李春蘭,任 鵬,王長云,王曉暄,石 砦,杜松懷
微電網(wǎng)中蓄電池充放電非線性控制策略研究
李春蘭1,任 鵬1,王長云1,王曉暄1,石 砦1,杜松懷2
(1. 新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052; 2. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083)
為解決微電網(wǎng)控制策略復(fù)雜、各微電源與儲能側(cè)功率協(xié)調(diào)困難的問題,考慮風(fēng)光輸出功率與負(fù)荷變化提出一種帶積分控制器與在線修正參數(shù)的蓄電池充放電非線性控制策略。在建立的風(fēng)、光微電源和蓄電池模型的基礎(chǔ)上,以負(fù)荷功率需求為基準(zhǔn)結(jié)合微電源的出力情況,獲得儲能系統(tǒng)出力規(guī)律;在狀態(tài)空間法的基礎(chǔ)上引入帶積分控制器與在線修正調(diào)節(jié)參數(shù)控制蓄電池充放電,以DC/DC變換器協(xié)調(diào)母線側(cè)與儲能側(cè)的電能傳遞。通過仿真試驗(yàn)表明,相比于傳統(tǒng)控制策略,在各種情況下的動(dòng)態(tài)恢復(fù)時(shí)間平均縮短了0.2 s,直流母線電壓暫態(tài)沖擊平均降低了0.6%,提議的控制策略能有效調(diào)控微電源與儲能系統(tǒng)的功率平衡,保證微電網(wǎng)系統(tǒng)供電的穩(wěn)定性,為微電網(wǎng)儲能系統(tǒng)的控制研究提供了一定的參考。
電;儲能;控制;微電網(wǎng);蓄電池;非線性控制;功率約束
微電網(wǎng)的引入,在保證當(dāng)?shù)刎?fù)載可靠供電的基礎(chǔ)上,進(jìn)一步提升了新型能源的利用率。但同時(shí)微電網(wǎng)也存在運(yùn)行控制困難、調(diào)度遲緩、響應(yīng)較慢、輸出功率的波動(dòng)性和間歇性等問題[1-8],限制了微電網(wǎng)技術(shù)的發(fā)展。胡巧輝等[9]與陳洪濤等[10]分別采用電力電子接口變換器、非線性級聯(lián)控制器來保障微電網(wǎng)的穩(wěn)定運(yùn)行,具有一定的抗干擾力,但未考慮儲能系統(tǒng)協(xié)同太陽能發(fā)電聯(lián)動(dòng)控制的問題。候世英等[11]采用主從雙環(huán)結(jié)構(gòu)自適應(yīng)控制,通過修正控制系統(tǒng)截止頻率來平抑母線電壓波動(dòng),但未考慮微電網(wǎng)各模塊動(dòng)態(tài)響應(yīng)約束條件。張丹等[12]在簡化系統(tǒng)電路的基礎(chǔ)上提出一種新型定頻脈沖寬度調(diào)制(Pulse Width Modulation, PWM)自適應(yīng)滑??刂品椒?,削弱了母線電壓抖震現(xiàn)象,但對復(fù)雜微電網(wǎng)的適用性還有待考量。米芝昌等[13]提出一種雙層母線直流微電網(wǎng)控制策略,在穩(wěn)定直流母線電壓的同時(shí)提高了負(fù)荷供電的靈活性;李鵬等[14]采用模糊控制協(xié)調(diào)實(shí)現(xiàn)時(shí)間—狀態(tài)最優(yōu)化互補(bǔ)縮短了直流母線暫態(tài)調(diào)整時(shí)間,上述2種控制策略都存在參數(shù)選取復(fù)雜,需權(quán)衡相關(guān)參數(shù)才能達(dá)到控制效果的缺陷。丁明等[15]提出以蓄電池為平衡點(diǎn)通過AC/DC變換器調(diào)控微電網(wǎng)系統(tǒng)電壓、頻率穩(wěn)定、功率平衡的控制方案;楊惠等[16]基于DC/DC變換器電路數(shù)學(xué)模型提出一種光儲微電網(wǎng)DC/DC變換器的自抗干擾器,上述2種控制策略均能有效平抑直流微電網(wǎng)電壓波動(dòng),但未探討光伏輸出劇烈波動(dòng)時(shí)對微電網(wǎng)穩(wěn)定性的影響。肖朝霞等[17]采用分層協(xié)調(diào)控制策略保障了風(fēng)、光、儲系統(tǒng)多個(gè)工作模式的穩(wěn)定運(yùn)行及無障礙切轉(zhuǎn);秦文萍等[18]采取不同的儲能充放電控制策略,實(shí)現(xiàn)蓄電池在不同工作模式之間自由切換,但上述2種控制策略在微電源故障或大負(fù)荷投入時(shí)協(xié)調(diào)控制策略的有效性有待進(jìn)一步研究。劉振國等[19]提出了適用于并網(wǎng)和孤島微電網(wǎng)系統(tǒng)的雙層優(yōu)化模型,實(shí)現(xiàn)了微電源之間的調(diào)度優(yōu)化,但未考慮儲能模塊對微電源調(diào)度優(yōu)化的影響。
