• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Explicit H1-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions

    2020-05-26 01:34:44AITAKLIDjamelandMERAKEBAbdelkader

    AIT-AKLI Djameland MERAKEB Abdelkader

    L2CSP,Mouloud Mammeri University Tizi-Ouzou,15000,Algeria.

    Abstract.In this paper we consider the Lamé system on a polygonal convex domain with mixed boundary conditions of Dirichlet-Neumann type. An explicit L2 norm estimate for the gradient of the solution of this problem is established.This leads to an explicit bound of the H1 norm of this solution.Note that the obtained upper-bound is not optimal.

    Key Words:Lamé system;Korn’s inequality;Poincare’s inequality;inequality of trace;explicit estimates.

    1 Introduction

    Let Ω be a bounded open connected subset of R2.The static equilibrium of a deformable structure occupying Ω is governed by the Lamé linear elasto-static system,see[1]. In this paper,we restrict the study to a convex domain Ω whose boundary has a polygonal shape that possesm+1 edges withm≥2.We denoteits boundary andd(Ω)its diameter.Moreover,we assume that all the edges Γihave strictly positive measure.The system under consideration is given by

    We need to assume that the edges Γiwhich form the boundary Γ fulfill a condition similar to assumption(H2)in([2],Theorem 2.3).Actually,for our purpose,a stronger condition is needed and it is formulated in(1.5)below.The vector functionu=(u1,u2)satisfying the system(1.8)describes a displacement in the plane.In this model we impose a homogeneous Dirichlet condition on Γ0and a Neumann condition on the remaining part of the boundary. The equality on the boundary is understood in the sense of the trace.We denoteLthe Lamé operator defined by

    We assume the data functionsfandgat the right hand sides to satisfyf ∈[L2(Ω)]2andThe vectorrepresents the outside normal to Γi.We writeμandλthe Lamé’s coefficients.We place ourselves in the isotropic framework,the deformation tensorεis defined by

    The weak form of problem(1.1)is(see[1,3]):Findu∈Vsuch that?v∈V

    where

    The existence and uniqueness issue of the solution of(1.4)inVis classic,(see[3]).

    If we denoteθthe interior angle between the edges Γjand Γk,0≤j,k≤msuch thatand if we denoteγthe interior angle between the Neumann part of the boundary ΓN:=Γ-Γ0and the Dirichlet part of the boundary ΓD:=Γ0,then we impose

    The reason behind this assumption on the boundary is to get a better regularity of the solution of the weak problem(1.4).Precisely in that case we have,following([2],Theorem 2.3)stated at the bottom of page 330,for some positiveι>0,which implies in particular,using the appropriate Sobolev embedding and since Ω is a locally Lipschitz domain,see part II of([4],Theorem 4.12,page 85),thati.e.uisι)-holder continuous.One should notice that condition(1.5)are met since the domain considered in our case is convex.Let us denote

    By using the second Korn inequality,see[5],the trace and the Poincaré’s inequalities,one easily gets from(1.4)the following estimate

    wherecp,tis a constant that depends of Poincaré constant and the constant of trace inequality.ckis the constant of the Korn’s inequality.Note that the value of the constantckandcp,tappearing in(1.6)are unknown and can not be explicitly lower-bounded or upper-bounded in the general case.We propose to determine explicitly these constants.The main result of this work is stated in the following theorem:

    Theorem 1.1.The unique weak solution u of(1.4)on the convex polygonal domainΩadmits the explicit upper bound

    where d(Ω)represent the diameter ofΩand|Γ|the measure of the boundary ofΩ.

    Estimate(1.7)is similar to estimate(1.6)in the sense that the constants appearing there are the same.Before demonstrating this theorem,it is useful to go through some remarks and results.These auxiliary results are needed in order to adequately get a decomposition of the solution of the main problem,which belongs toH1(Ω),into functions that are still inDenotexi,for 1≤i≤m,the vertex of the polygon that connects Γi-1with Γiandx0the one that connects Γmto Γ0.Define the auxiliary functionu? ∈H1(Ω)as the unique solution to the following Dirichlet problem

    whereis the trace on the boundary Γ of the function

    Forthe functionφ?is defined by

    Let us denote

    where||x-xi||stands for the Euclidean norm of the vectorx-xi.We easily see thatφ? ∈consequently,there will be no jump when passing to the distributional derivative and thus?u? ∈L2(Ω),and by using the poincaré inequality,we infer thatu? ∈H1(Ω).It is shown,using Lebesgue’s dominated convergence theorem for instance,that

    i.e.we have convergence inL2along the edge Γi.The functionsφ?are identically zero on a small neighborhood of the respective vertices of the polygon.

    In the sequel,we denoteu?the vector-valued function

    2 Weak problem for u? and approximation results

    First of all,we construct the weak problem verified by the approximating functionu?.With the approximating displacementu?∈Vis associated the approximating stress tensor

    sinceLu?=divσ?=f,thenFor a fixed?,by density of the regular functions in the spaceH(div)(Ω),there existssuch thatin[H(div)(Ω)]2×2.This means

    whenn →∞.We posethen integrating by part against a test functionv ∈yields the following

    Passing to the limit innusing(2.2),we find

    whereis the image of the normal componentσ?by the trace

    operator on Γ. Since,following theorem 1 established in[8],is a dense subset ofV ?H1(Ω),then,according to the definition(1.3)and the expression(2.1),the functionu?satisfy

    this is the weak problem satisfied by the approximating functionu?.

