huán)境開(kāi)展了土壤射頻制熱消毒試驗(yàn),并基于初步研究結(jié)果,結(jié)合射頻制熱技術(shù)在農(nóng)副產(chǎn)品加工等領(lǐng)域的應(yīng)用現(xiàn)狀、存在的問(wèn)題、初步解決方案,給出提高土壤射頻制熱均勻性的設(shè)計(jì)方案,為土壤射頻制熱消毒裝備的研發(fā)提供思路。
化學(xué)消毒技術(shù)在土壤消毒領(lǐng)域有成熟應(yīng)用,隨著人們對(duì)環(huán)保、農(nóng)產(chǎn)品質(zhì)量要求的提高,化學(xué)熏蒸劑給生態(tài)與農(nóng)產(chǎn)品安全帶來(lái)的危害引起了人們的廣泛關(guān)注,化學(xué)熏蒸消毒藥劑從傳統(tǒng)的溴化鉀、氯化苦發(fā)展到高效、環(huán)境友好的異硫氰酸烯丙酯[63]、丙烯醛[64]等現(xiàn)代熏蒸消毒藥劑,并在澳大利亞、美國(guó)等進(jìn)行了多年應(yīng)用。但現(xiàn)在大多數(shù)化學(xué)熏蒸消毒藥劑沸點(diǎn)很低,揮發(fā)現(xiàn)象嚴(yán)重,使得消毒藥劑使用量大大增加,對(duì)環(huán)境和專業(yè)操作人員的毒性危害較大。
生物熏蒸技術(shù)[65]主要是利用十字花科或者菊科植物有機(jī)殘?bào)w分解過(guò)程釋放的有毒氣體殺死土壤中害蟲(chóng)、病原微生物的方法。當(dāng)病原菌體侵蝕、咀嚼植物組織時(shí),十字花科或者菊科植物體內(nèi)特含的葡糖異硫氰酸酯與內(nèi)源性黑芥子酶接觸反應(yīng),并生成對(duì)有害生物有較好抑制活性的水解產(chǎn)物。在日照充足的時(shí)間段,將粉碎的熏蒸植物殘?jiān)娃r(nóng)家肥、海產(chǎn)品等按一定比例混合均勻施撒在平整好的土地上,并覆上新型VIF(Virtually Impermeable Film)地膜,確保熏蒸物水解并提高土壤溫度、延長(zhǎng)熏蒸時(shí)間,因而具有殺死土壤病原菌和線蟲(chóng)的雙重效果[66]。這也成為土壤化學(xué)消毒的一種環(huán)境友好型替代方案[67]。生物熏蒸后很多微生物被殺死,有“生物真空”,若添加益生微生物[68],可進(jìn)一步延長(zhǎng)對(duì)病原生物的控制時(shí)間。但生物熏蒸技術(shù)僅適合小范圍內(nèi)推廣,在規(guī)?;N植及土傳病害嚴(yán)重區(qū)域應(yīng)用存在較大局限。
土壤物理消毒是利用物理生熱直接、間接殺死土壤中病原微生物的方法,主要有太陽(yáng)能[69]、蒸汽[70-71]、熱水[72]、火焰等消毒技術(shù)[73]。其中,太陽(yáng)能土壤消毒技術(shù)受天氣影響較大,消毒效果時(shí)常不穩(wěn)定;土壤的蒸汽與熱水消毒效率較低、且成本很高;火焰消毒技術(shù)在沙性土壤中應(yīng)用有很好的滅菌消毒效果,但長(zhǎng)江流域及華南黏性土質(zhì)地域應(yīng)用困難較大。
結(jié)合土壤消毒技術(shù)的發(fā)展現(xiàn)狀來(lái)看,隨著現(xiàn)代農(nóng)業(yè)對(duì)農(nóng)產(chǎn)品質(zhì)量要求及生態(tài)環(huán)境重視度的提高,化學(xué)消毒技術(shù)已經(jīng)不能滿足土壤消毒的發(fā)展需求?,F(xiàn)有的土壤熏蒸、物理消毒方式均存在一定缺陷,鑒于此,本文嘗試將射頻制熱消毒技術(shù)應(yīng)用到土壤消毒領(lǐng)域。
射頻制熱過(guò)程伴隨著物料介電特性的不斷變化。物料介電特性受多種因素的影響,主要有物料密度、物料成分及其含水率等內(nèi)因,及射頻的頻率、溫度等外因。物料密度越大,單位體積內(nèi)與電磁場(chǎng)作用的物料質(zhì)量就越大,因而其介電常數(shù)和損耗因子也越大,這種特性在散裝物料或者多孔介質(zhì)物料中會(huì)體現(xiàn)的較為明顯[74]。一般來(lái)講,高含水率條件下自由水對(duì)介電特性的影響占主導(dǎo)地位,在低含水率情況下,物料中的水都是結(jié)合水,結(jié)合水很難從物料細(xì)胞中脫離,其對(duì)物料極化特性的影響要小得多[75]。而土壤是由礦物質(zhì)、有機(jī)質(zhì)、水和空氣組成的一種多孔介質(zhì),是一種固、液、氣相混合的復(fù)雜的電介質(zhì)材料[76]。土壤的電介質(zhì)參數(shù)由土壤的結(jié)構(gòu)、組成以及含水率決定,土壤屬性的變化主要是土壤含水率的變化及土壤溫度的變化[77]。當(dāng)采用射頻加載確定的一塊地時(shí),影響土壤介電性質(zhì)的主要是射頻頻率和溫度,體現(xiàn)在極性損耗及離子電導(dǎo)損耗2個(gè)方面。
電介質(zhì)加熱系統(tǒng)等效原理如圖2所示[18]。射頻制熱過(guò)程中,頻率對(duì)介電特性的影響用德拜方程來(lái)描述[78]。溫度對(duì)電介質(zhì)材料的介電特性影響很大,包括極性損耗及電導(dǎo)損耗。當(dāng)交變射頻加載到土壤介質(zhì)上,介質(zhì)中的正負(fù)載流子或偶極子受電場(chǎng)的作用會(huì)產(chǎn)生極化,當(dāng)電磁場(chǎng)不斷改變時(shí),介質(zhì)內(nèi)部極化也會(huì)改變,若交變電磁場(chǎng)變化過(guò)快將導(dǎo)致土壤電介質(zhì)極化速度跟不上而出現(xiàn)極化滯后現(xiàn)象[79],這種現(xiàn)象為極性損耗;另外,土壤表面的電荷傳導(dǎo)及土壤內(nèi)部電解電離子的離子傳導(dǎo)會(huì)導(dǎo)致土壤電介質(zhì)的電傳導(dǎo)損耗[80]。