上述文獻(xiàn)在一定程度上解決了微電網(wǎng)儲能系統(tǒng)在不同工作模式之間平滑過渡問題,克服了微電網(wǎng)輸出能量的波動(dòng)性和間歇性對母線電壓造成的影響等,但欠缺系統(tǒng)在輸入擾動(dòng)與負(fù)載變化、突發(fā)特殊故障時(shí)的儲能系統(tǒng)動(dòng)態(tài)性能分析,也就未能充分考慮充放電控制過程對協(xié)調(diào)控制的影響,不能夠全面反映微電網(wǎng)的運(yùn)行狀況。鑒于此,本研究提出一種改進(jìn)型非線性蓄電池充放電控制策略,以負(fù)荷功率需求為基準(zhǔn),結(jié)合各分布式電源的出力情況,建立了基于蓄電池充放電的微電網(wǎng)協(xié)同控制策略,通過MATLAB/Simulink搭建的仿真模型驗(yàn)證其在氣象條件或負(fù)荷正常波動(dòng)、突發(fā)特殊故障、大負(fù)荷投入下控制策略的可行性。
本研究構(gòu)建的微電網(wǎng)模型(圖1),其中包括光伏發(fā)電系統(tǒng)、風(fēng)電系統(tǒng)、儲能控制系統(tǒng)、協(xié)同控制系統(tǒng)、逆變系統(tǒng)。
圖1中,風(fēng)力發(fā)電機(jī)模型[20-21]采用直驅(qū)永磁同步發(fā)電機(jī),光發(fā)電池等效電路[22-24]經(jīng)過Boost升壓電路接到直流母線。太陽能光伏電池和風(fēng)力發(fā)電機(jī)組輸出功率主要由氣象條件決定,本研究采用擾動(dòng)觀測法[25-26]對分布式電源進(jìn)行最大功率追蹤(Maximum Power Point Tracking, MPPT)以提高光伏電池(Photovoltaic Cell, PV cell)與風(fēng)電機(jī)的功率輸出。
注:S1和S2為蓄電池充放電控制信號;S3為逆變系統(tǒng)控制信號;S4和S5為風(fēng)電系統(tǒng)、光伏發(fā)電系統(tǒng)最大功率追蹤控制信號;ib為支路電流,A; SOC為蓄電池荷電狀態(tài),%;idc為直流母線側(cè)電流,A;Udc為直流側(cè)母線電壓,V;Pv為光伏電池輸出功率,W;Pw為風(fēng)電機(jī)組輸出功率,W;PL為負(fù)荷需求功率,W;Pb為蓄電池輸出功率,W。下同。
本研究選用的儲能蓄電池為常用的鉛酸蓄電池,在考慮荷電狀態(tài)(State of Charge, SOC)對內(nèi)阻、蓄電池內(nèi)耗等因素時(shí),其等效模型由一個(gè)電壓源和一個(gè)固定內(nèi)阻串聯(lián)構(gòu)成[27-29](圖2)。
注:E為蓄電池空載端電壓,V;R為串聯(lián)電阻,Ω;E0為蓄電池恒定電壓,V;G為極化電壓,V;Q為電池容量,Ah;H為指數(shù)區(qū)域電壓幅值,V;B為指數(shù)區(qū)域時(shí)間常數(shù)倒數(shù),s-1;it為蓄電池充電電流,A;Us為蓄電池端電壓,V。
為保證電能質(zhì)量,微電網(wǎng)的輸出功率需要根據(jù)負(fù)載的變化進(jìn)行調(diào)控。根據(jù)風(fēng)電系統(tǒng)、光伏系統(tǒng)輸出功率、儲能蓄電池與負(fù)荷大小的變化,可將微電網(wǎng)分為不同運(yùn)行模式。本研究分別對光伏系統(tǒng)、風(fēng)電機(jī)組采用最大功率追蹤,結(jié)合提議的蓄電池控制策略實(shí)現(xiàn)風(fēng)光儲協(xié)同控制。
在微電網(wǎng)模型中蓄電池的主要功能是作為補(bǔ)充功率缺額來削峰填谷、提高供電質(zhì)量。當(dāng)風(fēng)光系統(tǒng)輸出的功率大于負(fù)載需求時(shí),蓄電池可將多余的能量儲存;當(dāng)風(fēng)光系統(tǒng)輸出的功率不能滿足負(fù)載需求時(shí),蓄電池便將儲存的電能釋放,保證負(fù)載安全可靠的運(yùn)行。設(shè)ref為參考功率,W,則風(fēng)光儲系統(tǒng)功率約束條件如式(1)所示:
式中P為光伏電池輸出功率,W;P為風(fēng)電機(jī)組輸出功率,W;P為負(fù)荷需求功率,W;P為蓄電池充放電功率,W;SOCbat-act為蓄電池實(shí)際荷電狀態(tài),%;SOCbat-max為最大允許荷電狀態(tài),%;SOCbat-min為最低允許荷電狀態(tài)分別,%。根據(jù)式(1)本研究提議協(xié)同控制策略如表1所示。
滿足表1的微電網(wǎng)系統(tǒng)控制流程如圖3所示。根據(jù)負(fù)荷需求,依據(jù)表1協(xié)同控制策略可獲得儲能系統(tǒng)出力規(guī)律,根據(jù)出力規(guī)律由蓄電池充放電控制策略保障微電網(wǎng)穩(wěn)定運(yùn)行。充放電控制策略是決定儲能裝置平抑網(wǎng)內(nèi)功率波動(dòng)維持直流母線電壓穩(wěn)定的關(guān)鍵因素。
表1 協(xié)同控制策略
注:SOCbat-acu為蓄電池實(shí)際荷電狀態(tài),%;SOCbat-max為蓄電池最大允許荷電狀態(tài),%;SOCbat-min為蓄電池最低允許荷電狀態(tài),%;MPPT為最大功率追蹤。
