尚 輝,顏 安,韓 瑞,姚宇闐,常義軍,楊花蕾,陳立華,孟天竹
微生物改良基質(zhì)對新圍墾海涂鹽土改良的初步研究
尚 輝1,顏 安2,韓 瑞3,姚宇闐4,常義軍5,楊花蕾3,陳立華3※,孟天竹3
(1. 江蘇沿海開發(fā)(東臺)有限公司,東臺 224200;2.新疆農(nóng)業(yè)大學(xué)草業(yè)與環(huán)境科學(xué)學(xué)院,烏魯木齊 830052;3. 河海大學(xué)農(nóng)業(yè)科學(xué)與工程學(xué)院,南京 210098;4. 江蘇省沿海開發(fā)集團(tuán)有限公司,南京 210013;5. 南京軍輝生物科技有限公司,南京 211155)
海涂圍墾區(qū)是陸海過渡帶,圍墾區(qū)土壤的傳統(tǒng)洗鹽和培肥技術(shù)易威脅近海生態(tài)環(huán)境,因此,探索新型、生態(tài)的鹽土改良技術(shù)十分重要。該研究初步研究了新型微生物改良基質(zhì)的鹽土改良功能,結(jié)果表明微生物改良基質(zhì)效果顯著。相較于對照處理,微生物改良基質(zhì)處理水稻產(chǎn)量增加了83.2%(<0.05);土壤飽和含水率、田間持水量、總孔隙度、有機(jī)質(zhì)、全氮、速效鉀分別增加了13.80%、20.00%、6.80%、2.30倍、53.00%、31.00%(<0.05);土壤容重降低了6.90%;土壤細(xì)菌、真菌和放線菌數(shù)量分別增加了10.30、11.20和3.18倍;水稻生育期累積灌溉水量減少了35.20%;0~10和>10~20 cm土層可溶性鹽質(zhì)量分?jǐn)?shù)分別降低了61.10%和54.40%。微生物改良基質(zhì)能夠在短期內(nèi)加速鹽分洗脫,提升土壤質(zhì)量,是海涂新圍墾區(qū)鹽土改良的生態(tài)高效措施。
土壤;鹽分;水分;海涂新圍墾區(qū);微生物改良基質(zhì);土壤改良
中國海岸線長,海涂資源十分豐富,部分岸線段為淤漲型海涂,持續(xù)增長的海涂是巨大的具有耕地價(jià)值的土地資源[1]。江蘇鹽城弶港鎮(zhèn)位于長江和淮河入海口的南北交界處,由于南北潮在此交匯造成大量泥沙沉降,形成大量的海涂土地。該處土壤為氯化鈉鹽土,可溶性鹽含量高、有機(jī)質(zhì)和氮磷等養(yǎng)分含量低、結(jié)構(gòu)差、土壤生物量少、地表植被匱乏,海涂生態(tài)功能較差[2],因此,提升海涂土壤質(zhì)量對于提升海涂生產(chǎn)力、構(gòu)建其生態(tài)功能十分必要。
江蘇條子泥墾區(qū)為2012年圍墾完成,墾區(qū)內(nèi)土壤可溶性鹽含量高是作物生長的主要障礙因子。降低土壤鹽分主要依靠水的運(yùn)輸作用,因此,灌水洗鹽是最有效的海涂新圍墾區(qū)土壤脫鹽途徑。但由于條子泥墾區(qū)土壤屬于粉砂質(zhì)潮鹽土,土壤結(jié)構(gòu)差,導(dǎo)水能力弱,土壤鹽分洗脫困難;同時(shí)該地區(qū)蒸發(fā)量大,土壤極易返鹽,需持續(xù)依靠淡水壓鹽。土壤結(jié)構(gòu)和導(dǎo)水能力直接影響垂向鹽分淋洗作用和淺層土壤鹽分浸出效率。因此,改善土壤結(jié)構(gòu)、提升土壤洗鹽效率、抑制土壤返鹽是改良海涂新圍墾區(qū)土壤的關(guān)鍵,在灌水壓鹽的同時(shí)改善土壤結(jié)構(gòu)有利于節(jié)約灌溉洗鹽的水資源,同時(shí)減少農(nóng)業(yè)面源污染物過量排放風(fēng)險(xiǎn)[3-4]。施用有機(jī)物料可以改良土壤結(jié)構(gòu),增強(qiáng)土壤導(dǎo)水能力,加速土壤鹽分洗脫效率[5]。此外,微生物是土壤能量循環(huán)的重要參與者[6-7],微生物生長繁殖過程中會分解大顆粒有機(jī)物、合成新的有機(jī)物、產(chǎn)氣、合成酸性或者堿性物質(zhì)改變土壤pH值,有利于土壤團(tuán)聚體發(fā)育、土壤孔隙形成,改善土壤導(dǎo)水能力等[8-9]。