圖2 電介質(zhì)加熱系統(tǒng)的等效電路圖[18]
溫度對(duì)電介質(zhì)材料的極性有很大影響,一般來(lái)講,溫度升高時(shí),分子的熱運(yùn)動(dòng)加劇,這使得分子沿著電場(chǎng)方向的取向能力減弱,所以氣體極性系數(shù)為負(fù)溫度系數(shù);但是土壤這類固液混合物電介質(zhì)不同,該電介質(zhì)具有分子間聯(lián)系緊密,分子難以轉(zhuǎn)向,一定的溫度范圍內(nèi),隨著溫度的不斷升高,其極性系數(shù)逐漸增大;當(dāng)溫度升高到一定程度,其極性系數(shù)隨著溫度上升而減小[77]。
一般來(lái)說(shuō),極性損失來(lái)自極性分子轉(zhuǎn)動(dòng),隨著溫度升高極性分子轉(zhuǎn)動(dòng)更強(qiáng)烈,極性損失更??;電導(dǎo)損失來(lái)自離子遷移,隨著溫度的升高離子遷移量更大,電導(dǎo)損失也升高。在低頻段(不大于100 MHz),隨著溫度的升高,離子傳導(dǎo)占優(yōu)勢(shì),綜合來(lái)看介質(zhì)損耗是逐漸增大的;在高頻段(大于100 MHz),隨著溫度的升高,離子的傳導(dǎo)減弱,被逐漸加強(qiáng)的偶極子旋轉(zhuǎn)所替代,介質(zhì)損耗逐漸降低[81]。
即便介電損耗客觀存在,但對(duì)于能正常作業(yè)的設(shè)施農(nóng)業(yè)土壤,幾乎在射頻所有的頻段內(nèi),隨著溫度升高土壤電介質(zhì)的介電常數(shù)都是逐步增大的,其中,較低頻率下,介質(zhì)損耗增大的幅度大于介電常數(shù)增大的幅度[82]。
綜上所述,隨著射頻頻率的增加、制熱過(guò)程物料溫度的升高(在制熱消毒溫度范圍內(nèi)),土壤的介電常數(shù)基本逐步增大。但土壤射頻制熱消毒會(huì)存在制熱不均勻的問(wèn)題,結(jié)合前文的分析,土壤射頻制熱消毒裝備研發(fā)一方面應(yīng)該控制射頻頻率、進(jìn)而控制介電常數(shù)增大的幅度,使得土壤高溫區(qū)的溫度不至于上升過(guò)快(在射頻控制端實(shí)現(xiàn));另一方面應(yīng)該在電極結(jié)構(gòu)上進(jìn)行探索性優(yōu)化設(shè)計(jì),使得射頻制熱系統(tǒng)自身的電磁場(chǎng)更加均勻,提升土壤制熱均勻性。
為了討論射頻制熱電極結(jié)構(gòu)形式對(duì)土壤制熱均勻性的影響。作者在實(shí)驗(yàn)室環(huán)境下,搭建了如圖3所示的土壤射頻制熱消毒的原理性試驗(yàn)平臺(tái),其中的射頻電源、自動(dòng)匹配器、工控機(jī)、控制柜在工業(yè)系統(tǒng)已有成熟方案,作者將其整合成一套系統(tǒng),討論影響土壤射頻制熱均勻性最重要的因數(shù),即射頻制熱的電極結(jié)構(gòu)形式。
1.射頻電源; 2.自動(dòng)匹配器; 3.工控機(jī); 4.控制柜; 5.土槽; 6.電極板; 7.光纖傳感器; 8.試驗(yàn)土壤; 9.冷水機(jī); 10.冷水管道
制熱電極的形式包括“單正-單負(fù)極板”、“單正-雙負(fù)極板”、“雙正-單負(fù)極板”的極板式,“單排正、單排負(fù)極棍電極縱向陣列式”、“單排正、雙排負(fù)極棍電極縱向陣列式”、“雙排正、單排負(fù)極棍電極縱向陣列式”,中間正極板、圓周向負(fù)極板(或中間負(fù)極板、圓周向正極板)的圓桶式,中間正極、圓周向負(fù)極棍陣列(或中間負(fù)極、圓周向正極棍陣列)的棍桶式等方案,圖4給出了部分電極方案試驗(yàn)圖。
圖4 加熱土壤的4種典型射頻電極方案
圖5給出了相同條件下4種典型射頻電極方案加熱的土壤溫度分布圖。從圖5可較清晰地看出在加熱土壤的溫度分布均勻性方面,有雙極板式射頻電極<雙排棍縱向陣列式射頻電極<桶式射頻電極。從圖5可以看出射頻電極的結(jié)構(gòu)形式對(duì)射頻制熱土壤的均勻性有很大影響,射頻電極的結(jié)構(gòu)和輸出電磁場(chǎng)的分布直接相關(guān),雙極板式制熱土壤在極板尖端出現(xiàn)了明顯的尖端效應(yīng),使得尖端部位溫度明顯更高。在進(jìn)行試驗(yàn)時(shí),各方案均在實(shí)驗(yàn)室內(nèi)同一土壤環(huán)境下隔天進(jìn)行,各方案出現(xiàn)不均勻的原因主要是射頻電極結(jié)構(gòu)導(dǎo)致的電磁場(chǎng)本身的不均勻。
當(dāng)在田間進(jìn)行土壤的射頻制熱時(shí),受到地形及設(shè)施建設(shè)的影響,土壤的含水率、松緊度、土壤顆粒大小、有機(jī)質(zhì)含量等會(huì)各有不同,電場(chǎng)本身的不均勻、射頻選擇性制熱、土壤的形狀尺寸效應(yīng)聯(lián)合對(duì)土壤受熱均勻性產(chǎn)生影響,由于田間土壤環(huán)境不能預(yù)知,此3種原因都可能是重要的影響因素。
圖5 3種典型射頻電極方案下加熱土壤的溫度分布
針對(duì)射頻制熱存在的制熱均勻性不理想的問(wèn)題及其產(chǎn)生的基本原因,提出需要從以下幾個(gè)方面提升:
首先,匹配電極和物料參數(shù),合理匹配設(shè)計(jì)射頻系統(tǒng)電極的形狀與尺寸;有研究表明,射頻制熱內(nèi)部產(chǎn)生不均勻駐波的根本原因是輸入極板電壓、電感位置不對(duì)稱[83],Wang等[84]、Alfaifi 等[85]全面研究分析了電感大小、數(shù)量和喂入點(diǎn)位置等對(duì)電壓分布的影響,得出了特定尺寸的物料需要與特定彎曲位置和彎曲角度的上電極配置相匹配的結(jié)論。
其次,針對(duì)射頻選擇性制熱的特性(對(duì)殺蟲(chóng)是優(yōu)勢(shì)),可采用間歇脈沖式能量供給,即對(duì)物料進(jìn)行一段時(shí)間制熱以后停止,待物料間熱傳遞一段時(shí)間后繼續(xù)制熱,來(lái)改善射頻制熱的均勻性;Hansen等[86]、Wang等[87]分別采用射頻間歇性制熱方式對(duì)物料進(jìn)行制熱,結(jié)果表明,物料的制熱均勻性得到明顯改善。
再次,針對(duì)被制熱物料的尺寸效應(yīng),可采用機(jī)械結(jié)構(gòu)、實(shí)現(xiàn)物料的自由運(yùn)動(dòng)的方法。Pan等[88]、Jiao等[89]采用制作了物料水平運(yùn)動(dòng)傳送帶,分析了水平傳送速度對(duì)物料的射頻制熱特性的影響,結(jié)果表明水平均勻性得到較大改善,但還存在垂向制熱不均勻的問(wèn)題;Palazoglu等[90]基于射頻制熱系統(tǒng)設(shè)計(jì)了一套傾斜的傳送運(yùn)動(dòng)裝置,實(shí)現(xiàn)了物料的水平、垂向的運(yùn)動(dòng),實(shí)現(xiàn)了物料的均勻性制熱。
另外,對(duì)于射頻制熱中物料區(qū)域邊角效應(yīng),可在射頻制熱中途對(duì)物料進(jìn)行攪拌、使物料運(yùn)動(dòng)、熱風(fēng)輔助制熱,研究表明相對(duì)于物料運(yùn)動(dòng)、熱風(fēng)輔助制熱,攪拌物料能更為有效的提高射頻制熱均勻性[91];最后,也有學(xué)者改變空氣這種物料所處的制熱環(huán)境,將水果放在液體中(鹽水、循環(huán)熱水、羧甲基纖維素混合溶液等)進(jìn)行射頻制熱可以顯著改善制熱的均勻性[92]。
最后,數(shù)值建模計(jì)算將在射頻制熱領(lǐng)域產(chǎn)生重要作用;現(xiàn)有技術(shù)手段無(wú)法實(shí)現(xiàn)射頻制熱腔體內(nèi)部溫度分布的可視化測(cè)量,而射頻制熱系統(tǒng)本身結(jié)構(gòu)較復(fù)雜、成本巨大、試驗(yàn)周期很長(zhǎng),僅僅通過(guò)重復(fù)性試驗(yàn)、結(jié)構(gòu)調(diào)整很難滿足系統(tǒng)結(jié)構(gòu)改進(jìn)、參數(shù)優(yōu)化進(jìn)而實(shí)現(xiàn)均勻性的徹底改善。鑒于此,已經(jīng)有較多學(xué)者開(kāi)展射頻制熱理論方面的研究,Birla等[48]基于準(zhǔn)靜態(tài)電場(chǎng)假設(shè)對(duì)電磁方程、Navier-Stoke方程進(jìn)行求解,對(duì)比分析了模型水果在空氣、水介質(zhì)中的射頻制熱均勻性,給出了在水介質(zhì)中翻轉(zhuǎn)、移動(dòng)水果會(huì)獲得較大均勻性改善的建議;Tiwari等[27]基于COMSOL平臺(tái)討論了物料不同厚度層的制熱均勻性,采用對(duì)照試驗(yàn)驗(yàn)證了理論計(jì)算的可靠性,并指出了出現(xiàn)均勻性較差的原因;數(shù)值建模計(jì)算可以獲得射頻制熱系統(tǒng)中電磁場(chǎng)和溫度場(chǎng)的三維分布規(guī)律,數(shù)值建模計(jì)算將在該領(lǐng)域持續(xù)發(fā)揮重要作用。
參照學(xué)者們改善射頻制熱均勻性的方法,并結(jié)合前文的分析,建議在進(jìn)行土壤射頻消毒裝備研發(fā)時(shí),針對(duì)制熱部件要進(jìn)行制熱極板的結(jié)構(gòu)選型,進(jìn)行結(jié)構(gòu)尺寸及布局的優(yōu)化,并實(shí)現(xiàn)制熱過(guò)程可控可優(yōu)化等,以期最大程度改善土壤射頻制熱的均勻性。首先,在極板選型方面,考慮到田間入土的方便性,建議采用雙排棍縱向陣列式、棍桶式這2種方案,能更好改善電磁場(chǎng)本身的均勻性;其次,確定好結(jié)構(gòu)形式后,進(jìn)行大量原理試驗(yàn),考慮正負(fù)極間距、桿之間間距、棍陣正負(fù)極長(zhǎng)度、含水率等因素進(jìn)行結(jié)構(gòu)尺寸的優(yōu)化;此外,在射頻制熱控制端要實(shí)現(xiàn)間歇式制熱、正負(fù)極交換制熱等自動(dòng)切換功能,并能根據(jù)土壤環(huán)境實(shí)現(xiàn)切換條件的可設(shè)置等。結(jié)合以上3種策略,研制的土壤射頻制熱裝備能一定程度解決土壤受熱的均勻性。
目前,土壤射頻制熱消毒還處于研究探索階段,結(jié)合前文的論述,提出以下建議:
1)土壤消毒環(huán)境多為高溫、高濕、多塵的環(huán)境,內(nèi)部冷卻循環(huán)系統(tǒng)與外界溫差大,射頻電源腔室易累積冷凝水,對(duì)昂貴的射頻電源造成重大短路燒壞威脅,且易造成面板腐蝕;鑒于此,射頻電源設(shè)計(jì)應(yīng)采用整機(jī)三防設(shè)計(jì),在溫控系統(tǒng)里加裝智能控制模塊,實(shí)時(shí)控制射頻電源腔體內(nèi)、外溫差。
