• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      電子煙基因毒性評(píng)價(jià)方法概述

      2020-05-25 02:47:31嚴(yán)大為鄭賽晶
      中國煙草科學(xué) 2020年2期

      嚴(yán)大為 鄭賽晶

      摘 ?要:為了解電子煙的基因毒性及其評(píng)價(jià)方法,按照受試對(duì)象分類進(jìn)行了綜述。其中以細(xì)菌為受試對(duì)象的試驗(yàn)方法有細(xì)菌回復(fù)突變試驗(yàn)和DNA損傷分析等;以離體細(xì)胞為受試對(duì)象的試驗(yàn)方法有微核試驗(yàn)、DNA雙鏈斷裂試驗(yàn)、RNA轉(zhuǎn)錄測序試驗(yàn)、定向基因檢測分析和Bhas細(xì)胞轉(zhuǎn)化試驗(yàn)等;以模式動(dòng)物為受試對(duì)象的試驗(yàn)方法有長期吸入毒性試驗(yàn)和生殖發(fā)育毒性試驗(yàn)等;以人體為受試對(duì)象的主要是臨床試驗(yàn)和流行病學(xué)調(diào)查研究等。由于受試對(duì)象和試驗(yàn)方法的差異性,導(dǎo)致電子煙基因毒性結(jié)果的可信度和可比性較差,因此建議在評(píng)價(jià)電子煙基因毒性的過程中,應(yīng)至少考慮細(xì)菌、離體細(xì)胞、模式動(dòng)物和臨床試驗(yàn)等4個(gè)層次的受試對(duì)象,通過回復(fù)突變試驗(yàn)、微核試驗(yàn)、長期吸入毒性試驗(yàn)和臨床試驗(yàn)等多種試驗(yàn)方法獲得多個(gè)基因毒性的試驗(yàn)終點(diǎn),科學(xué)、客觀和全面地綜合評(píng)價(jià)電子煙的基因毒性。

      關(guān)鍵詞:電子煙;體內(nèi)試驗(yàn)方法;體外試驗(yàn)方法;基因毒性

      The Overview of Evaluation Methodology on E-cigarette Genotoxicity

      YAN Dawei, ZHENG Saijing*

      (Research Department of Chemistry, Shanghai New Tobacco Product Research Institute, Shanghai 200082, China)

      Abstract:In order to understand the genotoxicity of e-cigarettes and its evaluation methodology, a review was conducted according to the classification of study subjects. The test methods using bacteria as the study subjects include bacterial reversion mutation test and DNA damage analysis. Methods using isolated cells as study subjects include micronucleus test, DNA double-strand breaking test, RNA transcriptional sequencing test, targeted gene detection and analysis, and Bhas cell transformation test. Long-term inhalation toxicity test and reproductive development toxicity test were used in the model animals. The human body as the study subject are mainly clinical trials and epidemiological investigations. Due to the differences of study subjects and test methods, the credibility and comparability of e-cigarettes genotoxicity results is poor. Therefore, it is recommended that in the process of ?e-cigarettes genotoxicity evaluation , at least bacteria, isolated cell, animal models and clinical trials should be considered. Multiple genetic toxicity test endpoints can be obtained through a variety of test methods, such as reverse-mutation test, micronucleus test, long-term inhalation toxicity test, and clinical trial, which help to make a scientific, objective and comprehensive evaluation of ?e-cigarettes genotoxicity .