傳統(tǒng)的不考慮水資源成本和污染物排放的海涂圍墾鹽土改良和脫鹽措施,威脅近海水環(huán)境安全,開發(fā)新型節(jié)水、生態(tài)的土壤改良產(chǎn)品和技術(shù)是鹽土改良的發(fā)展趨勢。江蘇海涂新圍條子泥墾區(qū)域地下水埋深0.8~1.2 m,地表水和地下水交換頻繁,是一個(gè)與常規(guī)土地不一樣的、復(fù)雜的生態(tài)系統(tǒng),現(xiàn)階段還沒有研究報(bào)道針對該類型生境土壤、基于微生物功能的土壤結(jié)構(gòu)改良和土壤脫鹽的生態(tài)工程產(chǎn)品和措施。本文基于功能微生物研制的微生物改良基質(zhì)的應(yīng)用,探索其對海涂新圍墾區(qū)土壤結(jié)構(gòu)改良、鹽分運(yùn)移及促進(jìn)植物生長的效果,以期為海涂新圍墾區(qū)鹽土生態(tài)改良提供參考。
微生物改良基質(zhì)生產(chǎn)原料為金針菇菇渣、膨潤土渣、醋糟渣、腐殖酸按照質(zhì)量比6:2:1:1混合均勻,按照質(zhì)量的1%比例向混合物中接種解淀粉芽孢桿菌IAE(IAE)(中國典型培養(yǎng)物保藏中心保藏號CCTCC No.M2013086)菌劑(含菌量7.2×1010cfu/g),徹底混勻,每5 d翻堆一次,發(fā)酵22 d后形成的微生物改良基質(zhì)屬性見表1。未接種解淀粉芽孢桿菌IAE的混合物,采取與微生物改良基質(zhì)相同的發(fā)酵措施形成的基質(zhì)定義為改良基質(zhì)。
表1 原料及其生產(chǎn)的基質(zhì)的理化性質(zhì)
注:*為干基;**為濕基;ND為未檢測出。
Note:*is dry substrate;**is wet substrate; ND represents not detected.
試驗(yàn)區(qū)位于江蘇省鹽城市東臺市條子泥灘涂圍墾區(qū)(32°47′23′′N,120°550′150′′ E),屬亞熱帶和暖溫帶的過渡區(qū),季風(fēng)顯著,年平均風(fēng)速3.3 m/s,相對濕度80%,平均氣溫14.6 ℃。該區(qū)年均降雨量1 061.2 mm,年均蒸發(fā)量882.8 mm,年均蒸發(fā)量約占降雨量的83.2%。該區(qū)域2012年完成圍墾,2017年完成土地平整和農(nóng)田水利工程設(shè)施配套建設(shè),2018年首次進(jìn)行海涂鹽土的大面積改良示范工程。試驗(yàn)區(qū)內(nèi)土壤初始理化性質(zhì)為:可溶性鹽質(zhì)量分?jǐn)?shù)3.57~10.66 g/kg(土壤可溶性鹽質(zhì)量分?jǐn)?shù)不均一),有機(jī)質(zhì)平均質(zhì)量分?jǐn)?shù)2.28 g/kg,全氮平均質(zhì)量分?jǐn)?shù)114 g/kg,速效鉀平均質(zhì)量分?jǐn)?shù)174 g/kg,容重1.45~1.65 g/cm3,土壤田間持水量平均值為22.0%。試驗(yàn)設(shè)置3個(gè)處理分別為:對照處理,采用節(jié)水灌溉措施和傳統(tǒng)水稻種植措施;改良基質(zhì)處理,土壤施用改良基質(zhì)為30 t/hm2,灌溉措施和水稻種植措施同對照處理;微生物改良基質(zhì)處理,土壤施用微生物改良基質(zhì)為30 t/hm2,灌溉措施和水稻種植措施同對照處理。每個(gè)處理設(shè)置3個(gè)重復(fù),每個(gè)重復(fù)小區(qū)面積3 000 m2。2018年6月25日開展試驗(yàn),水稻品種選用“南梗9108”,采用水稻直播的種植方法,用種量150 kg/hm2。水稻生育期灌溉措施如表2所示,每天下午5:00測定田面水含鹽量,當(dāng)含鹽量達(dá)到排水上限實(shí)施排水,在田面無自流水排出時(shí)進(jìn)行灌溉。2018年11月16日收獲水稻,測定水稻生物學(xué)性狀,水稻秸稈返田后采集土壤樣品,測定土壤物理、化學(xué)和生物學(xué)指標(biāo)。