2)建議對(duì)田間土壤、栽培機(jī)質(zhì)對(duì)應(yīng)的射頻消毒裝備分開(kāi)研發(fā)設(shè)計(jì),針對(duì)田間土壤應(yīng)該發(fā)展一種自走式自動(dòng)換行射頻消毒裝備,針對(duì)栽培機(jī)質(zhì)應(yīng)該發(fā)展一種可運(yùn)動(dòng)的封閉流水線式射頻消毒裝備。
3)從射頻制熱結(jié)構(gòu)來(lái)看,移動(dòng)式田間土壤射頻制熱系統(tǒng)應(yīng)該以制熱電極入土方便、結(jié)構(gòu)強(qiáng)度高、制熱效率高為基本設(shè)計(jì)準(zhǔn)則和設(shè)計(jì)優(yōu)先級(jí)順序;固定流水線式栽培機(jī)質(zhì)射頻制熱系統(tǒng)應(yīng)該以制熱效率高、制熱機(jī)構(gòu)可多自由度運(yùn)動(dòng)、制熱系統(tǒng)可密封為基本設(shè)計(jì)準(zhǔn)則和設(shè)計(jì)優(yōu)先級(jí)順序。
4)對(duì)于田間土壤射頻制熱系統(tǒng),輸出端上下極板制熱方式已經(jīng)不合適,建議采取棍電極縱向陣列式(單排正、單排負(fù)極板,單排正、雙排負(fù)極板,雙排正、單排負(fù)極板);或者采用中間正極板、圓周向負(fù)極板(或中間負(fù)極板、圓周向正極板)的桶型制熱方式等;在射頻制熱電極的控制端要實(shí)現(xiàn)間歇式制熱、正負(fù)極交換制熱等自動(dòng)切換功能。
5)對(duì)于經(jīng)濟(jì)性高的栽培機(jī)質(zhì)土壤射頻系統(tǒng)來(lái)講,針對(duì)射頻制熱易出現(xiàn)的熱偏移、邊角效應(yīng)等問(wèn)題,固定式設(shè)計(jì)更能發(fā)揮射頻制熱的優(yōu)勢(shì),含多自由度運(yùn)動(dòng)功能的可封閉的上下極板式成為優(yōu)先選擇,并輔助以其他制熱方式(熱風(fēng)對(duì)流等),這為優(yōu)化土壤有機(jī)質(zhì)射頻制熱均勻性、效果有重要意義[93]。
6)隨著射頻制熱領(lǐng)域理論的深入發(fā)展,已經(jīng)出現(xiàn)了多種射頻制熱的商業(yè)化計(jì)算仿真平臺(tái),在土壤射頻制熱領(lǐng)域加快這方面的研究對(duì)加速裝備研制的速度進(jìn)而縮短研制周期,對(duì)縮減研發(fā)資金投入及降低試驗(yàn)勞動(dòng)強(qiáng)度等都具有直接的重要作用。
隨著中國(guó)經(jīng)濟(jì)及生活水平的不斷提高,社會(huì)對(duì)農(nóng)產(chǎn)品質(zhì)量及環(huán)境保護(hù)的關(guān)注度越來(lái)越高,化學(xué)、生物等傳統(tǒng)消毒方式已不能滿足土壤消毒的多樣化需求;而物理消毒方式在土壤消毒領(lǐng)域發(fā)揮著越來(lái)越重要的作用,射頻制熱是其中一種新興的效率更高、可控、消毒成本更低、應(yīng)用前景較廣闊的物理消毒方式。通過(guò)文獻(xiàn)分析和試驗(yàn)研究,得到如下結(jié)論:1)射頻制熱技術(shù)在工業(yè)、醫(yī)療、紡織輕工業(yè)、林產(chǎn)品加工、農(nóng)副產(chǎn)品加工等領(lǐng)域得到了廣泛應(yīng)用,但都存在不同程度的制熱不均勻的問(wèn)題;2)射頻制熱均勻性的影響因素有電磁場(chǎng)本身的不均勻、射頻自身的選擇性制熱特性、物料的形狀及尺寸效應(yīng)影響、物料的邊角效應(yīng)等;3)在射頻制熱過(guò)程中土壤介質(zhì)的介電常數(shù)是逐步增加的,射頻電極結(jié)構(gòu)制熱土壤的均勻性從低到高為雙極板式射頻電極、雙排棍縱向陣列式射頻電極、桶式射頻電極;4)針對(duì)田間土壤應(yīng)該發(fā)展一種自走式自動(dòng)換行射頻消毒裝備,電極采用桶型制熱方式,射頻控制端實(shí)現(xiàn)頻率可調(diào)、制熱區(qū)及正負(fù)極可間歇式交換;5)針對(duì)栽培機(jī)質(zhì)應(yīng)該發(fā)展一種可運(yùn)動(dòng)的封閉流水線式射頻消毒裝備,并輔助熱風(fēng)對(duì)流等附加制熱方式。
[1] Barber H. Electroheat, first ed[M]. London: Granada Publishing Limited, 1983.
[2] 張寧,王冉冉,李法德. 射頻加熱技術(shù)在農(nóng)產(chǎn)品和食品工業(yè)的應(yīng)用研究進(jìn)展[J]. 食品工業(yè),2013,34(11):199-203.
Zhang Ning, Wang Ranran, Li Fade.Research advances of application of radio frequency heating in agro-product and food industry[J]. The Food Industry, 2013, 34(11): 199-203. (in Chinese with English abstract)
[3] 陳欣,宇正亞,倪如暘. 超重、肥胖患者接受超聲引導(dǎo)下大隱靜脈腔內(nèi)射頻消融閉合日間手術(shù)的精細(xì)化管理初探[J]. 華西醫(yī)學(xué),2020,35(2):165-169.