    Let us recall,(see[6]),that thenorm in one dimension on Γiis defined by

    Remark 2.1.For any sufficiently small?>0,it is possible to cover Ω with a collection of open setssuch that for eachj,is either empty or equals one of the following subsets:for somei,0≤i≤m-1

    and fori=m

    One should well remark that,following its definition,the functionφ?-1 has nullsemi norm onthis fact justify the writing of the last term in estimate(2.4).So,using the definition and symmetry ofφ?,we get for all 0≤i≤m

    Thus,

    Thus we have

    Lemma 2.1.The functions φ? admit the following limits

    Proof.If we choose the vertex pointxias the origin of the R2-orthonormal coordinate system such that Γiis supported by the positive halfx-axis then the abscisses ofx ∈

    The-semi-norm ofφ?on Γiwrites

    It yields by using the definition ofφ?

    Consider the decomposition of(2.7)into four partial double integrals

    this is obvious.

    fact thatx→F′(x)is increasing on,that

    On the other hand

    Therefore we conclude that

    for allx∈[?2,?].This yields

    One more integral is

    Here we used the properties of the exponential function and elementary majorizations.This final integral is

    proceed in the same way as for 3).

    Combining these four integrals on one hand and using the facts:

    for all 0≤i≤mon the other hand yield,using(2.5),the result of Lemma 2.1.Consequently,using(2.4)yields also

    This completes the proof of the lemma.

    Sinceuis-H?lder continuous and thus uniformly continuous on Ω,the result of Lemma 2.1 implies

    One can now prove the following approximation lemma:

    Lemma 2.2.The function u? defined by(1.8)and the distribution g? appearing in problem(2.3)satisfy respectively the following limits

    as ?→0.

    Proof.a)let us consider the following problem

    Consider the linear operatorGthat associates to eachthe corresponding unique solutionuof problem(2.8),

    this implies the continuity of the linear bijective operatorG-1.According to the Banach isomorphism theorem,the operatorGis continuous,this means that there existsc >0 such that for allu∈Awe have

    Thus,sinceL(u-u?)=0,using the limit established in Lemma 2.1

    this provesa).

    b)We make the same reasoning as fora).Givenletw ∈Vbe the unique solution of

    for allv∈V.Choosingv=w,there existsc′>0 such that

    LetKbe the operator that associates to each datathe solution function

    i.e.Kis continuous.Then,according to Banach’s isomorphism theorem,we deduce thatsuch that

    Rewriting(1.4)withthen subtracting(1.4)and(2.3)member-to-member,one find thatu-u?satisfy:?v∈V,

    Applying(2.12)tow=u?-uwe get:

    Considering(2.9),we inferb).

    Remark 2.2.A consequence of the previous lemma:for arbitrary smallβ>0,there exists?1>0 such that??,0<?<?1,we have

    iii) Since,by assumption,then,using the continuity of the canonical embedding

    3 Auxiliary lemmas

    Let?1be such as defined in remark(2.2).For the rest of the paper,we fix?,0<?<?1.

    Before presenting a proof of the main result,we intend to state two auxiliary lemmas.These lemmas are established using,principally,([7],Theorem 2.1).In order to apply this later result,assumption 1.2 in that same paper need to be met.Our polygonal domain satisfy very well that assumption.

    These lemmas,Lemmas 3.1 and 3.2 below,convey the essential idea in the demonstration of the main theorem 1.1.We begin with approximating the solutionu?of problem(1.8)by a smooth function vanishing on an adequate part of the boundary Γ.Then the idea is to carry out a particular decomposition,alluded to in the introduction,of this approximating function. This key idea is illustrated in the following example. Considerv∈Vto be the solution of a problem similar to(1.8),e.g.,

    We assume that the trace ofvon the boundary vanish on an open neighborhood of the vertices of Ω.Set

    Let us decompose this problem into two other problems

    Provided that the problems are well posed,the functionsandare well defined.On the other hand,it is easy to see that the fact=von Γidoes not generally imply thaton Γi.So the idea is to find a decomposition that makes such a property to be fulfilled.i.e.such thatcan be approximated by a functionand,at the same time,such thatis an approximation ofon Γiin the sense of trace.An adequate use of Theorem 2.1 proved in[7]can make this decomposition possible.

    Using([8],Theorem 1),we can findsuch that for eachp,vanishes on the same part of Γ where doesu?and such that

    If we denote

    then,a particular consequence of(3.3)is:we can fixpsuch that

    whereC6is the continuity constant of the operatorG′-1defined as follows.LetG′be the operator that associates to each datathe solutionvof

    i.e.

    Thus by using(3.5)we obtain,withand given an arbitrary smallβ>0

    We fix,for the rest of the paper,pfor which(3.5)-(3.7)are fulfilled.

    Lemma 3.1.Let δ0be an arbitrary small number.There exists two functions u1and u2such that

    Proof.Letδ0>0 be an arbitrary small number.Consider the decomposition

    wherewandzare respectively the solutions of the following problems

    Observe thatσ(w)·→ndoes not necessary equal zero and thusσ(z)·→ndoes not necessary equalg.Nevertheless,by density,there is functionssuch that

    One should note that,following the definition of compactly supported functions in Ω,σ(wn)=0 on?Ω for alln.