2018年水稻收獲后各處理采取相同措施種植黑麥草,2019年6月黑麥草翻耕還田。2019年6月20日,各處理均施用有機(jī)肥7.5 t/hm2,尿素375 kg/hm2,復(fù)合肥(氮N、磷P2O5、鉀K2O的質(zhì)量分?jǐn)?shù)各為15%)375 kg/hm2,采用直播方式種植水稻。試驗(yàn)所在地條子泥墾區(qū)于2019年大面積種植水稻,各處理采用統(tǒng)一的灌溉和管理措施。2019年11月20日收獲水稻,統(tǒng)計(jì)水稻產(chǎn)量(鮮質(zhì)量)并采集0~20 cm土壤樣品,測定土壤含鹽量和有機(jī)質(zhì)含量。
表2 水稻各生育階段灌排指標(biāo)
土壤理化性質(zhì)測定參照《土壤農(nóng)化分析》[10],采用環(huán)刀法測定土壤容重和孔隙度,電導(dǎo)法測定土壤可溶性鹽含量,重鉻酸鉀氧化法測定土壤有機(jī)質(zhì)含量,凱氏定氮法測定全氮含量,乙酸銨浸提-火焰光度法測定速效鉀含量。
土壤可培養(yǎng)微生物數(shù)量采用稀釋涂布法測定,細(xì)菌選用牛肉膏蛋白胨培養(yǎng)基,稀釋濃度為10-4、10-5、10-6,在37 ℃條件下倒置培養(yǎng)48 h后計(jì)數(shù)。真菌選用馬丁氏-孟加拉紅培養(yǎng)基(加入1%的鏈霉素溶液抑制細(xì)菌生長),稀釋濃度為10-1、10-2、10-3,封口膜封口后在28 ℃條件下倒置培養(yǎng)3~4 d后計(jì)數(shù)。放線菌選用改良高氏一號培養(yǎng)基,稀釋濃度為10-2、10-3、10-4,封口膜封口后在28 ℃下倒置培養(yǎng)5~7 d后計(jì)數(shù)。
試驗(yàn)數(shù)據(jù)用SPSS 20.0統(tǒng)計(jì)軟件進(jìn)行方差分析,差異顯著性比較采用Duncan′s 測驗(yàn)與獨(dú)立樣本檢驗(yàn),繪圖使用Origin 8.0軟件。
水稻收獲時(shí)測定水稻的株高、穗粒數(shù)、千粒質(zhì)量、有效穗數(shù)和產(chǎn)量(表3)。改良基質(zhì)處理和微生物改良基質(zhì)處理水稻株高顯著高于對照處理(<0.05),分別增加了22.30%和31.40%,微生物改良基質(zhì)處理水稻穗粒數(shù)、千粒質(zhì)量、有效穗數(shù)和產(chǎn)量顯著高于對照處理(<0.05),分別增加了30.30%、29.70%、17.50%和83.20%。
水稻生育期內(nèi)累計(jì)灌溉水量如圖1所示,改良基質(zhì)和微生物改良基質(zhì)處理灌水量顯著低于對照處理(<0.05),相較于對照處理,改良基質(zhì)和微生物改良基質(zhì)處理灌水量分別降低了25.60%和35.20%。相較于改良基質(zhì)處理,微生物改良基質(zhì)處理的灌水量顯著降低了12.90%(<0.05)。
表3 2018年水稻收獲后不同處理水稻的生物學(xué)性狀
注:不同小寫字母表示處理間差異顯著(<0.05)。下同。
Note: Different lowercase letters represent significant difference (<0.05) among different treatments. Same as below.