Chen Xin, Yu Zhenya, Ni Ruyang. Preliminary study on the fine management of overweight and obese patients undergoing day surgery of ultrasound-guided radio frequency ablation of the great saphenous vein[J]. West China Medical,2020, 35(2): 165-169. (in Chinese with English abstract)
[4] 楊莉玲. 射頻處理對(duì)核桃貯藏害蟲(chóng)殺滅效果及核桃品質(zhì)影響的研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2019.
Yang Liling. Study on the Effect of Radio Frequency Treatment on Storage Pest Controlling and Quality of Walnut[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
[5] 張學(xué)進(jìn),金永奎,張玲,等. 土壤射頻消毒技術(shù)試驗(yàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(13):274-277.
[6] 陳天祥,孫權(quán),顧欣,等. 設(shè)施蔬菜連作障礙及調(diào)控措施研究進(jìn)展[J]. 北方園藝,2016(10): 193-197.
Chen Tianxiang, Sun Quan, Gu Xin, et al. Research progress of continuous cropping obstacles of amenities vegetable and its control measures[J]. Northern Horticulture, 2016(10): 193-197. (in Chinese with English abstract)
[7] Srinivasarao C, Kundu S, Shanker A K, et al. Continuous cropping under elevated CO2: Differential effects on C4 and C3 crops, soil properties and carbon dynamics in semi-arid alfisols[J]. Agriculture Ecosystems and Environment, 2016, 218: 73-86.
[8] 曹坳程,郭美霞,王秋霞,等. 世界土壤消毒技術(shù)進(jìn)展[J]. 中國(guó)蔬菜,2010(21):17-22.
[9] 王祝盈,劉永謙,陳小林. 電容式射頻熱療中加熱機(jī)制分析及不同組織升溫速率計(jì)算[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2015,34(4):438-444.
[10] Bernard J P, Jacomino J M, Radoiu M. Radio Frequency Heating in Food Processing-Principles and Applications: RF 50Ω technology versus variable frequency RF technology[M]. Boca Raton: Taylor & Francis Group, 2014.
[11] Wang S, Tiwari G, Jiao S, et al. Developing postharvest disinfestation treatments for legumes using radio frequency energy[J]. Biosystems Engineering, 2010, 105(3): 341-349.
[12] Zhou H, Guo C, Wang S, et al. Performance comparison between the free running oscillator and 50 Ω radio frequency systems[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 171-178.
[13] Zhang H, Datta A K. Electromagnetics of Microwave Heating: Magnitude and Uniformity of Energy Absorption in An Oven. In: Datta, A.K., Anantheswaran, R.C. (Eds.), Handbook of Microwave Technology for Food Applications[M]. New York: Marcel Dekker, 2001: 1-28.
[14] Metaxas A. Foundations of electroheat-a unified approach[C]// New York: John Wiley & Sons, 1996.
[15] Tang J, Hao F, Lau M, et al. Microwave Heating in Food Processing, In: Advances in Bioprocessing Engineering[M]. Singapore: World Scientific, 2002: 1-44.
[16] Orsat V, Jusoh Y M M. Electrical conductivity effect on dielectric properties and radio frequency heating[J]. Radio-Frequency Heating in Food Processing: Principles and Applications, 2015, 73-89.
[17] Rowley A T. Thermal technologies in food processing[J]. Thermal Technologies in Food Processing, 2001:163-177.
[18] Zhao Y, Flugstad B, Kolbe E, et al. Using capacitive (radio frequency) dielectric heating in food processing and preservation-a review[J]. Journal of Food Process Engineering, 2000, 23(1): 25-55.
[19] Shrestha B, Baik O D. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study[J]. Biosystems Engineering, 2013, 114(3): 195-204.
[20] Repacholi M H. Low-level exposure to radio frequency electromagnetic fields: Health effects and research needs[J]. Bio Electro Magnetics, 1998, 19(1): 1-19.
[21] Zhang S, Zhou L, Ling B, et al. Dielectric properties of peanut kernels associated with microwave and radio frequency drying[J]. Biosystems Engineering, 2016, 145: 108-117.
[22] Von Hippel A R, Morgan S O. Dielectric materials and applications[M]. Boston, USA: Arctech House, 1954.
[23] Birla S, Wang S, Tang J, et al. Improving heating uniformity of fresh fruit in radio frequency treatments for pest control[J]. Postharvest Biology and Technology, 2004, 33: 205-217.
[24] Hou L, Huang Z, Kou X, et al. Computer simulation model development and validation of radio frequency heating for bulk chestnuts based on single particle approach[J]. Food and Bioproducts Processing, 2016, 100: 372-381.
[25] Kim S Y, Sagong H G, Choi S H, et al. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157: H7 on black and red pepper spice[J]. International Journal of Food Microbiology, 2012, 153: 171-175.
[26] Huang Z, Marra F, Subbiah J, et al. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(6): 1032-1056.
[27] Tiwari G, Wang S, Tang J, et al. Computer simulation model development and validation for radio frequency (RF) heating of dry food materials[J]. Journal of Food Engineering, 2011, 105: 48-55.
[28] 張勝玉. 塑料高頻焊接技術(shù)[J]. 橡塑技術(shù)與裝備,2014,40(10):1-9.
Zhang Shengyu. High frequency plastic welding technology[J]. China Rubber/Plastic Technology and Equipment, 2014, 40(10): 1-9. (in Chinese with English abstract)
[29] 陳雄,程星光. 高頻焊接塑料專利技術(shù)分析[J]. 廣東化工,2019,46(4):109-110.
Chen Xiong, Cheng Xingguang. Patents technical review of high frequency weldable polymer[J]. Guangdong Chemical Industry, 2019, 46(4): 109-110. (in Chinese with English abstract)
[30] 豐惠芬,王雪頑,張連成. 射頻加熱技術(shù)及其在醫(yī)學(xué)上的應(yīng)用[J]. 高電壓技術(shù),1994,20(4):30-33.
[31] Wang X, Zhang Z T, Wang Y, et al. Improvement of acetone-butanol-ethanol (ABE) production from switchgrass pretreated with a radio frequency-assisted heating process[J]. Fuel, 2016, 182: 166-173.