      Keywords: E-cigarette; in vivo methodology; in vitro methodology; genotoxicity

      基因毒性是指外源性因素能直接或間接損傷細(xì)胞DNA,產(chǎn)生致突變和致癌作用的程度。一般外源性因素,如某些化學(xué)物質(zhì)等可在染色體水平、分子水平和堿基水平上造成基因損傷,從而引起致癌、致畸和致突變等毒性作用[1]。與此同時(shí),隨著近年來電子煙的快速流行和傳播,其對(duì)人體健康的影響引起了公共衛(wèi)生組織和其他相關(guān)方的密切關(guān)注[2]。大部分研究表明電子煙的基因毒性較小,遠(yuǎn)低于傳統(tǒng)卷煙[3-6];但也有一些研究表明電子煙對(duì)基因表達(dá)的影響遠(yuǎn)大于傳統(tǒng)卷煙[7]。社會(huì)各界對(duì)于電子煙基因毒性的研究日益關(guān)注,但是采用的評(píng)價(jià)方法多參考醫(yī)藥或化學(xué)物質(zhì)基因毒性的評(píng)價(jià),沒有統(tǒng)一的受試對(duì)象、暴露方法和試驗(yàn)終點(diǎn)指標(biāo)等規(guī)范。因此本文對(duì)已發(fā)表的相關(guān)電子煙基因毒性的研究方法進(jìn)行了綜述,并通過分析認(rèn)為電子煙的基因毒性評(píng)價(jià)應(yīng)至少考慮細(xì)菌、離體細(xì)胞、模式動(dòng)物和臨床試驗(yàn)等4個(gè)層次的受試對(duì)象,通過回復(fù)突變試驗(yàn)、微核試驗(yàn)、長期吸入毒性試驗(yàn)和臨床試驗(yàn)等多種試驗(yàn)方法獲得多個(gè)基因毒性試驗(yàn)終點(diǎn),科學(xué)、客觀和全面地評(píng)價(jià)電子煙的基因毒性。

      1 ?以細(xì)菌為受試對(duì)象

      細(xì)菌回復(fù)突變試驗(yàn)作為致突變物的早期篩選和研究手段,主要利用營養(yǎng)缺陷型菌株,在選擇培養(yǎng)基上經(jīng)外源性物質(zhì)處理后,觀察菌株的回復(fù)突變的情況,用來判斷外源性物質(zhì)的致突變能力,是科研機(jī)構(gòu)和政府公認(rèn)的測定新化學(xué)物質(zhì)和新藥潛在致突變的檢測方法[8]。對(duì)于電子煙基因毒性的評(píng)價(jià),可以通過將電子煙氣溶膠整體看作外源性物質(zhì),通過細(xì)菌回復(fù)突變試驗(yàn)檢測堿基水平上的基因毒性作用[9]。

      THORNE等[6]使用吸煙機(jī)采用加拿大深度抽吸的方法產(chǎn)生電子煙氣溶膠,采取氣-瓊脂界面暴露染毒的方法,研究了電子煙氣溶膠和參比卷煙(3R4F)氣溶膠對(duì)TA98和TA100菌株致突變的影響,試驗(yàn)結(jié)果表明在暴露濃度為1 L/min電子煙氣溶膠3 h后,兩種菌株均未發(fā)生突變現(xiàn)象,而同等條件下暴露相同濃度的參比卷煙氣溶膠3 h后的菌株發(fā)生突變現(xiàn)象。雖然該研究僅采用兩個(gè)菌株進(jìn)行研究,且電子煙樣品種類較少,但是也從某種程度上說明電子煙在致基因突變方面,可以通過此類方法進(jìn)行評(píng)價(jià)。同時(shí)他們還研究了極端試驗(yàn)條件下的未稀釋電子煙氣溶膠的致突變性,研究結(jié)果表明在長達(dá)112.5 min的未稀釋電子煙氣溶膠暴露后,5種菌株均未發(fā)現(xiàn)致突變現(xiàn)象,該結(jié)果進(jìn)一步說明電子煙氣溶膠致細(xì)菌回復(fù)突變能力較弱和該檢測方法的適用性[10]。