圖1 2018年水稻生育期內(nèi)累積灌溉水量
水稻收獲后測定的土壤物理性質(zhì)如表4所示。與對照處理相比,改良基質(zhì)處理和微生物改良基質(zhì)處理土壤容重降低,其中微生物改良基質(zhì)處理土壤容重與對照處理間差異顯著(<0.05),降低了6.90%。相較于對照處理,改良基質(zhì)處理土壤飽和含水量、土壤總孔隙度、土壤毛管孔隙度和土壤田間持水量增幅分別為4.50%、7.04%、3.06%和9.09%,微生物改良基質(zhì)處理對應(yīng)參數(shù)增幅分別為13.80%、6.80%、9.79%和20.00%,且微生物改良基質(zhì)處理顯著高于改良基質(zhì)處理(<0.05)。
表4 2018年水稻收獲后不同處理土壤物理性質(zhì)
相較于對照處理,改良基質(zhì)處理與微生物改良基質(zhì)處理土壤有機(jī)質(zhì)和總氮質(zhì)量分?jǐn)?shù)均顯著增加(<0.05),有機(jī)質(zhì)含量分別增加了1.72和2.30倍(表5),總氮分別增加了28.90%和53.00%。微生物改良基質(zhì)處理土壤速效鉀含量顯著高于改良基質(zhì)處理和對照處理(<0.05),相較于對照處理增加了31.00%(表5)。
不同處理不同土層深度土壤可溶性鹽質(zhì)量分?jǐn)?shù)變化如圖2所示。對照處理、改良基質(zhì)處理和微生物改良基質(zhì)處理土壤可溶性鹽質(zhì)量分?jǐn)?shù)變化趨勢相同,均隨著土層深度的增加而增加。0~20 cm土層,微生物改良基質(zhì)處理土壤可溶性鹽質(zhì)量分?jǐn)?shù)在3.00 g/kg以下,顯著低于改良基質(zhì)處理和對照處理(<0.05);相較于對照處理,微生物改良基質(zhì)處理0~10和>10~20 cm土層可溶性鹽質(zhì)量分?jǐn)?shù)分別降低了61.10%和54.40%。0~20、>20~40、>40~60 cm土層,改良基質(zhì)處理和微生物改良基質(zhì)處理土壤可溶性鹽質(zhì)量分?jǐn)?shù)基本在5.00 g/kg以下,顯著低于對照處理(<0.05),可溶性鹽質(zhì)量分?jǐn)?shù)由低到高的處理順序依次為微生物改良基質(zhì)處理、改良基質(zhì)處理、對照處理。>60~80 cm土層,改良基質(zhì)處理和微生物改良基質(zhì)處理土壤可溶性鹽質(zhì)量分?jǐn)?shù)迅速增加至9.00 g/kg以上,>80~100 cm土層,3個(gè)處理間可溶性鹽質(zhì)量分?jǐn)?shù)均在12.00 g/kg左右,處理間差異不顯著(>0.05)。
表5 2018年水稻收獲后不同處理土壤化學(xué)性質(zhì)
圖2 2018年水稻收獲后不同處理不同土層深度土壤可溶性含量
相較于對照處理,改良基質(zhì)處理和微生物改良基質(zhì)處理均顯著增加了土壤中可培養(yǎng)細(xì)菌、真菌和放線菌的數(shù)量(<0.05)(圖3),且微生物改良基質(zhì)處理可培養(yǎng)細(xì)菌、真菌和放線菌數(shù)量顯著高于改良基質(zhì)處理(<0.05)。相較于對照處理,改良基質(zhì)處理和微生物改良基質(zhì)處理中可培養(yǎng)細(xì)菌數(shù)量分別增加了2.11和10.3倍,可培養(yǎng)真菌數(shù)量分別增加了4.08和11.2倍,可培養(yǎng)放線菌數(shù)量分別增加了1.20和3.18倍。
圖3 2018年水稻收獲后不同處理土壤可培養(yǎng)微生物數(shù)量
2019年水稻種植結(jié)束后,改良基質(zhì)處理和微生物改良基質(zhì)處理中水稻產(chǎn)量顯著高于對照處理(<0.05),分別增加了47.10%和95.10%(表6)。相對于對照處理,改良基質(zhì)處理和微生物改良基質(zhì)處理土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)顯著增加了92.60%和1.24倍(<0.05)(表6);改良基質(zhì)處理和微生物改良基質(zhì)處理土壤可溶性鹽質(zhì)量分?jǐn)?shù)均有所降低,其中微生物改良基質(zhì)處理可溶性鹽質(zhì)量分?jǐn)?shù)顯著低于對照處理(<0.05)(表6)。
表6 2019年水稻收獲后不同處理水稻產(chǎn)量和土壤化學(xué)性質(zhì)
江蘇海涂條子泥墾區(qū)土壤導(dǎo)水性差、蒸發(fā)量大、可溶性鹽含量高,無法定植作物。本試驗(yàn)結(jié)果表明,施用微生物改良基質(zhì)能夠短期內(nèi)改善土壤結(jié)構(gòu),增強(qiáng)土壤導(dǎo)水性,降低表層土壤鹽含量,提高土壤肥力,抑制土壤反鹽,對海涂鹽土有較好的改良效果。