[32] 陳立秋. 射頻制熱在染整烘燥工藝中的應(yīng)用[J]. 染整技術(shù),2007,29(8):52-53.
[33] Pound J, M L R E, A L E E. Present-day applications of radio-frequency heating in wood working[J]. Wood, 1957, (l): 10-14.
[34] 吳智慧. 高頻介質(zhì)加熱技術(shù)在木材工業(yè)中的應(yīng)用[J]. 世界林業(yè)研究,1994,7(6):30-36.
[35] Kinn T. Basic theory and limitations of high frequency heating equipment[J]. Food Technology, 1947, 1: 161-173.
[36] Jason A C, Sanders H R. Dielectric thawing of fish. I. Experiments with frozen herrings[J]. Food Technology, 1962, 16(6): 101-106.
[37] Demeczky M. Continuous pasteurization of bottled fruit juices by high frequency energy[J]. Proceedings of IV international congress on food science and technology, 1974, 4: 11-20.
[38] Mermelstein N. Interest in radio frequency heating heats up[J]. Food Technology, 1997, 51(10): 94-95.
[39] 徐立. 論高頻介質(zhì)制熱在磚茶干燥工藝中的應(yīng)用[J]. 茶葉,1983,27(1):37-42.
[40] 劉小丹,張淑娟,賀虎蘭,等. 紅棗微波-熱風(fēng)聯(lián)合干燥特性及對(duì)其品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):280-286.
Liu Xiaodan, Zhang Shujuan, He Hulan, et al. Drying characteristics and its effects on quality of jujube treated by combined microwave-hot-air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 280-286. (in Chinese with English abstract)
[41] Chen Q Q, Bi J F, Wu X Y, et al. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short-and medium-wave infrared radiation[J]. LWT-Food Science and Technology, 2015, 64(2): 759-766.
[42] 凌錚錚,任廣躍,段續(xù),等. 小顆粒(含粉料)物料射頻干燥機(jī)設(shè)計(jì)與分析[J]. 食品與機(jī)械,2019,35(11):99-103.
[43] 焦艷芬,李正英,劉敏,等. 冷凍羊腿幾種解凍方法比較[J]. 農(nóng)產(chǎn)品加工·學(xué)刊,2006,12:51-54.
Jiao Yanfen, Li Zhengying, Liu Min, et al. Comparison on several kinds of defrosting methods for refrigerant mutton leg[J]. Academic Periodical of Farm Products Processing, 2006, 12: 51-54. (in Chinese with English abstract)
[44] 歐陽(yáng)杰,倪錦,吳錦婷,等. 解凍方式對(duì)大黃魚(yú)解凍效率和品質(zhì)的影響[J]. 肉類研究,2016,30(8):30-34.
Ou Yangjie, Ni Jin, Wu Jinting, et al. Influence of thawing methods on thawing efficiency and quality of pseudosciaena crocea[J]. Meat Research, 2016, 30(8): 30-34. (in Chinese with English abstract)
[45] 王亞盛. 冷凍水產(chǎn)品復(fù)合相介電特性與射頻解凍研究[J]. 食品科學(xué),2007,28(7):501-504.
Wang Yasheng. Study on dielectric properties of compound phase of frozen marine products and radio frequency thaw method[J]. Food Science, 2007, 28(7): 501-504. (in Chinese with English abstract)
[46] Llave Y, Terada Y, Fukuoka M, et al. Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies[J]. Journal of Food Engineering, 2014, 139: 1-9.
[47] Bedane T F, Chen L, Marra F, et al. Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt[J]. Journal of Food Engineering, 2017, 201: 17-25.
[48] Birla S L, Wang S, Tang J. Computer simulation of radio frequency heating of model fruit immersed in water[J]. Journal of Food Engineering, 2008, 84(2): 270-280.
[49] Zettler J L, Arthur F H. Chemical control of stored product insects with fumigants and residual treatments[J]. Crop Protection, 2000, 19: 577-582.
[50] 令博. 開(kāi)心果采后射頻殺蟲(chóng)技術(shù)及綜合利用研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
Ling Bo. Studies on Radio Frequency Disinfestation Technology and Comprehensive Utilizations of Postharvest Pistachio[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[51] 沈兆鵬. 儲(chǔ)糧熏蒸劑-現(xiàn)狀和前景[J]. 黑龍江糧食,2004,6:33-36.
[52] 黃智. 大豆射頻加熱過(guò)程有限元模擬及均勻性優(yōu)化研究[D]. 楊凌: 西北農(nóng)林科技大學(xué),2018.
Huang Zhi. Finite Element Simulation and Uniformity Optimization for Radio Frequency Heating Process of Soybeans[D]. Yangling: Northwest A&F University, 2018. (in Chinese with English abstract)
[53] 楊莉玲,張紹英,崔寬波,等. 射頻技術(shù)在核桃貯藏蟲(chóng)害處理中的研究進(jìn)展[J]. 新疆農(nóng)機(jī)化,2017(6):21-24,41.
[54] 孫益知. 核桃病蟲(chóng)害防治新技術(shù)[M]. 北京:金盾出版社,2011.
[55] Wang S, Tang J, Johnson J, et al. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments[J]. Biosystems Engineering, 2003, 85(2): 201-212.
[56] Wang S, Ikediala J N, Tang J, et al. Radio frequency treatments to control codling moth in shell walnuts[J]. Postharvest Biology and Technology, 2001, 22(1): 29-38.
[57] Mitcham E L, Vehman R H, Feng X, et al. Application of radio frequency treatments to control insects in shell walnuts[J]. Postharvest Biology and Technology, 2004, 33(1): 93-100.
[58] Wang S, Yue J, Tang J, et al. Mathematical modeling of heating uniformity for in shell walnuts subjected to radio frequency treatments with intermittent stirrings[J]. Postharvest Bio Biology and Technology, 2005, 35(1): 97-107.
[59] 趙偉,楊瑞金. 脫水蔬菜粉射頻殺菌研究[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2015,17(5):68-74.
Zhao Wei, Yang Ruijin. Studies on radio frequency heating to inactivate microorganisms in broccoli powder[J]. Journal of Agricultural Science and Technology, 2015, 17(5): 68-74. (in Chinese with English abstract)
[60] Mattick K L, Jorgensen F, Legan J D, et al. Survival and filamentation ofserovar enteritidis PT4 andserovar typhimurium DT104 at low water activity[J]. Appl. Environ. Microbiol, 2000, 66(4): 1274-1279.