目前針對蓄電池儲能控制策略大多是線性控制,但雙向DC/DC變換器是一種非線性時(shí)變電路傳統(tǒng)的誤差線性反饋控制無法取得滿意效果,不僅動(dòng)態(tài)響應(yīng)慢,且在電路參數(shù)變化時(shí)有可能出現(xiàn)分岔或混沌等非線性現(xiàn)象,導(dǎo)致電壓或電流的紋波系數(shù)變大。此外,光伏發(fā)電系統(tǒng)存在輸出電壓變化范圍大,負(fù)載突變以及負(fù)載非線性的特點(diǎn),因此需要對雙向DC/DC變換器進(jìn)行非線性控制。
俄羅斯學(xué)者Kolesnikov在現(xiàn)代數(shù)學(xué)和協(xié)同學(xué)的基礎(chǔ)上提出一種非線性控制方法[30-32]。一個(gè)有限維的非線性動(dòng)態(tài)系統(tǒng)可以描述如式(2)所示:
首先,根據(jù)非線性系統(tǒng)微分方程表達(dá)式,在明確系統(tǒng)維數(shù)和狀態(tài)變量數(shù)量后,定義與狀態(tài)變量同維的宏變量:(,)。是狀態(tài)變量的函數(shù),其控制優(yōu)化目標(biāo)是引導(dǎo)系統(tǒng)的某些狀態(tài)運(yùn)行在吸引子及其附近區(qū)域,使=0。定義系統(tǒng)穩(wěn)定狀態(tài)(=0),其演化規(guī)律如式(3)所示:
將(,)帶入式(2)化簡后如式(4)所示
式(3)和式(4)中為控制器參數(shù),決定著系統(tǒng)變量收斂到不變流形=0的速度。
在DC/DC雙向電路中,通過以占空比作為控制量來控制電子器件的導(dǎo)通時(shí)間,推動(dòng)系統(tǒng)運(yùn)行到期望狀態(tài)。為了使系統(tǒng)對運(yùn)行狀態(tài)和模型參數(shù)變化具有自適應(yīng)性,優(yōu)化動(dòng)態(tài)響應(yīng)并做到無靜差,增加關(guān)于輸出電壓偏差積分項(xiàng)。選取宏變量如式(5)所示
式中為在線修正參數(shù);K為積分參數(shù)?;Δ為電壓調(diào)整量,V;Δ為電流調(diào)整量,A。
儲能蓄電池放電過程中能量不斷下降,模型參數(shù)在短時(shí)間內(nèi)變化較大,通過加入積分控制器并在線修正設(shè)定參數(shù),可提高儲能系統(tǒng)的抗干擾性,將控制目標(biāo)約束在不變流行=0上,系統(tǒng)響應(yīng)增速且能做到無穩(wěn)態(tài)誤差。
本研究采用2個(gè)絕緣柵雙極晶體管(Insulated Gate Bipolar Transistor, IGBT)組成的雙向DC/DC變換電路實(shí)現(xiàn)蓄電池充放電能量的雙向流動(dòng)(圖4)。在儲能系統(tǒng)和直流母線間加入DC/DC雙向電路,通過控制占空比使其在Boost升壓電路和Buck降壓電路之間轉(zhuǎn)換,實(shí)現(xiàn)對蓄電池的充放電控制。
注:D1和D2為絕緣柵雙極晶體管(IGBT)?;Us為蓄電池端電壓,V;iL為電感電流,A;L為電感,H;ib為支路電流,A;io為輸出電流,A;C為直流側(cè)電容,F(xiàn);Udc為直流側(cè)母線電壓,V。
根據(jù)圖4,由基爾霍夫定律得電路微分方程如式(6)所示:
式中1和2分別為開關(guān)管D1和D2的占空比;U為蓄電池端電壓,V;i為電感電流,A;為電感,H;i為支路電流,A;i為輸出電流,A;為直流側(cè)電容,F(xiàn);dc為直流側(cè)母線電壓,V。
選取直流側(cè)母線電壓和蓄電池側(cè)電感電流作為狀態(tài)變量,取各開關(guān)管的占空比為控制向量如式(7)所示:
式中[12]為狀態(tài)變量向量;[12]為控制向量。
得到Boost模式下的動(dòng)態(tài)系統(tǒng)方程如式(8)所示:
得到Buck模式下的動(dòng)態(tài)系統(tǒng)方程如式(9)所示:
式(8)和式(9)中i-ref為電感電流參考值,A。
在實(shí)際電路中,由于受等效電阻、電容、電感、變換器以及模型參數(shù)不確定性的影響,輸出電壓存在穩(wěn)態(tài)誤差。為了增強(qiáng)系統(tǒng)的自適應(yīng)性和魯棒性,優(yōu)化動(dòng)態(tài)響應(yīng)達(dá)到無靜差,本研究提議對宏變量引入電壓偏差積分項(xiàng)。根據(jù)式(5)構(gòu)造宏變量如式(10)所示:
式中dc-ref為系統(tǒng)輸出電壓參考值,V。
因期望0,其、K值不宜選取過大,值過大會限制電感電流的變化范圍,K值過大,則改變了電感電流變化范圍,影響系統(tǒng)動(dòng)態(tài)性能,其值的選擇只需滿足系統(tǒng)輸出控制要求即可。
代入動(dòng)態(tài)演化規(guī)律方程式(4),結(jié)合宏變量()求得控制規(guī)律如式(11)和式(12)所示:
對風(fēng)光儲混合微電網(wǎng)系統(tǒng)分別在光照強(qiáng)度和風(fēng)速正常條件、負(fù)荷正常波動(dòng)、突發(fā)特殊故障、大負(fù)荷投入下進(jìn)行仿真,驗(yàn)證蓄電池非線性充放電控制在協(xié)同控制策略中的有效性。光伏電池組、風(fēng)力機(jī)、蓄電池模型參數(shù)如表2所示。