    Using the same argument as in the proof of Lemma 2.2(Banach theorem),and for the fixed homogeneous Dirichlet boundary condition,there existsC0>0 depending merely on the domain Ω such that

    Thus,there exists an elementw*in{wn}n∈Nthat satisfy the estimate

    Decomposew:=w*+w2wherew2is a solutions of

    One should remark that

    Indeed,Pose

    this concludes the lemma.

    It should be pointed out that we repeatedly apply the essential argument in Lemma 2.2,namely the Banach isomorphism theorem,in order to obtain estimates for the inverse of some operators.On the other hand,although the functionsu1andu2depends on?we have removed the index?for clarity of presentation.

    Lemma 3.2.Let Ei be the subspace of V defined by(3.2).Let u1,u2be such as defined in Lemma3.1.Given δ1,δ2>0arbitrary small numbers,there exists m functions u2,i ∈Ei,1≤i ≤m,such that

    The construction of the functionu2,ithat is presented in the proof of Lemma 3.2 below shows that for alli,the functionsu2,ivanish not only on Γ but also onNi∩?Ω,whereNi ?R2is an open neighborhood of Γi.The proof is done in two main steps.In the first one,we construct the functionsu2,iand in the second step we prove that these functions actually satisfy estimates(3.10)-(3.11).

    Proof.Letδ1,δ2be arbitrary small numbers.The functionsu2,iwill be defined by introducing the intermediate functionsandVirespectively in subsectionsa),b),c)andd).As we define these functions,we demonstrate some estimates that will be used to derive(3.10)-(3.11)in the second step.

    Step 1:Fixi,1≤i≤m.Consider the decomposition

    whereXi ∈EiandZiare the solutions of

    One should notice that these two problems are well posed,this can be seen by considering the regularity ofon the boundary and the fact thatvanish identically on a neighborhood of the the vertices. Since Ω is a Lipschitz domain,it posses theW1,2-Sobolev extension property.

    a) According to([7,Theorem 2.1])see Appendix A at the end,there existssuch that we have

    whereδ3>0 is an adequately chosen real number.A consequence of(h2)is:

    Furthermore,with the homogeneous Dirichlet condition on Γ-Γibeing fixed in the problemP1and in the problem solved bythen,using the Banach theorem,there existsC1>0 such that

    We chooseδ3in assumption(h1)such that

    whereδ0is a positive real number whose choice will be precised later(see condition(c4)below).Fixn1such thatsatisfy

    or equivalently,

    for the same reasons as for(P1)andproblems(P2)andare well posed.Considering(h3)and(3.13),the functionsatisfy

    b) LetYibe the function defined by

    thanks to assumption(1.5),this problem is well posed.There exists a trace constantctsuch that,using(h1),we have

    For the fixedand the homogeneous Dirichlet condition on Γ0in problems(P3)and(P4),and by using an argument similar to that in part(a)of the proof of lemma(2.2)(Banach theorem),there exists a constantC3>0 such that

    and by using the trace inequality again we have

    Considering(3.13)and(h3),we easily see thaton Γ-Γi;and thus,estimates(3.15)and(3.16)become respectively

    On the other hand,sinceYi=0 on Γithen,using the result(Theorem 2.1,[7]see Appendix A at the end),there existssuch that

    whereis an adequately chosen real number,thus

    for the homogeneous Dirichlet condition on Γi∪Γ0for problem(P4)and the problem solved byand using Banach theorem,there existssuch that

    We choosein assumption(h4)such that

    whereδ0is as defined in Lemma 3.1 i.e.need to satisfy condition(c4)below.Fixn2>n1such that

    satisfy

    Consequently,considering(iv)of Lemmas 3.1 and 3.2 and(3.12),we have

    c) Denotewe have

    Rewriting estimate(3.17)gives

    and denote

    d) LetVi ∈Eibe the function defined by

    Set

    Step 2:The functionsu2,iare the unique solutions of

    Using the estimates established in step 1,we are ready to prove(3.10)-(3.11).

    Proof of estimate(3.10):Sinceon Γi,then we have for

    Using(3.19)givesc

    For the fixed homogeneous Dirichlet condition on Γ0,and according to the Banach isomorphism theorem,there exists a constantC2>0 depending merely on Ω such that,using(3.22)and since we have

    Ifδ3also fulfill condition

    whereδ1is the arbitrary small number assumed at the beginning of the proof then,estimate(3.10)is proved.

    In order to prove estimate(3.11),we need to estimate the trace ofon Γi.

    1) Firstly remark,by using(h3),that

    2) For the fixedand the homogeneous Dirichlet condition on Γ0in problems(P6)and(P7),the Banach isomorphism theorem ensures the existence of a constantC4>0 depending merely on Ω such that

    hence,considering(h4)and using trace inequality,we have

    thus,

    Using trace inequality and(3.23)we obtain

    Estimates(3.14)and(3.24)imply

    Proof of estimate(3.11):Writewhereζ′andη′are respectively the solutions of

    and writeu2=ζ+ηwhereζandηare the solutions of

    If we denoteckthe constant in the Korn inequality then the weak form of the problem solved byζ-ζ′yields

    Using(iv)of Lemmas 3.1 and(3.21),we have

    On the other hand,the Banach isomorphism theorem ensures,for the null source term and the Dirichlet homogeneous condition on Γ0in problems(P8)and(P9),that there exists a constantC5>0 such that

    Applying estimate(3.25)with

    Combining(3.26)and(3.27),we obtain using triangular inequality

    Finally,ifδ0,δ3andare subject to fulfill the condition

    whereδ2is the arbitrary small number assumed at the beginning of the proof then,

    This proves(3.28).