      MANOJ等[11]通過細(xì)菌回復(fù)突變試驗(yàn),對(duì)電子煙和卷煙氣溶膠進(jìn)行體外遺傳毒性的比較研究發(fā)現(xiàn),電子煙氣溶膠捕集提取物的生物毒性比卷煙氣溶膠提取物低6000倍。同時(shí)試驗(yàn)結(jié)果還顯示電子煙氣溶膠捕集提取物和電子煙煙液本身不存在可檢測的生物毒性差異。但BHARADWAJ等[12]利用重組大腸桿菌研究了電子煙煙液和電子煙氣溶膠毒性作用時(shí)發(fā)現(xiàn),在暴露480 min的1∶4的稀釋電子煙氣溶膠后,大腸桿菌出現(xiàn)DNA損傷、離子穩(wěn)態(tài)、氧化應(yīng)激和膜損傷等非致死影響。

      由此可見,電子煙對(duì)細(xì)菌的基因毒性,與試驗(yàn)方法中的菌株種類、試驗(yàn)對(duì)象形態(tài)和暴露時(shí)間有一定的關(guān)系,因此在進(jìn)行評(píng)價(jià)時(shí),應(yīng)選取公認(rèn)的標(biāo)準(zhǔn)菌株TA98、TA100等,結(jié)合消費(fèi)者的實(shí)際消費(fèi)情況,采取氣-瓊脂界面暴露染毒的方法,選擇符合實(shí)際的暴露時(shí)間,觀察菌株的基因毒性情況,并在此基礎(chǔ)上對(duì)電子煙的基因毒性進(jìn)行初步評(píng)價(jià)。

      2 ?以細(xì)胞為受試對(duì)象

      非臨床安全評(píng)價(jià)中采取離體細(xì)胞進(jìn)行體外試驗(yàn)研究廣泛應(yīng)用于單一化學(xué)物質(zhì)和復(fù)雜混合物的毒理學(xué)評(píng)價(jià),常見的有染色體畸變試驗(yàn)和微核試驗(yàn),均是檢測外源性物質(zhì)基因毒性的試驗(yàn)方法。此類試驗(yàn)方法在電子煙氣溶膠總粒相物的基因毒性評(píng)價(jià)方面也有著成功的應(yīng)用[13]。

      2.1 ?哺乳動(dòng)物細(xì)胞

      微核試驗(yàn)是檢測染色體或有絲分裂器損傷的一種遺傳毒性試驗(yàn)方法。無著絲粒的染色體片段或因紡錘體受損而丟失的整個(gè)染色體,在細(xì)胞分裂后期仍留在子細(xì)胞的胞質(zhì)內(nèi)成為微核。通過檢測哺乳動(dòng)物細(xì)胞分裂期間細(xì)胞質(zhì)中微核情況的體外微核試驗(yàn),可以檢測電子煙對(duì)染色體的損傷情況。有研究表明參比卷煙3R4F氣溶膠中的總粒相物可導(dǎo)致DNA損傷,進(jìn)而導(dǎo)致染色體斷裂形成微核,其微核形成率最大的劑量為0.12 mg/mL,高于此劑量則會(huì)引起細(xì)胞的大量死亡。而電子煙氣溶膠總粒相物濃度高達(dá)20 mg/mL時(shí),仍未觀察到有微核的形成。認(rèn)為電子氣溶膠總粒相物對(duì)細(xì)胞遺傳物質(zhì)DNA的損傷顯著低于參比卷煙[11,14]。

      2.2 ?人源支氣管上皮細(xì)胞

      DNA的損傷有很多不同形式,如堿基修飾、DNA單鏈斷裂、DNA鏈內(nèi)和鏈間交聯(lián)以及DNA雙鏈斷裂等,其中DNA雙鏈斷裂被認(rèn)為DNA最嚴(yán)重的損傷。細(xì)胞在DNA雙鏈斷裂發(fā)生后,產(chǎn)生一系列的應(yīng)激反應(yīng),其中一個(gè)主要的反應(yīng)就是毛細(xì)血管共濟(jì)失調(diào)突變基因(Ataxia Telangiectasia Mutated,ATM)起始的信號(hào)級(jí)聯(lián)反應(yīng),它可以使細(xì)胞周期停頓直到損傷修復(fù)。而H2AX是這一信號(hào)級(jí)聯(lián)反應(yīng)中的一個(gè)主要成員,它能被ATM磷酸化(稱為γH2AX或gammaH2AX),并在隨后的損傷修復(fù)過程中發(fā)揮著重要的作用[15],因此可以通過檢測γH2AX的含量對(duì)DNA的損傷情況進(jìn)行評(píng)價(jià)[16]。研究人員發(fā)現(xiàn),參比卷煙在細(xì)胞暴露界面沉積量0~26.9 ?g/m2的范圍內(nèi)均出現(xiàn)γH2AX的陽性反應(yīng),而電子煙氣溶膠暴露達(dá)到85.7 ?g/m2的情況下,并未發(fā)現(xiàn)γH2AX的陽性反應(yīng)結(jié)果[17]。因此通過檢測γH2AX的方法判斷電子煙氣溶膠對(duì)細(xì)胞的DNA損傷情況具有一定的可行性。