[61] Guo W, Wang S, Tiwari G, et al. Temperature and moisture dependent dielectric properties of legume flours associated with dielectric heating[J]. Food Science and Technology, 2010, 43(2): 193-201.
[62] 劉家璇,彭夢(mèng)晨,楊雪潔,等. 射頻預(yù)處理對(duì)杏果熱風(fēng)干燥特性及營(yíng)養(yǎng)成分的影響[J]. 食品與發(fā)酵工業(yè),2019,45(3):176-182.
Liu Jiaxuan, Peng Mengchen, Yang Xuejie, et al. Effects of radio frequency pretreatment on hot air drying characteristics and nutrients of apricot[J]. Food and Fermentation Industries, 2019, 45(3): 176-182. (in Chinese with English abstract)
[63] Sances F V, Ingham E R. Conventional and organic alternatives to methyl bromide on california strawberries[J]. Compost Science & Utilization, 1997, 5(2): 23-37.
[64] Van W E. Combinations of reduced rates of 1, 3-dichloropropene and dazomet as a broad spectrum soil fumigation strategy in view of methyl bromide replacement[J]. Commun Agric Appl Biol Sci, 2007, 72(2): 61-70.
[65] 李明社,李世東,繆作清,等. 生物熏蒸用于植物土傳病害治理的研究[J]. 中國(guó)生物防治,2006,22(4):296-302.
Li Mingshe, Li Shidong, Miao Zuoqing, et al. Biofumigation for management of soilborne plant diseases[J]. Chinese Journal of Biological Control, 2006, 22(4): 296-302. (in Chinese with English abstract)
[66] Yates S R, Gan Jianying, Papiernik S K, et al. Reducing fumigant emissions after soil application[J]. Phytopathology, 2002, 92(12): 1344-1348.
[67] 曹坳程,張文吉,劉建華. 溴甲烷土壤消毒替代技術(shù)研究進(jìn)展[J]. 植物保護(hù),2007,33(1):15-20.
Cao Aocheng, Zhang Wenji, Liu Jianhua. Progress in the alternatives to methyl bromide in soil disinfestation[J]. Plant Protection, 2007, 33(1): 15-20. (in Chinese with English abstract)
[68] Slusarski C, Pietr S J. Combined application of dazomet and Trichoderma asperellum as an efficient alternative to methyl bromide in controlling the soil-borne disease complex of bell pepper[J]. Crop Protection, 2009, 28(5): 668-674.
[69] Stevens C, Khan V A, Rodriguez-Kabana R, et al. Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables[J]. Plant and Soil, 2003, 253: 493-506.
[70] 汪小旵,李成光,楊振杰,等. 移動(dòng)式土壤旋耕蒸汽消毒機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):18-24.
Wang Xiaohan, Li Chenguang, Yang Zhenjie, et al. Development of mobile soil rotary steam disinfection machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 18-24. (in Chinese with English abstract)
[71] 潘四普,周宏平,蔣雪松,等. 基于脈動(dòng)燃燒技術(shù)的土壤消毒蒸汽發(fā)生裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):301-307.
Pan Sipu, Zhou Hongping, Jiang Xuesong, et al. Design and experiment of soil disinfection steam generator based on pulse combustion technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 301-307. (in Chinese with English abstract)
[72] 李明社. 生物熏蒸和熱水消毒法替代甲基溴用于植物土傳病害治理的研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2016.
Li Mingshe. Studies on Biofumigation and Hot Water Treatment to Replace Methyl Bromide for Management of Soilborne Plant Diseases[D]. Urumqi: Xinjiang Agricultural Uninersity, 2016. (in Chinese with English abstract)
[73] 翁曉星,施新杭,黃赟,等. 生物質(zhì)顆粒燃料火焰消毒旋耕機(jī)設(shè)計(jì)[J]. 農(nóng)業(yè)工程,2019,9(5):84-87.
Weng Xiaoxing, Shi Xinhang, Huang Yun, et al. Design of flame rotary cultivator fueled by biomass pellets[J]. Agriculture Engineering, 2019, 9(5): 84-87. (in Chinese with English abstract)
[74] Trabelsi S, Nelson S. Microwave sensing technique for nondestructive determination of bulk density and moisture content in unshelled and shelled peanuts[J]. Transactions of the ASABE, 2006, 49: 1563-1568.
[75] 張保艷,于海洋,程裕東,等. 溫度、頻率和水分含量對(duì)羅非魚(yú)介電特性的影響[J]. 水產(chǎn)學(xué)報(bào),2012,36(11):1785-1792.
Zhang Baoyan, Yu Haiyang, Chen Yudong, et al. Effects of temperature, frequency and moisture content on the dielectric properties of tilapia[J]. Journal of Fisheries of Chian, 2012, 36(11): 1785-1792. (in Chinese with English abstract)
[76] Marco Bittelli. Measuring soil water content: A review[J]. Horttechnology, 2011, 21(3): 293-300.
[77] 張鵬. 主要因數(shù)對(duì)土壤介電特性的影響分析研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2013.
Zhang Peng. Analysis to Effects of Main Factors on Dielectric Properties of Soils[D]. Yangling: Northwest A&F University, 2013. (in Chinese with English abstract)
[78] 朱新華,郭文川. 影響食品射頻-微波介電特性的因素及影響機(jī)理分析[J]. 食品科學(xué),2010,31(17):410-414.
Zhu Xinhua, Guo Wenchuan. A Review of affecting factors and their mechanisms of the radio frequency-microwave dielectric properties of foods[J]. Food Science, 2010, 31(17): 410-414. (in Chinese with English abstract)
[79] Robinson D A, Jones S B, Wraith J M, et al. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry[D]. Vadose Zone Journal, 2003, 2: 444-475.
[80] Topp G C, Zegelin S, White I. Impacts of the Real and Imaginary Components of Relative Permittivity on Time Domain Reflectometry Measurements in Soils[J]. Soil Sci. Soc. Am. J., 2000, 64: 1244-1252.