海涂圍墾區(qū)土壤來源于海洋沉積物,土壤結(jié)構(gòu)差、含鹽量高、植物營養(yǎng)元素含量低,限制作物定植。試驗(yàn)中使用的微生物改良基質(zhì)有效改善了土壤物理、化學(xué)和生物學(xué)性質(zhì),加速土壤鹽分洗脫,促進(jìn)水稻生長。水稻常規(guī)灌水量為1.9~4.2 mm/d[11],本試驗(yàn)中水稻生育期累積灌溉水量是常規(guī)灌溉水量的2~7倍,這是由于試驗(yàn)所在區(qū)域土壤鹽分持續(xù)浸出,水體鹽分達(dá)到一定的閾值,需要全部排出重新補(bǔ)充淡水,灌溉水兼顧作物需水和降鹽功能。施用基質(zhì)(改良基質(zhì)和微生物改良基質(zhì),下同)促進(jìn)了作物生長,植被覆蓋率高,有效降低土壤蒸發(fā)量[12],同時(shí)有利于土壤脫鹽、抑制返鹽,因此,基質(zhì)處理灌溉水量顯著減少。
施用基質(zhì)有效改善土壤理化性狀,且微生物改良基質(zhì)改良效果更好。土壤結(jié)構(gòu)是土壤質(zhì)量的重要因子[13-15],提高土壤有機(jī)質(zhì)含量有利于團(tuán)聚體形成,增加土壤孔隙度,降低土壤容重[16-17]。試驗(yàn)區(qū)土壤養(yǎng)分貧瘠,大量施入基質(zhì)后土壤有機(jī)質(zhì)含量顯著增加。微生物改良基質(zhì)中功能微生物為解淀粉芽孢桿菌IAE菌株,該菌株胞外代謝物-聚谷氨酸能夠促進(jìn)土壤水穩(wěn)定性團(tuán)聚體形成,增加土壤大團(tuán)聚含量[18-21]。微生物在分解有機(jī)質(zhì)的生命活動過程中產(chǎn)熱、產(chǎn)氣、產(chǎn)酸[22],也利于疏松土壤。
施用基質(zhì)提高了土壤肥力和加速鹽分洗脫,且微生物基質(zhì)表現(xiàn)更好。除了伴隨基質(zhì)施入的有機(jī)質(zhì)和氮磷鉀元素外,基質(zhì)處理均減少了灌溉量和換水量,可能是植物營養(yǎng)元素流失減少的重要因素。值得注意的是,改良基質(zhì)處理的鉀元素含量與對照處理含量差別不顯著,這可能是鉀元素在土壤中的游離性強(qiáng),水稻生育期內(nèi)持續(xù)排水過程導(dǎo)致改良基質(zhì)和對照處理的鉀元素流失。微生物能夠加速植物根系分泌物的合成[23],對氮、磷、鉀等元素有較強(qiáng)的固持作用[24],同時(shí),微生物改良基質(zhì)處理灌溉量顯著低于改良基質(zhì)處理,因此,微生物改良基質(zhì)處理土壤有機(jī)質(zhì)、總氮和速效鉀含量顯著高于改良基質(zhì)和對照處理。基質(zhì)處理顯著降低0~20、20~40、40~60 cm土壤可溶性鹽含量,通過灌溉過程將可溶性鹽淋洗到更深層的60~80和80~100 cm土壤。微生物改良基質(zhì)中大量微生物可以活化土壤中鈣、鎂離子置換吸附的鈉離子[25-26],功能微生物解淀粉芽孢桿菌IAE菌株的促生作用促進(jìn)水稻根系發(fā)展,這都有利于表層土壤可溶性鹽向深層運(yùn)移。
土壤微生物是土壤能量循環(huán)主要參與者,對土壤功能至關(guān)重要,微生物特征直接反應(yīng)土壤質(zhì)量[27-28]。基質(zhì)向土壤中補(bǔ)充了大量有機(jī)質(zhì),為細(xì)菌、真菌和放線菌提供能量物質(zhì),可培養(yǎng)微生物數(shù)量均顯著增加。灘涂鹽土為貧營養(yǎng)環(huán)境,一般情況下,土著微生物利用營養(yǎng)物質(zhì)能力高于富營養(yǎng)環(huán)境。特定生境引進(jìn)大量外源微生物,能夠加速生境能量循環(huán),促進(jìn)生境系統(tǒng)內(nèi)微生物繁殖[29],解淀粉芽孢桿菌快速將大分子有機(jī)物質(zhì)降解為小分子物質(zhì),為土著微生物提供能量,促進(jìn)其快速繁殖增長。微生物改良基質(zhì)在提升新圍墾區(qū)鹽土土壤微生物活性方面具有較高功效。
本研究結(jié)果表明,微生物源改良基質(zhì)短期(1 a)內(nèi)在土壤結(jié)構(gòu)改良、土壤質(zhì)量提升、作物產(chǎn)量提高、淡水灌溉量降低等方面的初步探索上表現(xiàn)出較大的優(yōu)勢。與室內(nèi)模擬鹽土改良設(shè)定少數(shù)因子不同,海涂圍墾區(qū)鹽土環(huán)境復(fù)雜,土壤脫鹽過程受到降水強(qiáng)度和頻率、氣溫、地下水含鹽量和埋深、土壤蒸發(fā)、植物蒸騰、日照強(qiáng)度、灌溉水含鹽量、大氣含水量和流動強(qiáng)度等諸多因素影響。雖然該類試驗(yàn)無法在相同外界條件下重復(fù),但是第2年種植水稻收獲后結(jié)果表明,微生物改良基質(zhì)處理中土壤結(jié)構(gòu)和質(zhì)量仍體現(xiàn)出顯著優(yōu)勢,且水稻增產(chǎn)顯著,微生物基質(zhì)對土壤的改良時(shí)效并不局限于施用后的當(dāng)茬作物,能夠通過改良土壤結(jié)構(gòu)和化學(xué)生物性狀,在較長時(shí)間內(nèi)保持穩(wěn)定地改良效果。海涂圍墾鹽土改良和質(zhì)量提升是一個(gè)長期的過程,微生物改良基質(zhì)對于海涂圍墾鹽土長期改良效果仍需進(jìn)一步跟蹤研究。