表2 風(fēng)光儲微電網(wǎng)系統(tǒng)主要參數(shù)
1)氣象條件正常情況的動(dòng)態(tài)響應(yīng)
在圖1仿真模型中,設(shè)太陽能電池工作溫度為25 ℃,光照強(qiáng)度在0、1、2、3 s變化分別為0、500、1 000、1 500 W/m2,風(fēng)速在0~1 s間變化為0~9 m/s,負(fù)荷P恒為10 kW,其動(dòng)態(tài)響應(yīng)如圖5所示。
根據(jù)圖5分析可知,①在0~1 s,由于光伏系統(tǒng)及風(fēng)電機(jī)組無功率輸出,通過蓄電池放電滿足負(fù)載功率需求。1~1.2 s,隨著光照強(qiáng)度、風(fēng)速提升,僅光伏電池輸出功率補(bǔ)充負(fù)荷功率,蓄電池放電強(qiáng)度減弱。1.2~2 s,隨著風(fēng)電機(jī)組輸出穩(wěn)定,光伏系統(tǒng)出力保持,蓄電池放電強(qiáng)度削弱。2~3 s,光照強(qiáng)度增強(qiáng)、風(fēng)速不變,風(fēng)光系統(tǒng)輸出功率滿足負(fù)載需求,多余能量送給蓄電池存儲,SOC呈現(xiàn)上升趨勢。3~4 s,光照強(qiáng)度進(jìn)一步增強(qiáng)、風(fēng)速不變,SOC的上升斜率增大。根據(jù)外界環(huán)境變化,蓄電池可在正常工作狀態(tài)下實(shí)現(xiàn)充放電自由切換。②在風(fēng)速、光照強(qiáng)度增強(qiáng)引起直流母線電壓波動(dòng)時(shí),非線性控制能夠在0.05 s內(nèi)快速響應(yīng)系統(tǒng)參考功率ref,控制蓄電池降低輸出功率,維持系統(tǒng)功率供需平衡,直流母線電壓由647 V恢復(fù)至640 V,而傳統(tǒng)雙向比例積分(Proportional Integral, PI)控制策略需要0.3 s左右控制母線電壓由650 V穩(wěn)定至640 V。非線性控制下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和7 V,PI控制下為0.3 s和10 V,恢復(fù)時(shí)間縮短了0.25 s,沖擊波動(dòng)降低了0.5%。
圖5 環(huán)境變化時(shí)系統(tǒng)的動(dòng)態(tài)響應(yīng)
2)負(fù)荷正常波動(dòng)的動(dòng)態(tài)響應(yīng)
光強(qiáng)在0、1、2 s變化時(shí)分別為0、500、1 000 W/m2,風(fēng)速在0~0.5 s間變化為0~9 m/s,初始負(fù)荷P為14 kW。1 s時(shí)刻負(fù)荷突增1 kW,2 s時(shí)負(fù)荷回落至初始值;3 s時(shí)刻負(fù)荷突降4 kW,4 s時(shí)負(fù)荷回升至初始值。系統(tǒng)在此情況下的動(dòng)態(tài)響應(yīng)如圖6所示。
圖6 負(fù)荷波動(dòng)下的動(dòng)態(tài)響應(yīng)
根據(jù)圖6分析可知,①0~0.5 s,P=P=0,蓄電池荷電狀態(tài)SOC滿足放電要求,DC/DC變換器工作在Boost電路狀態(tài)。0.5~1 s,P<P,風(fēng)電機(jī)組向負(fù)載供電,蓄電池放電強(qiáng)度在1 s末減弱。1~2 s,負(fù)荷增加1 kW,P+P?P<0,蓄電池釋放能量維持母線電壓。2~3 s,負(fù)荷回降,P+P?P<0,隨著光照強(qiáng)度再次提升,蓄電池放電強(qiáng)度降低。3~4 s,負(fù)荷減少4 kW,P+P?P>0,系統(tǒng)輸出大于功率需求,蓄電池進(jìn)入Buck電路模式。4~5 s,負(fù)荷回升,P+P?P<0,蓄電池迅速釋放能量,維持直流母線電壓恒定。②在3 s時(shí)刻負(fù)荷切出4 kW,造成直流母線電壓波動(dòng)至646.5 V,非線性控制策略在0.05 s內(nèi)使DC/DC變換器由Boost電路轉(zhuǎn)換為Buck電路,快速吸收負(fù)荷減小產(chǎn)生的系統(tǒng)剩余功率,維持直流母線電壓穩(wěn)定在640 V。3 s末負(fù)荷投入4 kW,直流母線電壓跌落至633.5 V,非線性控制在0.05 s內(nèi)快速響應(yīng)負(fù)荷變化使Buck電路轉(zhuǎn)換為Boost電路以補(bǔ)償微電網(wǎng)功率缺額,維持直流母線電壓穩(wěn)定在640 V,傳統(tǒng)控制策略需要0.2 s左右實(shí)現(xiàn)上述控制過程。非線性控制下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和6.5 V,PI控制下為0.2 s和9 V,恢復(fù)時(shí)間縮短了0.15 s,沖擊波動(dòng)降低了0.4%。
3)突發(fā)特殊故障時(shí)的動(dòng)態(tài)響應(yīng)