    Remark 3.1.1) Letsuch as defined in(3.4),we can easily show that

    whereδ6is an arbitrary small positive real number.Indeed,write using triangular inequality

    Since,following estimate(ii)of(3.7),converges intog?i.e.weakly inhence,there existsC′>0 such thatfor allp∈N.Thus,

    Using(i)of Remark 2.2 and estimates(ii)of(3.7)and for an adequate choice ofβ,the parameterspand?can be chosen such that

    and thus,Cauchy-Schwarz yields

    Young inequality on the other hand gives us

    and hence,there existspsuch thatsatisfy

    PoseSince,following(i)of Remark 2.2 and(3.7),βis arbitrary small,then the same holds withδ6.

    2) On the other hand,ifu2,iandare respectively such as defined in Lemma 3.2 and(3.20)then

    whereδ0is arbitrary small and satisfy(c4)and thus,τis also arbitrary small.

    We introduce some useful lemmas,which will play important roles in the proof of Theorem 1.1.

    3.1 Extension of the functions u2,i

    Since we are looking for explicit estimates,we should use Poincaré,trace and Korn’s inequalities relatively to suitable geometric configurations i.e.for which they are explicitly formulated.The configuration that best fits our polygonal convex domain Ω is the half-plane R2+containing the domain Ω for Korn’s inequality,the squareSdwith edge’s length equal tod(Ω)for the Poincaré inequality and with edge Γifor the trace inequality.These squares are taken to be subsets of the half-plane containing Ω.Thus we determine these constants thanks to results available for this type of domains.The need to consider the functions in and outside the domain Ω suggests to extend by zero the functionsu2,ioutside the convex domain Ω. The definition of the functionsu2,iis adapted to make such an extension.

    Letu2,ibe such as defined in Lemma 3.2.We consider fori,1≤i ≤m,the extension by zero ofu2,ifrom the convex domain Ω to the half-plane R2+containing Ω such that Γi ??R2+.

    One can easily see that the resulting extend functionsare still in the Sobolev spaceH1(R2+).Indeed,thanks the definition of these function,there will be no jump when passing to the distributional derivative.

    The following inequalities are established for the extendedH1regular functions defined on a square containing the convex polygonal domain Ω.

    3.2 Explicit constant in the Poincaré inequality

    We show in the following lemma that the functionu2,i ∈Eisatisfy the Poincaré inequality for which we determine explicitly the constant.

    Lemma 3.3.For all i,0≤i≤m,the function u2,i satisfy:

    the constant d(Ω)means the diameter ofΩ.

    Proof.We establish Poincaré inequality for one of the two components=1,2,the same estimate hold with the other.Noteabcdthe squareSd,with edge’s length equal tod(Ω)and subset of the half-plane containing Ω,such thata=(a1,a2),b=(b1,b2),c=(c1,c2)andd=(d1,d2)and such that

    Using Cauchy-Schwarz inequality?(x1,x2)∈[a1,d1]×[a2,b2]

    Taking the square of the two hand sides of this inequality and using the fact|x1-a|≤d(Ω):?(x1,x2)∈[a1,d1]×[a2,b2]yields

    Integrating onSdwith respect to the variablesx1andx2:

    According to definition(3.30)and by considering(3.31)we get

    We infer that

    This completes the proof of the lemma.

    3.3 Explicit bound for the trace of u2,i on Γi

    Using mainly the inequality of Poincaré stated in Lemma 3.3 and the trace inequality foru2,ion the edge Γiof a the parallelogramSΓi,see([9,Lemma 4.2])as well as([10,Remark 3.3],)and the reference therein,one establishes an explicit bound for the trace of the functionu2,ion Γi.

    Lemma 3.4.For all i,the function u2,i defined in Lemma3.2satisfy:

    where δ9is an arbitrary small real positive number.

    Proof.Letbe defined on the squareSΓiwith edge Γisuch thatSΓiis a subset of the halfplane R2+containing Ω.One should notice thatis not necessarily zero on?SΓi-Γi.Let us write

    this decomposition is made similarly to that presented in Lemma 3.2,i.e.,such that on one hand

    and on the other hand,α,?vanish respectively on?SΓi-Γi,Γi.We prove(3.33)for the trace of the functionα,the same estimate holds for the trace ofu2,isinceαandu2,icoincide on Γi.Decomposeα:=α1+α2in the following way

    Applying the inequality of trace on the boundary Γiof the the squareSΓi,which is a parallelogram,see([9],Lemma 4.2),it yields for bothk=1,2

    simplifying,

    Applying Korn’s inequality for the extended functiondefined on the half-plane R2+containingfor which case Korn constant equals,estimate(3.35)becomes

    Sinceα1andα2satisfy respectively

    then,using Cauchy-Schwarz,this leads to estimates

    Using these last estimates,(3.36)becomes

    Using(3.29)and assumption(3.34),we can findδ5andδ6small enough such that

    for alli.Hence,combining these two estimates,we obtain

    withδ9=δ5+δ6arbitrary small.