[81] Wagner N, Emmerich K, Bonitz F, et al. Experimental Investigations on the Frequency and Temperature Dependent Dielectric Material Properties of Soil[J]. Ieee Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2518-2530.
[82] Coppol A, Dragonetti G, Comegna A, et al. Measuring and modeling water content in stony soils[J]. Soil & Tillage Research, 2012, 128: 9-22.
[83] Wang S, Luechapattanaporn K, Tang J. Experimental methods for evaluating heating uniformity in radio frequency systems[J]. Biosystems Engineering, 2008, 100: 58-65.
[84] Wang K, Zhu H, Chen L, et al. Validation of top electrode voltage in free-running oscillator radio frequency systems with different moisture content soybeans[J]. Biosystems Engineering, 2015, 131: 41-48.
[85] Alfaifi B, Tang J, Rasco B, et al. Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control[J]. Innovative Food Science & Emerging Technologies, 2016, 37: 125-137.
[86] Hansen J D, Drake S, Watkins M, et al. Radio frequency pulse application for heating uniformity in postharvest codling moth (lepidoptera: tortricidae) control of fresh apples (.)[J]. Journal of Food Quality, 2006, 29(5): 492-504.
[87] Wang S, Yue J, Tang J, et al. Mathematical modelling of heating uniformity for in-shell walnuts subjected to radio frequency treatments with intermittent stirrings[J]. Postharvest Biology and Technology, 2005, 35: 97-107.
[88] Pan L, Jiao S, Gautz L, et al. Coffee bean heating uniformity and quality as influenced by radio frequency treatments for postharvest disinfestations[J]. Transactions of the ASABE, 2012, 55(6): 2293-2300.
[89] Jiao S, Johnson J, Tang J, et al. Industrial-scale radio frequency treatments for insect control in lentils[J]. Journal of Stored Products Research, 2012, 48: 143-148.
[90] Palazoglu T K, Miran W. Experimental investigation of the combined translational and rotational movement on an inclined conveyor on radio frequency heating uniformity[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 16-23.
[91] Hou L, Ling B, Wang S. Development of thermal treatment protocol for disinfesting chestnuts using radio frequency energy[J]. Postharvest Biology and Technology, 2014, 98: 65-71.
[92] Tiwari G, Wang S, Birla S L, et al. Effect of water-assisted radio frequency heat treatment on the quality of ‘Fuyu’ persimmons[J]. Biosystems Engineering, 2008, 100: 227-234.
[93] 謝永康,林雅文,朱廣飛,等. 基于制熱均勻性的射頻干燥系統(tǒng)結(jié)構(gòu)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):248-254.
Xie Yongkang, Lin Yawen, Zhu Guangfei, et al. Structure optimization and experiment of radio frequency dryer based on heating uniformity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 248-254. (in Chinese with English abstract)
Application and outlook of radio frequency heating technology in soil disinfection
Yang Fengbo, Zhang Ling※, Jin Yongkui, Xue Xinyu, Zhang Xuejin
(210014)
Soil disinfection technology has translated into a well-established commercial application with a mature market. However, most conventional disinfection methods, such as chemical and biological types, cannot meet the current harsh multiple needs of soil disinfection in modern digital agriculture. Therefore, this paper focuses on the latest application requirements for modern digital soil disinfection, to analyze the significant effects and typical defects of conventional disinfection methods, and finally proposes the idea: translating the emerging radio frequency heating technology into the application field of soil disinfection and the new design of advanced equipment. Five sections include in this paper. 1) The components, classification, heating performance and influence factors were summarized in the radio frequency (RF) heating system. 2) The application status of RF heating and disinfection technology was classify based on the various widely-used fields from industry, textile lighting, medical treatment, forestry product processing, agricultural and sideline product processing. The development processes of disinfection, sterilization, drying and thawing for agricultural and sideline products were analyzed, in order to clarify the main reasons for the RF uniform heating in the agricultural production line. 3) A RF heating experimental platform was also established in a laboratory environment, where preliminary trial tests of soil heating were performed using various types of electrode structures. The test results show that the structure of electrode poses a significant effect on the heating performance of the soil, which can be a key influence factor on the uneven heating. 4) This section covers a systematical analysis on the existing research related to the soil heating test under laboratory conditions, including the heating mechanism of the RF heating system, the heating characteristics of the soil materials, the matching features of the materials and the RF, the application shortcomings, the main causes, and the update methods for the physical heating method, and then proposes some suggestions to improve much more uniform RF heating in soil disinfection field. 5) According to the identification and assessment for the RF heating applications in other fields, this section proposes a separate design idea for field soil and organic soil RF heating disinfection equipment, several electrode structures in RF heating disinfection, and matching schemes for heated soil materials and heating parameters, for the future application of RF heating to soil heating disinfection. Since a variety of commercial simulation platforms for RF heating disinfection have emerged as the in-depth progress of the theory and technology, translating the soil RF heating into specific application based on the commercial simulation platforms would have played a direct and important role to accelerate the equipment development and shorten the development cycle, thereby saving the investment in research and the intensity of experimental labor. This overview can provide a sound guidance for the design and production of equipment in the field of soil RF disinfection.
radio frequency; soil disinfection; thermal effect; heating uniformity; equipment research and development
楊風(fēng)波,張玲,金永奎,等. 射頻制熱技術(shù)應(yīng)用現(xiàn)狀及土壤射頻消毒展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):299-309.doi:10.11975/j.issn.1002-6819.2020.08.036 http://www.tcsae.org
Yang Fengbo, Zhang Ling, Jin Yongkui, et al. Application and outlook of radio frequency heating technology in soil disinfection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 299-309. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.036 http://www.tcsae.org
2019-12 -17
2020-03-18
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0201600);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資(CX(17)3026);國(guó)家自然科學(xué)基金項(xiàng)目(51705264)
楊風(fēng)波,博士,副研究員。主要從事農(nóng)業(yè)機(jī)械化裝備研發(fā)及航空精準(zhǔn)施藥技術(shù)。Email:yangfengbo.cool@163.com
張玲,研究員。主要從事植保機(jī)械研究。Email:1173348176@qq.com
10.11975/j.issn.1002-6819.2020.08.036
S226.6; S124+.1
A
1002-6819(2020)-08-0299-11