本試驗(yàn)初步探索了微生物改良基質(zhì)短期內(nèi)能夠顯著改善土壤物理、化學(xué)和生物學(xué)性質(zhì),加速了土壤鹽分洗脫速率。相較于對照處理,微生物改良基質(zhì)(使用量30 t/hm2)處理的田間灌溉水量降低了35.20%,土壤容重降低了6.90%,土壤田間持水量和總孔隙度分別增加了20.00%和6.80%,土壤有機(jī)質(zhì)、全氮、速效鉀質(zhì)量分?jǐn)?shù)分別增加了2.30倍、53.00%和31.00%,0~20 cm土層可溶性鹽含量降低了61.10%,水稻產(chǎn)量增加了83.20%。改良濱海墾區(qū)鹽土是一個(gè)長期過程,未來需長期跟蹤研究微生物改良基質(zhì)對海涂鹽土結(jié)構(gòu)、肥力和微生物性狀的改良效果,為開發(fā)高效的濱海墾區(qū)鹽土生態(tài)改良基質(zhì)提供理論支撐。
[1] Li Qusheng, Chen Yan, Fu Hongbo, et al. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China[J]. Journal of Hazardous Materials, 2012(227/228): 148-154.
[2] Liu Liping, Long Xiaohua, Shao Hongbo, et al. Ameliorants improve saline–alkaline soils on a large scale in northern Jiangsu Province, China[J]. Ecological Engineering, 2015: 81: 328-334.
[3] Smith L E D, Siciliano G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture[J]. Agriculture, Ecosystems and Environment, 2015, 209: 15-25.
[4] 唐莉華,楊大文,孟凡磊,等. 農(nóng)業(yè)區(qū)環(huán)境-經(jīng)濟(jì)綜合效益模型構(gòu)建及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):202-207.Tang Lihua, Yang Dawen, Meng Fanlei, et al. Establishment and application of integrated agricultural enviro-economic benefit model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 202-207. (in Chinese with English abstract)
[5] Liu Mengli, Wang Chong, Wang Fuyou, et al. Maize (L.) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil[J]. Applied Soil Ecology, 2019, 142: 147-154.
[6] Wang Changrong, Liu Zhongqi, Huang Yongchun, et al. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (L.)[J]. Environmental Toxicology and Pharmacology, 2019, 72: 103265.
[7] Caporale A G, Vitaglione P, Troisea A D, et al. Influence of three different soil types on the interaction of two strains ofwithsubsp.cv., under soil mineral fertilization[J]. Geoderma, 2019, 350: 11-18.