    4 Proof of Theorem 1.1

    We are ready now to present a proof of the main theorem.It uses,principally,Lemmas 3.1 and 3.2.

    Proof.Step 1:Letu1be as defined in Lemma 3.1,it is easy to check that it satisfies

    for allChoosev=u1and use Cauchy-Schwarz inequality

    Using Korn’s inequality relatively to the case of homogeneous Dirichlet condition on one hand,and Poincaré inequality on the other hand,yield

    using(iv)of Lemma 3.1,we obtain

    Fixi,1≤i≤m.Letu2,ibe such as defined in Lemma 3.2,it is easy to check thatu2,isatisfies

    for allv∈V.Choosev=u2,iand use Cauchy-Schwarz to obtain

    using estimate(3.32)

    On the other hand,there exists constantsck,cpandctsuch that

    Consequently,

    since,following(3.10)and(3.28),||gi||0,Ωare uniformly bounded with respect to?then,using(3.29)

    pose

    it can be made,thanks to estimate(3.29),as small as desired.Applying(3.33),(3.10)and(3.28),estimate(4.3)becomes

    whereThen by simplifying,

    One should notice that,from the definition of the constantsδ6,δ7andδ9,the constantδ10can be made as small as desired.

    Step 2:Since the deformationε(u2,i)is a linear application with respect to the first derivatives ofu2,ithen,with the same notations as in(3.30)and by using(3.31),we have

    Applying the estimate stated in([11],Corollary 1.2.2)togives

    Thus,(4.4)becomes

    Using young inequality yields

    Using approximation result(3.10),we have

    Summing overwe obtain using triangular inequality

    Finally,combining(4.1)and(4.5),we get

    Using(3.28),estimate(4.6)becomes

    and using(3.5)and(i)of(3.7),estimate(4.7)becomes

    By adequately choosing the positive numberswe immediately get

    We conclude the theorem foruby applying(a)of Lemma 2.2 on one hand,and(iii)of Remark 2.2 on the other hand.

    Finally;in order to get the explicitH1estimate ofu?,and so that ofu,we use the Poincaré inequality(3.32)to bound||u||0,Ωat one hand and the estimate(1.7)at the other hand.

    5 Conclusion

    In the point of view of numerical analysis,estimate of Theorem 1.1 is interesting.Indeed,error estimates in finite element method of the type

    involve the quantity||?u||0,Ω.Assuming that the constantCcan be explicitly computed,then it is possible to explicitly bound||?u||0,Ωwhich implies a better estimate of||u||0,Ω.

    Another interesting feature of the estimate(1.7)that makes it effective is that it does not depend on the characteristic parameters of the polygonal domain Ω,namely,the edges’s length,their number as well as the measures of the angles.The estimate is therefore indifferently applicable to all polygons.All this allows the possibility to generalize this result,by substantial approximation,to aC1class domain.

    Acknowledgments

    The authors would like to thank the referee for his relevant comments and remarks on the material presented in this paper as well as the editor for his support during the submission process.

    Appendix A.Some clarifications

    Regarding the application of the main result established in[7],we note the following facts.The part of Theorem 2.1 in[7]used in the proof of Lemma 3.2 is the equivalence between the following two assertions:

    1)Xiis approximated by smooth functions with support away from Γ-Γi;

    To effectively apply this result,we need to show that the factXi=0 on Γ-Γiimplies 2).Indeed,letx∈Γ-Γi.We assume for convenience,thatxcoincide with the origin(0,0)of R2.Since?Ω is a polygon then,there existsc>0 independent ofrsuch that

    On the other hand,the functionXisolution of problem(P1)is continuous onOne can see this using the following argument:according to the definition ofApplying the Whitney extension theorem(see[12]),one can findthat coincide withXion Γ.Thus,solves the following problem

    Since the boundary Γ of Ω satisfies the conditions(1.5)andthen,.Consequently

    as well. Furthermore,by an adequate Sobolev embedding,and thus,the claimed continuity.The Lebesgue differentiation theorem yields:

    we infer that assertion 2)holds for allx∈Γ-Γiand thus,C1,2-almost everywhere.WhereC1,2refers to the 2-capacityof the set Γ-Γi.

    Finally,one can show continuity of the functionYithat solves problemP4by remarking thatand by applying the same argument used for justifying the regularity of the solutionuof problem(1.1),one easily infer thatand gets the same conclusions as forXi.