      對(duì)離體細(xì)胞中RNA轉(zhuǎn)錄組進(jìn)行測序,以判斷基因表達(dá)量的變化,最近也應(yīng)用于電子煙氣溶膠的基因毒性研究[18]。通過RNA轉(zhuǎn)錄組進(jìn)行測序發(fā)現(xiàn),與空氣對(duì)照組相比,參比卷煙組有873個(gè)RNA基因表達(dá)出現(xiàn)極顯著性差異(p<0.01且差異倍數(shù)>2),經(jīng)過48 h的恢復(fù)期后,仍有205個(gè)RNA基因表達(dá)出現(xiàn)極顯著性差異。而在同等尼古丁濃度的電子煙氣溶膠暴露后,未發(fā)現(xiàn)有RNA基因表達(dá)出現(xiàn)極顯著性差異(p<0.01且差異倍數(shù)>2),進(jìn)一步研究發(fā)現(xiàn),參比卷煙氣溶膠對(duì)肺癌、炎癥和纖維化相關(guān)的基因有明顯的影響,而電子煙氣溶膠則對(duì)生物代謝合成過程、細(xì)胞外膜、細(xì)胞凋亡、細(xì)胞缺氧、氧化應(yīng)激、生長因子受體基因和三酰甘油脂肪酸代謝路徑的相關(guān)基因等有一定的影響[18-24]。

      2.3 ?其他人源細(xì)胞

      電子煙的基因毒性研究除選取常用的呼吸系統(tǒng)組織上皮細(xì)胞作為受試對(duì)象外,也可選取其他細(xì)胞系作為受試對(duì)象。如研究發(fā)現(xiàn)牙齦上皮細(xì)胞在暴露電子煙氣溶膠3 d后,其形態(tài)和乳酸脫氫酶的活性發(fā)生變化,基因caspase-3的表達(dá)顯著性增加,并與牙齦上皮細(xì)胞凋亡存在一定的關(guān)聯(lián)[25]。

      在低濃度(25 μmol/L)情況下,卷煙氣溶膠提取物會(huì)造成血管內(nèi)皮細(xì)胞DNA損傷,電子煙氣溶膠提取物未發(fā)現(xiàn)相關(guān)毒性。該損傷一般由自由基的產(chǎn)生所引起,最終會(huì)影響內(nèi)皮細(xì)胞的活性[26]。但JACK等[27]研究發(fā)現(xiàn)在冠狀動(dòng)脈內(nèi)皮細(xì)胞暴露電子煙后,并未引起細(xì)胞應(yīng)激反應(yīng),相關(guān)應(yīng)激基因NFR2的表達(dá)也未出現(xiàn)差異。

      對(duì)人肺成纖維細(xì)胞(HFL-1)的研究發(fā)現(xiàn),與空氣對(duì)照組相比,在電子煙氣溶膠暴露10~20 min后,會(huì)導(dǎo)致細(xì)胞線粒體內(nèi)的活性氧(ROS)增加,降低細(xì)胞核DNA片段的穩(wěn)定性,同時(shí)細(xì)胞炎癥因子IL-8和IL-6的水平上升,這可能引起一系列的炎癥產(chǎn)生[28-30]。