當(dāng)光照強(qiáng)度或風(fēng)速因裝置故障或人為因素從任意值降為0時(shí)系統(tǒng)動(dòng)態(tài)響應(yīng)(圖7)。光照強(qiáng)度在3 s時(shí)突降為0 W/m2,風(fēng)速0~0.5 s間變化為0~9 m/s。
圖7 突發(fā)特殊故障時(shí)的動(dòng)態(tài)響應(yīng)
根據(jù)圖7分析可知,在3?s時(shí)刻光照強(qiáng)度突降為0 W/m2,傳統(tǒng)控制策略下直流母線電壓跌落至620 V,在0.3 s后直流母線電壓恢復(fù)至640 V。非線性控制策略下直流母線電壓跌落至625 V,并在0.05 s內(nèi)快速響應(yīng)負(fù)荷變化控制蓄電池迅速釋放大量能量維持直流母線電壓穩(wěn)定在640 V。非線性控制下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和15 V,PI控制下為0.3 s和20 V,恢復(fù)時(shí)間縮短了0.25 s,沖擊波動(dòng)降低了0.8%。
4)大負(fù)荷投入時(shí)的動(dòng)態(tài)響應(yīng)
光強(qiáng)恒為1 000 W/m2,風(fēng)速在0~0.5 s間變化為0~9 m/s,在大負(fù)荷投入下其直流母線電壓波形及蓄電池出力規(guī)律(圖8)。
圖8 大負(fù)荷投入時(shí)的動(dòng)態(tài)響應(yīng)
根據(jù)圖8分析可知,3 s時(shí)負(fù)荷增加8 kW,傳統(tǒng)控制策略下直流母線電壓跌落至626 V,儲能蓄電池釋放能量維持微網(wǎng)系統(tǒng)功率平衡,0.3 s后直流母線電壓基本趨于穩(wěn)定。在非線性控制策略下直流母線電壓跌落至629 V,雙向DC/DC變換電路工作在Boost模式,蓄電池釋放能量,在0.05 s內(nèi)維持直流母線電壓穩(wěn)定在640 V。在負(fù)荷切除8 kW時(shí),同樣非線性控制策略使蓄電池迅速吸收系統(tǒng)剩余能量穩(wěn)定母線電壓。非線性控制下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和11 V,PI控制下為0.3 s和14 V,恢復(fù)時(shí)間縮短了0.25 s,沖擊波動(dòng)降低了0.5%。
相對于傳統(tǒng)控制策略,本研究提出的非線性控制策略下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間縮短了0.15~0.25 s,平均縮短0.2 s,暫態(tài)沖擊降低了0.4%~0.8%,平均降低0.6%,表明該策略具有較短的動(dòng)態(tài)響應(yīng)時(shí)間,并且能夠有效減少直流母線電壓暫態(tài)過程中的沖擊。
本研究根據(jù)負(fù)荷需求及風(fēng)光儲微電網(wǎng)協(xié)同控制策略獲得儲能系統(tǒng)出力規(guī)律,在分析蓄電池的充放電特性的基礎(chǔ)上,提出了一種帶積分控制器與在線修正參數(shù)的非線性控制策略,選取宏變量,可約束控制量在不變流形狀態(tài)(=0),通過仿真試驗(yàn)表明:
1)氣象條件正常變化,提議控制策略下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和7 V,而傳統(tǒng)雙向比例積分(Proportional Integral, PI)控制策略下則為0.3 s和10 V。
2)負(fù)荷正常變化,提議控制策略下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和6.5 V,而PI控制下則為0.2 s和9 V。
3)光照強(qiáng)度突變?yōu)? W/m2,提議控制策略下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和15 V,而PI控制下則為0.3 s和20 V。
4)大負(fù)荷投入,提議控制策略下直流母線電壓動(dòng)態(tài)恢復(fù)時(shí)間和暫態(tài)沖擊波動(dòng)分別為0.05 s和11 V,而PI控制下則為0.3 s和14 V。
綜上可知,在各種情況下的動(dòng)態(tài)恢復(fù)時(shí)間平均縮短了0.2 s,直流母線電壓暫態(tài)沖擊平均降低了0.6%,該控制策略使直流母線電壓無靜差的同時(shí)提升了響應(yīng)速度,能有效的協(xié)調(diào)風(fēng)光儲之間的能量傳遞。
[1] Yang Xiaodong, Zhang Youbing, He Haibo, et al.Real-time demand side management for a microgrid considering uncertainties[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3401-3414.