    av线在线观看网站| 成年动漫av网址| 国产又色又爽无遮挡免| 久久99一区二区三区| 99精品久久久久人妻精品| 国产视频首页在线观看| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 香蕉丝袜av| 国产麻豆69| 久久影院123| 老司机在亚洲福利影院| h视频一区二区三区| 亚洲欧美精品自产自拍| 美女扒开内裤让男人捅视频| 国产黄色视频一区二区在线观看| 久久天堂一区二区三区四区| 久久性视频一级片| 青青草视频在线视频观看| 又紧又爽又黄一区二区| 国产淫语在线视频| 麻豆av在线久日| 精品久久蜜臀av无| 国产精品久久久久久精品电影小说| av线在线观看网站| 黄频高清免费视频| 国产精品免费大片| 亚洲成人免费电影在线观看 | 精品国产乱码久久久久久小说| 久久国产精品人妻蜜桃| 亚洲国产精品成人久久小说| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| 欧美久久黑人一区二区| 超碰97精品在线观看| 亚洲成人国产一区在线观看 | 国产欧美日韩一区二区三区在线| 看十八女毛片水多多多| 成人国产av品久久久| 最新在线观看一区二区三区 | 十八禁网站网址无遮挡| 视频区图区小说| 啦啦啦在线免费观看视频4| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美 | 亚洲,欧美,日韩| 日韩大码丰满熟妇| 两个人看的免费小视频| 99热全是精品| 欧美激情 高清一区二区三区| 大话2 男鬼变身卡| 中国国产av一级| 久久人人爽人人片av| 亚洲成人国产一区在线观看 | 97在线人人人人妻| 亚洲国产精品一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 中文乱码字字幕精品一区二区三区| 国产一区有黄有色的免费视频| 少妇裸体淫交视频免费看高清 | 激情五月婷婷亚洲| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区 | 久久女婷五月综合色啪小说| 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 建设人人有责人人尽责人人享有的| 宅男免费午夜| 又大又黄又爽视频免费| 欧美人与性动交α欧美软件| 欧美黑人精品巨大| 久久99精品国语久久久| 高清不卡的av网站| 无遮挡黄片免费观看| 亚洲av日韩在线播放| 美女扒开内裤让男人捅视频| 黄色 视频免费看| 成年人免费黄色播放视频| 久9热在线精品视频| 国产99久久九九免费精品| 国产爽快片一区二区三区| 久久久国产精品麻豆| 免费不卡黄色视频| 欧美精品啪啪一区二区三区 | 精品人妻熟女毛片av久久网站| 男人操女人黄网站| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 纵有疾风起免费观看全集完整版| 国产一区二区 视频在线| 婷婷色av中文字幕| 老司机影院毛片| 丝袜人妻中文字幕| 99国产精品99久久久久| 日本欧美视频一区| 国产黄频视频在线观看| 热re99久久国产66热| 丝袜喷水一区| 丝袜人妻中文字幕| 丰满少妇做爰视频| 午夜影院在线不卡| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 亚洲av综合色区一区| 国产精品国产av在线观看| 国产成人精品在线电影| 纯流量卡能插随身wifi吗| 老司机在亚洲福利影院| 精品人妻在线不人妻| 精品国产一区二区三区久久久樱花| 大香蕉久久成人网| 欧美日韩视频高清一区二区三区二| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩一区二区三区在线| 男女床上黄色一级片免费看| 18禁观看日本| 成人亚洲精品一区在线观看| 国产精品一国产av| 中文精品一卡2卡3卡4更新| 夜夜骑夜夜射夜夜干| 韩国高清视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 午夜福利在线免费观看网站| 最黄视频免费看| 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 巨乳人妻的诱惑在线观看| 久久精品人人爽人人爽视色| 久久性视频一级片| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 狂野欧美激情性bbbbbb| 韩国精品一区二区三区| 欧美黑人欧美精品刺激| 国产成人精品无人区| 亚洲欧洲国产日韩| 成人18禁高潮啪啪吃奶动态图| 在线 av 中文字幕| 日韩制服丝袜自拍偷拍| www.999成人在线观看| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 欧美另类一区| 一级毛片我不卡| 一级黄色大片毛片| 精品一区二区三卡| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全免费视频 | 五月天丁香电影| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 99热全是精品| 成年美女黄网站色视频大全免费| 午夜免费鲁丝| 天天影视国产精品| 欧美精品一区二区免费开放| 日本欧美国产在线视频| 在线天堂中文资源库| 久久久久视频综合| 亚洲av综合色区一区| 精品国产乱码久久久久久男人| 国产视频首页在线观看| 十八禁高潮呻吟视频| av网站免费在线观看视频| 青青草视频在线视频观看| videos熟女内射| 最新的欧美精品一区二区| 亚洲中文日韩欧美视频| 1024香蕉在线观看| 国产成人91sexporn| 亚洲精品一卡2卡三卡4卡5卡 | 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 老司机亚洲免费影院| 一个人免费看片子| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| av天堂久久9| 精品久久久精品久久久| 韩国精品一区二区三区| 九草在线视频观看| 只有这里有精品99| 黄色毛片三级朝国网站| 999精品在线视频| 宅男免费午夜| 麻豆av在线久日| 国产男人的电影天堂91| 少妇猛男粗大的猛烈进出视频| 午夜两性在线视频| 考比视频在线观看| 亚洲精品自拍成人| 制服人妻中文乱码| 免费少妇av软件| 两性夫妻黄色片| 