      關(guān)于非遺傳致癌毒性,Bhas細(xì)胞轉(zhuǎn)化試驗(yàn)是一種非常有效的檢測方法。Bhas42細(xì)胞是將v-Ha-ras基因?qū)隑alb/c3T3細(xì)胞中而建成的細(xì)胞系,已處于啟動(dòng)狀態(tài),在非遺傳毒性致癌物暴露影響下不經(jīng)過啟動(dòng)劑的預(yù)處理便可引起細(xì)胞惡性轉(zhuǎn)化。H2O2可以殺死未發(fā)生轉(zhuǎn)化的正常細(xì)胞,而對(duì)轉(zhuǎn)化細(xì)胞不產(chǎn)生影響。供試品處理后的細(xì)胞經(jīng)CCK-8染色后,根據(jù)其存活率確定細(xì)胞轉(zhuǎn)化程度,從而判定供試品的非遺傳毒性[31]。研究表明參比卷煙煙氣的總顆粒物具有可以引起B(yǎng)has細(xì)胞轉(zhuǎn)化的能力,最低濃度達(dá)到6 ?g/mL,相反電子煙氣溶膠總顆粒物則未引起B(yǎng)has細(xì)胞轉(zhuǎn)化,試驗(yàn)濃度高達(dá)120 ?g/mL[32]。

      從上述研究來看,通過對(duì)微核試驗(yàn)、RNA轉(zhuǎn)錄組測序和特定基因的檢測等試驗(yàn)方法,可以檢測電子煙的相關(guān)基因毒性[33]。同時(shí)離體細(xì)胞成本低廉,操作相對(duì)簡單,試驗(yàn)周期較短,是進(jìn)行電子煙基因毒性評(píng)價(jià)的理想受試對(duì)象。

      3 ?以模式動(dòng)物為研究對(duì)象

      由于離體細(xì)胞或組織不能模擬人體內(nèi)部各個(gè)系統(tǒng)相互作用的復(fù)雜過程,更無法預(yù)測電子煙氣溶膠對(duì)人體內(nèi)部的各個(gè)器官產(chǎn)生的基因毒性作用,因此一般將體內(nèi)毒性試驗(yàn)作為電子煙基因毒性研究的標(biāo)準(zhǔn)方法[34]。

      在呼吸系統(tǒng)方面,有研究表明長期暴露電子煙氣溶膠后,發(fā)現(xiàn)肺部致癌相關(guān)的P450代謝酶系CYP1A1/2、CYP2B1/2、2C11和CYP3A等代謝酶的數(shù)量顯著增加,活性氧(ROS)水平也顯著增加。同時(shí)還發(fā)現(xiàn)血液樣品中存在較高的微核率,尿液中的DNA出現(xiàn)點(diǎn)突變等遺傳毒性[35]。同時(shí)DNA甲基化受到影響,進(jìn)一步影響小鼠的肺部功能,造成IL-1β、IL-6和TNF-α等炎癥因子的大量增加[36]。支氣管功能也受到干擾,可導(dǎo)致產(chǎn)生系統(tǒng)性炎癥和器官纖維化等情況[37]。

      在中樞神經(jīng)系統(tǒng)發(fā)育毒性方面,發(fā)現(xiàn)仔鼠腦部前額組織有109個(gè)基因表達(dá)存在顯著性差異(p<0.01),這些基因表達(dá)的差異與后續(xù)神經(jīng)系統(tǒng)發(fā)育毒性具有一定的相關(guān)性[38]。進(jìn)一步研究發(fā)現(xiàn),母鼠暴露電子煙氣溶膠后可以導(dǎo)致仔鼠的認(rèn)知能力退化,這可能是由于與調(diào)節(jié)神經(jīng)活動(dòng)相關(guān)的基因Aurka、Aurkb、Aurkc、Kdm5c、Kdm6b、Dnmt3a、Dnmt3b和Atf2表達(dá)發(fā)生了顯著變化所引起[39]。取小鼠大腦中海馬組織后發(fā)現(xiàn),Ngfr和Bdnf基因表達(dá)也受到影響,這對(duì)中樞神經(jīng)系統(tǒng)正常發(fā)育存在潛在威脅[40]。在子代的胚胎發(fā)育過程中暴露電子煙氣溶膠,可引起一定的出生缺陷[41]。除了在生殖發(fā)育方面的基因毒性影響,電子煙氣溶膠還可引起肝功能異常。研究發(fā)現(xiàn)肝臟功能的生物標(biāo)志物GSK3在暴露電子煙氣溶膠后,該基因的表達(dá)顯著上升[42]。