[2] Farideh D M, Hessam K V, Ali F. State-space modeling, analysis and distributed secondary frequency control of isolated microgrids[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 155-165.
[3] 孟曉麗,牛煥娜,賈東梨,等. 基于儲能Soc日前計(jì)劃的微電網(wǎng)實(shí)時(shí)能量優(yōu)化調(diào)度方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):155-161.
Meng Xiaoli, Niu Huanna, Jia Dongli, et al. Real-time energy optimal dispatch for microgrid based on day-ahead scheduling of charge state[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 155-161. (in Chinese with English abstract)
[4] Liu Xiaokang, He Haibo, Wang Yanwu, et al. Distributed hybrid secondary control for a DC microgrid via discrete-time interaction[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1865-1875.
[5] Shafiee Q, Dragicevic T, Vasquez J C, et al. Hierarchical control for multiple DC-microgrids clusters[C]// Multi-Conference on Systems. IEEE, 2014.
[6] 高春鳳,楊仁剛,井天軍. 獨(dú)立微電網(wǎng)有功功率自主與協(xié)調(diào)控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):113-121.
Gao Chunfeng, Yang Rengang, Jing Tianyun. Autonomous and coordinated control of active power in standalone microgrid[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 113-121. (in Chinese with English abstract)
[7] Meng Lexuan, Shafiee Q, Trecate G F, et al. Review on control of DC microgrids and multiple microgrid clusters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(3): 928-948.
[8] 孫欽斐,高婷婷,楊仁剛,等. 農(nóng)村戶用型智能微電網(wǎng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(13):150-157.
Sun Qinfei, Gao Tingting, Yang Rengang, et al. Design and realization of smart microgrid for household in rural area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 150-157. (in Chinese with English abstract)
[9] 胡巧輝,樊艷芳,王一波. 基于光-儲-燃的直流微電網(wǎng)協(xié)調(diào)控制策略[J]. 電力電容器與無功補(bǔ)償,2017,38(6):138-143.
Hu Qiaohui, Fan Yanfang, Wang Yibo. DC micro-grid coordinated control strategy based on PV, BES and FC[J].Power Capacitor & Reactive Power Compensation, 2017, 38(6): 138-143. (in Chinese with English abstract)
[10] 陳洪濤,胡健,韓小雨,等. 直流微電網(wǎng)內(nèi)DC/DC變換器非線性控制策略研究[J]. 現(xiàn)代電子技術(shù),2019,42(4):153-157.
Chen Hongtao, Hu Jian, Han Xiaoyu, et al. Research on nonlinear control strategy of DC/DC converters in DC microgrid[J]. Modern Electronics Technique, 2019, 42(4): 153-157. (in Chinese with English abstract)
[11] 侯世英,余海威,李琦,等. 微電網(wǎng)孤島運(yùn)行混合儲能自適應(yīng)控制策略[J]. 電力系統(tǒng)自動(dòng)化,2017,41(17):15-21.
Hou Shiying, Yu Haiwei, Li Qi, et al. Adaptive control strategy of hybrid energy storage in microgrid islanded operation state[J]. Automation of Electric Power Systems, 2017, 41(17): 15-21. (in Chinese with English abstract)
[12] 張丹,王杰,彌瀟. 直流微電網(wǎng)自適應(yīng)滑模控制策略[J]. 電力自動(dòng)化設(shè)備,2017,37(12):138-143.
Zhang Dan, Wang Jie, Mi Xiao. Adaptive sliding mode control strategy for DC microgrid[J]. Electric Power Automation Equipment, 2017, 37(12): 138-143. (in Chinese with English abstract)
[13] 米芝昌,任春光,韓肖清,等. 基于功率池的雙層母線直流微電網(wǎng)協(xié)調(diào)控制策略[J]. 電網(wǎng)技術(shù),2017,41(6):1830-1838.
Mi Zhichang, Ren Chunguang, Han Xiaoqing, et al. Coordination control strategy of DC microgrid with two DC buses based on power pool[J]. Power System Technology, 2017, 41(6): 1830-1838. (in Chinese with English abstract)
[14] 李鵬,李鑫明,陳安偉,等. 直流微電網(wǎng)DC/DC雙向換流器時(shí)間-狀態(tài)協(xié)調(diào)最優(yōu)控制[J]. 電網(wǎng)技術(shù),2018,42(1):41-47.
Li Peng, Li Xinming, Cheng Anwei, et al. Optimal coordinated time-state control of DC/DC bidirectional converter in DC microgrid[J]. Power System Technology, 2018, 42(1): 41-47. (in Chinese with English abstract)
[15] 丁明,田龍剛,潘浩,等. 交直流混合微電網(wǎng)運(yùn)行控制策略研究[J]. 電力系統(tǒng)保護(hù)與控制,2015,43(9):1-8.
Ding Ming, Tian Longgang, Pan Hao, et al. Research on control strategy of hybrid AC/DC microgrid[J]. Power System Protection and Control, 2015, 43(9): 1-8. (in Chinese with English abstract)
[16] 楊惠,駱姍,孫向東,等. 光伏儲能雙向DC-DC變換器的自抗擾控制方法研究[J]. 太陽能學(xué)報(bào),2018,39(5):1342-1350.