2021少妇久久久久久久久久久| 亚洲久久久国产精品| 国产97色在线日韩免费| 又紧又爽又黄一区二区| 高清视频免费观看一区二区| 欧美成狂野欧美在线观看| av一本久久久久| 免费在线观看日本一区| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 午夜激情久久久久久久| 欧美精品亚洲一区二区| 男女无遮挡免费网站观看| 欧美在线一区亚洲| 日韩av免费高清视频| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 国产精品九九99| 亚洲成国产人片在线观看| 999精品在线视频| 国产女主播在线喷水免费视频网站| 久久青草综合色| 精品国产一区二区三区四区第35| 亚洲伊人久久精品综合| 99热全是精品| 老鸭窝网址在线观看| 99国产精品99久久久久| 人妻一区二区av| 美女主播在线视频| 建设人人有责人人尽责人人享有的| 后天国语完整版免费观看| 国产精品久久久久成人av| www.999成人在线观看| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看 | 一级a爱视频在线免费观看| 捣出白浆h1v1| 国产精品一区二区在线不卡| 欧美黑人精品巨大| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| cao死你这个sao货| 日韩免费高清中文字幕av| 99国产精品免费福利视频| 精品久久久久久电影网| 少妇粗大呻吟视频| 亚洲五月婷婷丁香| 国产精品久久久久久精品电影小说| 午夜福利在线免费观看网站| 黄色a级毛片大全视频| 欧美97在线视频| 午夜老司机福利片| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| 丁香六月欧美| 亚洲国产精品999| 亚洲综合色网址| 久久久久久久国产电影| 成年人黄色毛片网站| 精品福利观看| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 久久国产精品大桥未久av| 巨乳人妻的诱惑在线观看| 国产亚洲欧美在线一区二区| 天堂中文最新版在线下载| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看 | 人人妻,人人澡人人爽秒播 | a级毛片在线看网站| 91老司机精品| 99国产精品一区二区三区| 国产精品久久久久久精品古装| 久久天堂一区二区三区四区| 嫁个100分男人电影在线观看 | 人妻一区二区av| 国产精品秋霞免费鲁丝片| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 后天国语完整版免费观看| 国产av国产精品国产| 免费黄频网站在线观看国产| 亚洲av日韩在线播放| 青青草视频在线视频观看| 人人妻,人人澡人人爽秒播 | 久久久久精品国产欧美久久久 | av不卡在线播放| 国产欧美日韩一区二区三 | 高清黄色对白视频在线免费看| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 国产高清视频在线播放一区 | 国产精品一区二区在线不卡| 亚洲三区欧美一区| 欧美激情 高清一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 亚洲少妇的诱惑av| 国产女主播在线喷水免费视频网站| 久久热在线av| 成人国产一区最新在线观看 | 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 久久精品人人爽人人爽视色| 亚洲av成人精品一二三区| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区 | 久久人妻福利社区极品人妻图片 | 视频区欧美日本亚洲| 国产激情久久老熟女| 在线亚洲精品国产二区图片欧美| 成人黄色视频免费在线看| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 国产日韩欧美视频二区| 免费人妻精品一区二区三区视频| 午夜两性在线视频| 国产色视频综合| 久久精品亚洲熟妇少妇任你| 成人免费观看视频高清| 午夜福利视频精品| 国产男女超爽视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 波野结衣二区三区在线| 天天躁日日躁夜夜躁夜夜| 午夜福利在线免费观看网站| netflix在线观看网站| 啦啦啦 在线观看视频| 一级毛片女人18水好多 | 99久久99久久久精品蜜桃| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 久久久久久久大尺度免费视频| 亚洲五月婷婷丁香| 国产一级毛片在线| 操出白浆在线播放| 丝瓜视频免费看黄片| 视频区图区小说| 好男人电影高清在线观看| 制服诱惑二区| 欧美成人精品欧美一级黄| 国产熟女午夜一区二区三区| 男人舔女人的私密视频| 老司机午夜十八禁免费视频| av在线app专区| 久久这里只有精品19| 亚洲图色成人| 性少妇av在线| 午夜影院在线不卡| 亚洲国产中文字幕在线视频| kizo精华| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 多毛熟女@视频| 亚洲图色成人| 波野结衣二区三区在线| 在线精品无人区一区二区三| 免费观看a级毛片全部| 国精品久久久久久国模美| 欧美+亚洲+日韩+国产| 亚洲精品美女久久av网站| 大片电影免费在线观看免费| 99久久人妻综合| 精品久久久久久久毛片微露脸 | 91麻豆精品激情在线观看国产 | 美女高潮到喷水免费观看| 七月丁香在线播放| 又紧又爽又黄一区二区| 国产亚洲欧美在线一区二区| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 亚洲国产精品一区三区| 婷婷成人精品国产| 亚洲成人国产一区在线观看 | 久久综合国产亚洲精品| 国产精品一区二区精品视频观看| 国产午夜精品一二区理论片| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 成在线人永久免费视频| 人人妻人人添人人爽欧美一区卜| 精品一区二区三卡| 久久这里只有精品19| 热re99久久精品国产66热6| 在线看a的网站| 国产免费视频播放在线视频| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 