      綜上所述,通過模式動(dòng)物整體暴露試驗(yàn),可以評(píng)價(jià)電子煙氣溶膠對(duì)動(dòng)物體內(nèi)不同系統(tǒng)的基因毒性大小,但由于模式動(dòng)物和人類存在暴露方式差異,應(yīng)考慮與人類吸食電子煙類似的方式進(jìn)行暴露,選取可靠公認(rèn)的基因毒性指標(biāo),觀察模式動(dòng)物的時(shí)效和量效效應(yīng),以獲得準(zhǔn)確可比的電子煙基因毒性試驗(yàn)數(shù)據(jù)。

      4 ?以人體為受試對(duì)象

      2011—2014年間,美國食品藥品監(jiān)督管理局發(fā)起了一項(xiàng)煙草與公眾健康評(píng)估研究(PATH, Population Assessment of Tobacco and Health)。通過對(duì)32 320名國民調(diào)查研究發(fā)現(xiàn),當(dāng)前使用電子煙的主要原因是消費(fèi)者認(rèn)為電子煙比傳統(tǒng)卷煙對(duì)身體健康的危害小,如由于基因毒性引起的致癌等疾病可能性較低[43]。但一些媒體、政府和醫(yī)療網(wǎng)站卻報(bào)道使用電子煙后呼吸系統(tǒng)、消化系統(tǒng)、心血管系統(tǒng)、神經(jīng)系統(tǒng)和免疫系統(tǒng)等會(huì)產(chǎn)生基因毒性影響[44]。為了解電子煙的真實(shí)基因毒性情況,尤其是對(duì)免疫系統(tǒng)基因表達(dá)的影響,MELANIE等[45]進(jìn)行了一項(xiàng)臨床試驗(yàn)研究。他們收集了非吸煙者(13人)、傳統(tǒng)卷煙消費(fèi)者(14人)和電子煙消費(fèi)者(12人)的鼻腔表面刮擦組織、鼻灌洗液、尿液和血清等樣本,對(duì)樣本中免疫基因表達(dá)譜的變化進(jìn)行分析,并比較電子煙和傳統(tǒng)卷煙對(duì)呼吸系統(tǒng)的生物效應(yīng)。通過對(duì)597個(gè)免疫相關(guān)基因檢測研究發(fā)現(xiàn),與非吸煙者相比,電子煙消費(fèi)者有358個(gè)與免疫相關(guān)的基因發(fā)生表達(dá)量下調(diào),而傳統(tǒng)卷煙消費(fèi)者僅有53個(gè)基因發(fā)生表達(dá)差異,并且全部包含于電子煙消費(fèi)者表達(dá)差異的基因之中,這說明從傳統(tǒng)卷煙轉(zhuǎn)吸電子煙時(shí),未能改變免疫系統(tǒng)的基因表達(dá)量減少的情況,還可能對(duì)消費(fèi)者免疫功能調(diào)節(jié)產(chǎn)生更多的不利影響。此類臨床試驗(yàn)結(jié)果可直觀反映電子煙的基因毒性,但往往臨床樣本相對(duì)較少,且樣本個(gè)體差異性較大,代表性較差,試驗(yàn)數(shù)據(jù)的充分性和可靠性需要進(jìn)一步擴(kuò)大臨床試驗(yàn)進(jìn)行驗(yàn)證。