[8] Huang Xiangfeng, Li Shuangqiang, Li Shiyang, et al. The effects of biochar and dredged sediments on soil structure and fertility promote the growth, photosynthetic and rhizosphere microbial diversity of Phragmites communis (Cav.) Trin. ex Steud[J]. Science of the Total Environment, 2019, 697: 134073.
[9] Bao Tianli, Zhao Yunge, Gao Liqian, et al. Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China[J]. European Journal of Soil Biology, 2019, 95: 103120.
[10] 鮑士旦. 土壤農(nóng)化分析(第3版)[M]. 北京:中國農(nóng)業(yè)出版社,2007:268-270,389-391.
[11] Nader P,Naser D. Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop[J]. Agricultural Water Management, 2019, 213: 97-106.
[12] Wei Wei, Feng Xinran, Yang Lei,et al.The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China[J]. Science of the Total Environment, 2019, 647: 1323-1332.
[13] Stolarski M J, Rosenqvist H, Krzy?aniak M, et al. Economic comparison of growing different willow cultivars[J]. Biomass and Bioenergy, 2015, 81: 210-215.
[14] Hou Xiaolong, Han Hang, Tigabu M, et al. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China[J]. Ecological Engineering, 2019, 138: 171-179.
[15] 張銀平,杜瑞成,刁培松,等. 機(jī)械化生態(tài)沃土耕作模式提高土壤質(zhì)量及作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):33-38.Zhang Yinping, Du Ruicheng, Diao Peisong, et al. Mechanical and ecological tillage pattern improving soil quality and crop yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 33-38. (in Chinese with English abstract)
[16] Zhang Jinjing, Wei Yuxuan, Liu Jianzhao, et al. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment[J]. Soil and Tillage Research, 2019, 190: 1-9.
[17] Zhou Lei, M. Monreal C, Xu Shengtao, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region[J]. Geoderma, 2019, 338: 269-280.
[18] Wang Qijun, Chen Shouwen, Zhang Jibin, et al. Co-producing lipopeptides and poly--glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects[J]. Bioresource Technology, 2008, 99(8): 3318-3323.
[19] Peng Yingyun, Jiang Bo, Zhang Tao, et al. High-level production of poly (-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus[J]. Process Biochemistry, 2015, 50(3): 329-335.
[20] 劉樂,費(fèi)良軍,陳琳,等.-聚谷氨酸對土壤結(jié)構(gòu)、養(yǎng)分平衡及菠菜產(chǎn)量的影響[J]. 水土保持學(xué)報(bào),2019,33(1):277-282.Liu Le, Fei Liangjun, Chen Lin, et al. Effects of-polyglutamic acid on soil structure, nutrient balance and spinach yield[J]. Journal of Water and Soil Conservation, 2019, 33(1): 277-282. (in Chinese with English abstract)
[21] 張鵬,周泉,黃國勤. 冬季不同種植模式對稻田土壤團(tuán)聚體及其有機(jī)碳的影響[J]. 核農(nóng)學(xué)報(bào),2019(12):2430-2438.
[22] Nakasaki K, Hirai H, Mimoto H, et al. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting[J]. Science of the Total Environment, 2019, 671: 1237-1244.
[23] Sánchez óscar J, Ospina D A, Montoya S. Compost supplementation with nutrients and microorganisms in composting process[J]. Waste Management, 2017, 69: 136-153.
[24] Tang Mengjun, Zhu Qiang, Zhang Fengmin, et al. Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil[J]. Microbiological Research, 2019, 221: 50-59.
[25] Sheng Min, Tang Ming, Chen Hui, et al. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress[J]. Canadian Journal of Microbiology, 2009, 55(7): 879-886.
[26] Zhang Y F, Wang P, Yang Y F, et al. Arbuscular mycorrhizal fungi improve reestablSAhment of Leymus chinensSA in bare saline-alkaline soil: Implication on vegetation restoration of extremely degraded land[J]. Journal of Arid Environments, 2011, 75(9): 773-778.
[27] Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[J]. Soil Biol Biochem, 2011, 43: 20-30.
[28] Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J]. Ecol Indic, 2011, 11: 1345-1353.
[29] Zhao Qingyun, Dong Caixia, Yang Xingming, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Appl Soil Ecol, 2011, 47: 67-75.