又紧又爽又黄一区二区| 色网站视频免费| 成人18禁高潮啪啪吃奶动态图| 国产一区有黄有色的免费视频| 嫁个100分男人电影在线观看 | 高清视频免费观看一区二区| 成人三级做爰电影| 中文字幕亚洲精品专区| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 亚洲第一青青草原| 在线av久久热| 纯流量卡能插随身wifi吗| 天堂中文最新版在线下载| av电影中文网址| 久久中文字幕一级| 欧美国产精品va在线观看不卡| 51午夜福利影视在线观看| 一本久久精品| 亚洲欧美一区二区三区黑人| 亚洲国产精品成人久久小说| 久久免费观看电影| 亚洲成人免费电影在线观看 | 飞空精品影院首页| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| bbb黄色大片| 黑人巨大精品欧美一区二区蜜桃| 18禁黄网站禁片午夜丰满| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 久久久国产一区二区| 国产精品免费视频内射| 18禁国产床啪视频网站| 99香蕉大伊视频| 9热在线视频观看99| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 精品亚洲成国产av| 制服诱惑二区| 欧美日韩精品网址| 成人亚洲精品一区在线观看| 肉色欧美久久久久久久蜜桃| 亚洲精品国产色婷婷电影| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 亚洲av综合色区一区| 欧美人与性动交α欧美精品济南到| 中文字幕制服av| 99热国产这里只有精品6| www.自偷自拍.com| 十分钟在线观看高清视频www| 国产成人系列免费观看| 国产高清videossex| 99re6热这里在线精品视频| 国产99久久九九免费精品| 五月开心婷婷网| 99久久99久久久精品蜜桃| 你懂的网址亚洲精品在线观看| av不卡在线播放| 精品福利永久在线观看| 另类精品久久| 亚洲伊人久久精品综合| 国产av一区二区精品久久| 青青草视频在线视频观看| 午夜福利在线免费观看网站| 欧美日韩精品网址| 最黄视频免费看| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 亚洲成色77777| a级毛片黄视频| 日本av免费视频播放| 日本五十路高清| 大片电影免费在线观看免费| 一二三四社区在线视频社区8| 欧美日韩国产mv在线观看视频| 大型av网站在线播放| 精品国产超薄肉色丝袜足j| 国产精品秋霞免费鲁丝片| 日韩电影二区| av在线播放精品| 成年美女黄网站色视频大全免费| 激情视频va一区二区三区| 性少妇av在线| 久久久欧美国产精品| 午夜福利视频精品| 电影成人av| 久久久久久人人人人人| 高清av免费在线| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 久久精品成人免费网站| 丝瓜视频免费看黄片| 午夜久久久在线观看| 成年人免费黄色播放视频| 超碰成人久久| 国产精品一国产av| 午夜影院在线不卡| 黄色怎么调成土黄色| 精品国产乱码久久久久久男人| 秋霞在线观看毛片| 国产成人一区二区三区免费视频网站 | 亚洲专区中文字幕在线| 日韩av免费高清视频| 捣出白浆h1v1| 国产老妇伦熟女老妇高清| 午夜av观看不卡| videos熟女内射| 成人影院久久| 欧美日韩综合久久久久久| 久久国产精品影院| 少妇人妻 视频| 精品人妻在线不人妻| 真人做人爱边吃奶动态| 欧美精品一区二区大全| 久久久久久久国产电影| 大片电影免费在线观看免费| 欧美激情极品国产一区二区三区| 亚洲午夜精品一区,二区,三区| 69精品国产乱码久久久| 国产淫语在线视频| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠久久av| 好男人电影高清在线观看| 夫妻午夜视频| 午夜福利在线免费观看网站| 麻豆乱淫一区二区| 国产精品亚洲av一区麻豆| 人妻一区二区av| 亚洲国产最新在线播放| 男女下面插进去视频免费观看| 欧美亚洲日本最大视频资源| av又黄又爽大尺度在线免费看| 一二三四社区在线视频社区8| 久久精品亚洲熟妇少妇任你| 婷婷色综合大香蕉| 一个人免费看片子| xxxhd国产人妻xxx| 欧美精品一区二区大全| www.自偷自拍.com| 国产高清国产精品国产三级| 成在线人永久免费视频| 丰满饥渴人妻一区二区三| 一级毛片 在线播放| 国产成人一区二区在线| 中文字幕精品免费在线观看视频| 国产色视频综合| 欧美在线黄色| 99国产精品99久久久久| 这个男人来自地球电影免费观看| 精品人妻1区二区| 欧美久久黑人一区二区| 久久精品国产亚洲av高清一级| 午夜视频精品福利| 欧美少妇被猛烈插入视频| 黑丝袜美女国产一区| 97精品久久久久久久久久精品| 国产精品麻豆人妻色哟哟久久| 久久人人爽av亚洲精品天堂| 国产免费福利视频在线观看| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片| 免费看不卡的av| 国产精品一区二区免费欧美 | 香蕉国产在线看| 亚洲av成人不卡在线观看播放网 | 亚洲成人手机| 一区二区三区精品91| 亚洲第一av免费看| 午夜福利视频精品| 免费高清在线观看视频在线观看| 亚洲欧美色中文字幕在线| 亚洲精品av麻豆狂野| 欧美精品一区二区大全| 中文字幕亚洲精品专区| 欧美精品av麻豆av| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 一级毛片电影观看| 成在线人永久免费视频| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 一级毛片电影观看| 免费观看人在逋| 免费在线观看影片大全网站 | 日本91视频免费播放| 国产99久久九九免费精品| 男女边摸边吃奶| 精品亚洲成a人片在线观看| 国产高清videossex| 久久人妻福利社区极品人妻图片 | 国产男人的电影天堂91| 国产成人精品在线电影| 超碰97精品在线观看| 男女边吃奶边做爰视频| 久久人妻福利社区极品人妻图片 | 久久久久久亚洲精品国产蜜桃av| 国产成人一区二区在线| 精品福利观看| 亚洲成国产人片在线观看| 女人久久www免费人成看片| 韩国高清视频一区二区三区| 美女扒开内裤让男人捅视频| 精品久久久久久久毛片微露脸 |