      5 ?小結(jié)與展望

      一般而言,電子煙基因毒性的研究層次包括體外試驗(yàn)、體內(nèi)試驗(yàn)、人體試驗(yàn)和流行病學(xué)研究,研究結(jié)果的權(quán)重由小到大,且各有優(yōu)缺點(diǎn)(表1)。常見試驗(yàn)方法有AMES試驗(yàn)、哺乳動(dòng)物細(xì)胞基因突變試驗(yàn)(TK試驗(yàn))、染色體畸變試驗(yàn)、微核試驗(yàn)、顯性致死試驗(yàn)、程序外DNA合成試驗(yàn)、姐妹染色單體交換試驗(yàn)、單細(xì)胞凝膠電泳試驗(yàn)和轉(zhuǎn)基因動(dòng)物致突變試驗(yàn)等。電子煙的基因毒性產(chǎn)生的原因較多,除電子煙中尼古丁本身對(duì)神經(jīng)系統(tǒng)基因有一定的影響之外[46],電子煙煙液中的溶劑和添加劑也是影響因素,如電子煙氣溶膠中的肉桂醛具有一定基因毒性,可損傷呼吸系統(tǒng)中免疫細(xì)胞的正常功能[47-49]。一些香精香料添加劑還可引起口腔上皮細(xì)胞和牙周纖維細(xì)胞的炎癥反應(yīng)以及DNA損傷等癥狀[50-51],因此電子煙的基因毒性難以通過單一的毒性機(jī)制進(jìn)行闡述,是多種化學(xué)物質(zhì)共同作用的結(jié)果。但也有研究表明添加劑對(duì)線蟲的基因毒性效應(yīng)影響不大,這可能與添加劑的種類和添加量有關(guān)[52]。因此,對(duì)于電子煙氣溶膠整體的基因毒性評(píng)價(jià)較為困難。同時(shí)電子煙氣溶膠的基因毒性還可能與電子煙的使用頻率、使用時(shí)煙具工作條件以及氣溶膠產(chǎn)生過程等多種因素相關(guān),因此需要對(duì)電子煙基因毒性的評(píng)價(jià)方法進(jìn)行規(guī)范和總結(jié),如確定電子煙器具的工作模式和抽吸模式,電子煙氣溶膠的暴露方式和暴露時(shí)間,以及受試對(duì)象的種類。雖然文獻(xiàn)中通過一些特定方式,發(fā)現(xiàn)相關(guān)電子煙氣溶膠的基因毒性,但是這些毒性評(píng)價(jià)是否對(duì)電子煙整體的基因毒性具有代表性和權(quán)威性,仍然值得商榷。

      總之,目前關(guān)于電子煙的基因毒性,雖然在不同研究水平上均有一些研究方法和成果,但是可利用文獻(xiàn)和數(shù)據(jù)數(shù)量較少,大量文獻(xiàn)研究還是體外基因毒性研究方法,臨床基因毒性研究和流行病學(xué)調(diào)查研究相對(duì)較少,并且每個(gè)研究層次水平上研究方法還未形成共識(shí)[53-57]。從研究結(jié)果的代表性、科學(xué)性、真實(shí)性和規(guī)范性等方面來說,目前的科研結(jié)果還難以對(duì)電子煙基因毒性做出客觀評(píng)價(jià)。應(yīng)在電子煙基因毒性的受試對(duì)象、暴露方式、暴露劑量、試驗(yàn)指標(biāo)和結(jié)果評(píng)價(jià)等方面形成一致的標(biāo)準(zhǔn)方法,至少考慮細(xì)菌、離體細(xì)胞、模式動(dòng)物和臨床試驗(yàn)等4個(gè)層次的受試對(duì)象,通過回復(fù)突變試驗(yàn)、微核試驗(yàn)、長期吸入毒性試驗(yàn)和臨床試驗(yàn)等多種試驗(yàn)方法獲得多個(gè)基因毒性試驗(yàn)終點(diǎn),科學(xué)、客觀和全面地評(píng)價(jià)電子煙的基因毒性,構(gòu)建電子煙基因毒性評(píng)價(jià)的科學(xué)體系,才是客觀評(píng)價(jià)電子煙基因安全性的當(dāng)務(wù)之急。

      參考文獻(xiàn)

      [1]ZOUNKOVA R, KOVALOVA L, BLAHA L, et al. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites[J]. Chemosphere, 2010, 81(2): 253-260.