Yang Hui, Luo Shan, Sun Xiangdong, et al. Research on ADRC method for bidirectional DC/DC converter of solar energy storage system[J]. Journal of Solar Energy, 2018, 39(5): 1342-1350. (in Chinese with English abstract)
[17] 肖朝霞,賈雙,朱建國,等. 風(fēng)光儲微電網(wǎng)并網(wǎng)聯(lián)絡(luò)線功率控制策略[J]. 電工技術(shù)學(xué)報(bào),2017,32(15):169-179.
Xiao Zhaoxia, Jia Shuang, Zhu Jianguo, et al. Tie-line power flow control strategy for a grid-connected microgrid containing wind,photovoltaic and battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 169-179. (in Chinese with English abstract)
[18] 秦文萍,柳雪松,韓肖清,等. 直流微電網(wǎng)儲能系統(tǒng)自動(dòng)充放電改進(jìn)控制策略[J]. 電網(wǎng)技術(shù),2014,38(7):1827-1834.
Qin Wenping, Liu Xuesong, Han Xiaoqing, et al. An improved control strategy of automatic charging/discharging of energy storage system in DC microgrid[J]. Power System Technology, 2014, 38(7): 1827-1834. (in Chinese with English abstract)
[19] 劉振國,胡亞平,陳炯聰,等. 基于雙層優(yōu)化的微電網(wǎng)系統(tǒng)規(guī)劃設(shè)計(jì)方法[J]. 電力系統(tǒng)保護(hù)與控制,2015,43(8):124-133.
Liu Zhenguo, Hu Yaping, Cheng Jiongcong, et al. A planning and design method for microgrid based on two-stage optimization[J]. Power System Protection and Control, 2015, 43(8): 124-133. (in Chinese with English abstract)
[20] 魏振. 直流微電網(wǎng)的運(yùn)行控制研究[D]. 南昌:南昌大學(xué),2019.
Wei Zhen. Research on Operation Control of DC Microgrid[D]. Nanchang: Nanchang University, 2019. (in Chinese with English abstract)
[21] 丁明,楚明娟,潘浩,等. 交直流混合微電網(wǎng)運(yùn)行優(yōu)化建模與不確定性分析[J]. 電力系統(tǒng)自動(dòng)化,2017,41(5):1-7.
Ding Ming, Chu Mingjuan, Pan Hao, et al. Operation optimization modeling and uncertainty analysis for hybrid AC/DC microgrids[J]. Automation of Electric Power Systems, 2017, 41(5): 1-7. (in Chinese with English abstract)
[22] 唐國強(qiáng). 光伏微電網(wǎng)混合儲能系統(tǒng)控制策略研究[D]. 安徽:安徽理工大學(xué),2019.
Tang Guoqiang. Research on Control Strategy of Hybrid Energy Storage System in Photovoltaic Microgrid[D]. Anhui: Anhui University of Science & Technology, 2019. (in Chinese with English abstract)
[23] 李培強(qiáng),曾小軍,黃際元,等. 面向綜合負(fù)荷的并網(wǎng)光伏發(fā)電系統(tǒng)等效建模[J]. 電力系統(tǒng)自動(dòng)化,2016,40(8):43-50.
Li Peiqiang, Zeng Xiaojun, Huang Jiyuan, et al. Equivalent modeling of grid-connected photovoltaic power generation systems for comprehensive load[J]. Automation of Electric Power Systems, 2016, 40(8): 43-50. (in Chinese with English abstract)
[24] 費(fèi)愷. 光伏微網(wǎng)發(fā)電系統(tǒng)中三電平DC/DC變換器控制策略研究[D]. 武漢:湖北工業(yè)大學(xué),2019.
Fei Kai. Research on Control Strategy of Three-Level DC/DC Converter in Photovoltaic Microgrid Power Generation System[D]. Wuhan: Hubei University of Technology, 2019. (in Chinese with English abstract)
[25] Han Renke, Meng Lexuan, Guerrero J M, et al. Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC Microgrids[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 6416-6433.
[26] 李春蘭,王長云,曹成帥,等. 微電網(wǎng)功率跟蹤策略優(yōu)化研究[J]. 現(xiàn)代電子技術(shù),2017,40(14):162-166.
Li Chunlan, Wang Changyun, Cao Chengshuai, et al. Research on power tracking control strategy for microgrid[J]. Modern Electronics Technique, 2017, 40(14): 162-166. (in Chinese with English abstract)
[27] Fang Gongguo, Chang Yunwen, Jian Fengmao, et al. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4355-4364.
[28] 王亞旭. 基于蓄電池儲能優(yōu)化及荷電狀態(tài)均衡的直流微電網(wǎng)控制研究[D]. 太原:太原理工大學(xué),2019.
Wang Yaxu. DC Microgrid Control Based on Battery Energy Storage Optimization and State of Charge Balance[D]. Taiyuan: Taiyuan University of Technology, 2019. (in Chinese with English abstract)
[29] 柳應(yīng)全,魯軍勇,龍鑫林,等. 儲能用蓄電池模型參數(shù)的動(dòng)態(tài)辨識[J]. 國防科技大學(xué)學(xué)報(bào),2019,41(5):87-92.