Preliminary study on the effect of microbial amendment on saline soils in a coastal reclaimed area
Shang Hui1, Yan An2, Han Rui3, Yao Yutian4, Chang Yijun5, Yang Hualei3, Chen Lihua3※, Meng Tianzhu3
(1.().,.,224200,; 2.,,830052,; 3.,,210098,; 4..,.,210013,; 5..,.,211155,)
In a land-sea transitional zone, various technologies are used to reduce the accumulation of water-soluble salts for the efficient utilization of saline soils in coastal reclaimed areas. In the conventional processes of salt-washing and fertilizing, the emission of the agricultural non-point pollutants has posed a threat to the offshore ecological environment. Therefore, it is necessary to explore new environmentally friendly methods for the improvement of soils quality. In microbial amendments, soils was fermented by addingIAE (7.2×1010cfu/g) in the matrix at percentage of 1% (w:w), while the substrate was prepared in the combination ofresidues, scoria of bentonite, vinegar production residues and humus acid, at the ratio of 6:2:1:1 (w:w). The matrix that fermented without the inoculation ofIAE, generally named as soil amendment. To investigate the effect of the soil amendment and microbial soil amendment on coastal reclaimed saline soils, three treatments were set in this study: 1) control, soil without any treatment; 2) Soil Amendment Treatment (SAT), soil added with soil amendment at 30 t·hm2; 3) Microbial Soil Amendment Treatment (MSAT), soil added with microbial soil amendment at 30 t·hm2. The pilot field was located at Tiaozini coastal reclamation area in Dongtai, Jiangsu Province, China. The contents of soluble salt in soils were ranged from 3.57 to 10.66 g/kg. Water saving irrigation and traditional rice planting methods were also selected in three treatments. The quantified data have been recorded including the irrigation quantity, biological characteristics of rice, physical and chemical features and microbial properties of the soils. The results showed that both SAT and MSAT improved paddy soil properties, and MSAT did better than that. Compared to those in the control treatment, the accumulative irrigation quantity in MSAT decreased by 35.2% (<0.05), while the plant height, number of grains per ear, thousand grains weight, effective ear yield, and rice yield in the MSAT treatment increased by 31.4%, 30.3%, 29.7%, 17.5%, and 83.2%, respectively. The contents of saturation moisture, water holding capacity, total porosity, capillary porosity, organic matter content, total nitrogen content, and content of available potassium in soils in MSAT increased by 13.8%, 20.0%, 6.80%, 9.79%, 2.30 times, 53.0%, 31.0%, respectively, compared to those in the control treatment. Populations of the soil microorganisms of bacteria, fungi and actinomyces in MSAT increased by 10.3, 11.2 and 3.18 times, respectively (<0.05). Meanwhile, the bulk density of soils in MSAT decreased by 6.90% (<0.05), compared to that in the control treatment. The contents of soluble salts in the soil depth of 0-60 cm in MSAT were significantly lower than those in control treatment, and those in tillage layer of 0-10cm and 10-20cm decreased by 61.1% and 54.4%, respectively. This finding demonstrates that microbial amendment can contribute to physical structure and microbial properties of soils, thereby to increase in the water conductivity while decrease in salt content in soils. This study can also provide a promising and feasible method to improve the quality of saline soils in coastal reclaimed zone.
soil; salt; moisture; coastal new reclaimed soil; microbial soil amendment; soil improvement
尚輝,顏安,韓瑞,等. 微生物改良基質(zhì)對新圍墾海涂鹽土改良的初步研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):120-125.doi:10.11975/j.issn.1002-6819.2020.08.015 http://www.tcsae.org
Shang Hui, Yan An, Han Rui, et al. Preliminary study on the effect of microbial amendment on saline soils in a coastal reclaimed area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 120-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.015 http://www.tcsae.org
2019-11-18
2020-04-16
江蘇省重點(diǎn)研發(fā)項(xiàng)目(BE2018736);國家自然科學(xué)基金項(xiàng)目(41701304);中央高?;究蒲袠I(yè)務(wù)(2018B49114);南京市科技計(jì)劃項(xiàng)目(201805047);自治區(qū)區(qū)域協(xié)同創(chuàng)新專項(xiàng)(2019E0245)
尚輝,助理研究員,主要從事沿海新圍鹽堿地旱改耕作技術(shù)研究。Email:kuzi86@163.com
陳立華,博士,副教授,主要研究方向?yàn)楹0稁鷳B(tài)建設(shè)。Email:chenlihua@hhu.edu.cn。
10.11975/j.issn.1002-6819.2020.08.015
S156.4+2
A
1002-6819(2020)-08-0120-07