Liu Yingquan, Lu Junyong, Lon Xinlin, et al. Dynamic identification of model parameters for energy storage batteries[J]. Journal of National University of Defense Technology, 2019, 41(5): 87-92. (in Chinese with English abstract)
[30] 曾紅梅. 直流微電網(wǎng)分布式協(xié)同控制研究[D]. 杭州:浙江大學(xué),2016.
Zeng Honmei. A Decentralized and Cooperative Control Strategy for DC Microgrid[D]. Hangzhou: Zhejiang University, 2016. (in Chinese with English abstract)
[31] Ding Lei, Han Qinglong, Wang Leyi, et al. Distributed cooperative optimal control of DC microgrids with communication delays[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3924-3935.
[32] 黃旭程,何志興,伍文華,等. 交直流微電網(wǎng)中變換器級聯(lián)系統(tǒng)穩(wěn)定性分析與協(xié)同控制[J]. 中國電機(jī)工程學(xué)報(bào),2019,39(5):1432-1443.
Huang Xucheng, He Zhixing, Wu Wenhua, et al. Stability analysis of converters cascade system in the hybrid AC/DC microgrid and coordinative control[J]. Chinese Journal of Electrical Engineering, 2019, 39(5): 1432-1443. (in Chinese with English abstract)
Nonlinear control strategy for battery charge and discharge in microgrid
Li Chunlan1, Ren Peng1, Wang Changyun1, Wang Xiaoxuan1, Shi Zhai1, Du Songhuai2
(1.,,830052,; 2.,,100083,)
The introduction of microgrid further improves the utilization of new energy on the basis of ensuring the reliable power supply of local load, but the development of microgrid is limited due to the fluctuation and intermittence of microgrid output power. In order to solve the problems of complex control strategy of microgrid and difficult coordination of micropower source and energy storage side power, considering the change of wind-solar output power and load, a nonlinear control strategy of storage battery charging and discharging with integral controller and online correction parameters was proposed. Based on the model of wind, light and storage battery, the disturbance observation method was used to realize the maximum power tracking of distributed power supply, and the correctness of the model was verified under different temperature, light intensity, and wind speed. According to the power constraint conditions of the wind-solar storage system and the load power demand as a benchmark, the output of each micro power source and the state of charge of the storage battery were comprehensively considered to obtain the output law of the energy storage system. Based on the output law of energy storage system, the input/output mathematical models of DC/DC converter in boost circuit and buck circuit were studied; the DC side bus voltage and the storage battery side inductance current were selected as the state vector, and the duty cycle of each switch tube was the control vector to construct the state space matrix of the battery charging and discharging circuit; according to the charging and discharging characteristics of the battery, the macro variable of the system was constructed by the integral term of voltage deviation and online correction parameters. The duty cycle mathematical model of each switch tube was obtained by combining the state space matrix of the DC/DC converter. The working mode of the DC/DC converter was adjusted to control the charging and discharging of the storage battery, coordinate the power transmission between the bus side and the energy storage side, meet the power balance of the microgrid system and restrain the power fluctuation. Through the simulation experiments of the constructed microgrid model, the dynamic response of the DC bus voltage of the proposed storage battery charge-discharge nonlinear control strategy under various conditions of the microgrid system was studied. The simulation results showed: 1) When the weather conditions changed normally, the nonlinear control strategy could control the battery to reduce the output power within 0.05 s, stabilizing the DC bus voltage at 640 V. The traditional proportional-integral control strategy needed about 0.3 s to achieve the above control process. 2) When the load changed normally, the nonlinear control strategy made the DC/DC converter convert between the boost circuit and the buck circuit within 0.05 s, maintaining the DC bus voltage stable at 640 V. The traditional proportional-integral control strategy needed about 0.2 s to achieve the above control process. 3) When the light intensity suddenly dropped to 0 W/m2, the DC bus voltage under the traditional control strategy recovered from 620 V to 640 V in 0.3 s; the DC bus voltage under the nonlinear control strategy recovered from 625 V to 640 V in 0.05 s. 4) When the large load was put into operation, the DC bus voltage recovered from 626.5 V to 640 V in 0.3 s under the traditional control strategy; the DC bus voltage recovered from 629 V to 640 V in 0.05 s under the nonlinear control strategy. In all case, the dynamic recovery time of DC bus voltage fluctuation was shortened by 0.2 s on average, the transient impact was reduced by 0.6% on average, the proposed control strategy could effectively regulate the power balance between micro power source and energy storage system, ensuring the stability of power supply of microgrid system. The research results should provide a reference for the control research of the microgrid energy storage system.
electricity; energy storage; control; microgrid; storage battery; nonlinear control; power constraint
李春蘭,任鵬,王長云,等. 微電網(wǎng)中蓄電池充放電非線性控制策略研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):156-164.doi:10.11975/j.issn.1002-6819.2020.08.019 http://www.tcsae.org
Li Chunlan, Ren Peng, Wang Changyun, et al. Nonlinear control strategy for battery charge and discharge in microgrid[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 156-164. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.019 http://www.tcsae.org
2020-01-17
2020-03-10
國家自然科學(xué)基金資助項(xiàng)目(51467021)
李春蘭,博士,教授,主要從事電力系統(tǒng)繼電保護(hù)、新能源并網(wǎng)控制等方面研究。Email:lichunlan67@126.com
10.11975/j.issn.1002-6819.2020.08.019
TM77
A
1002-6819(2020)-08-0156-09