      [2]CHARLOTTA P, MARTIN D. A systematic review of health effects of electronic cigarettes[J]. Preventive Medicine, 2014, 69: 248-260.

      [3]LI X, XIE F W, LIU H M. Recent advances in toxicological evaluation of novel tobacco products[J]. Tobacco Science &Technology, 2016, 49(1): 88-93.

      [4]GILLMAN I G, KISTLER K A, STEWART E W, et al. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols[J]. Regulatory Toxicology & Pharmacology, 2016, 75: 58-65.

      [5]CALLAHAN L P. Electronic cigarettes: human health effects[J]. Tobacco Control, 2014, 23: 36-40.

      [6]THORNE D, CROOKS I, HOLLINGS M, et al. The mutagenic assessment of an electronic-cigarette and reference cigarette smoke using the Ames assay in strains TA98 and TA100[J]. Mutation Research/genetic Toxicology & Environmental Mutagenesis, 2016, 8(12): 29-38.

      [7]MARTIN E M, CLAPP P W, REBULI M E, et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2016, 311(1): L135-L144.

      [8]SCOTT K, SAUL J, CROOKS I, et al. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter[J]. Toxicology in Vitro, 2013, 27(4): 1312-1319.

      [9]KADIMISETTY K, MALLA S, RUSLING J F. Automated 3 D printed arrays to evaluate genotoxic chemistry: e cigarettes and water samples[J]. ACS Sensors, 2017, 2(5): 670-678.

      [10]THORNE D, HOLLINGS M, SEYMOUR A, et al. Extreme testing of undiluted e-cigarette aerosol in vitro using an Ames air-agar-interface technique[J]. Mutation Research, 2018, 828: 46-54.

      [11]MANOJ M, LEVERETTE R D, COOPER B T, et al. Comparative in vitro toxicity profile of electronic and tobacco cigarettes, smokeless tobacco and nicotine replacement therapy products: e-liquids, extracts and collected aerosols[J]. International Journal of Environmental Research & Public Health, 2014, 11(11): 11325-11347.

      [12]BHARADWAJ S, MITCHELL R J, QURESHI A, et al. Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages[J]. Biosensors & Bioelectronics, 2016, 90: 53-60.

      [13]JOHNSON M D, SCHILZ J, DJORDJEVIC M V, et al. Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco[J]. Cancer Epidemiology, Biomarkers & Prevention, 2009, 18(12): 3263-3304.

      [14]GANAPATHY V, MANYANGA J, BRAME L, et al. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage[J]. Plos One, 2017, 12(5): 1-20.

      [15]ROGAKOU E P, PILCH D R, ORR A H, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. Journal of Biological Chemistry, 1998, 273(10): 5858-5868.

      [16]GARCIA-CANTON C, ANADON A, MEREDITH C. Assessment of the in vitro γH2AX assay by high content screening as a novel genotoxicity test[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013, 757(2): 158-166.

      [17]THORNE D, LARARD S, BAXTER A, et al. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements[J]. Toxicology Letters, 2017, 265: 170-178.

      [18]SHEN Y F, WOLKOWICZ M J, KOTOVA T, et al. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells[J]. Scientific Reports, 2016, 6: 23984.

      [19]HASWELL L E, BAXTER A, BANERJEE A, et al. Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics[J]. Scientific Reports, 2017, 7: 888.

      [20]MOSES E, WANG T, CORBETT S, et al. Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium[J]. Toxicological Sciences, 2017, 155(1): 248-257.

      [21]SOLLETI S K, BHATTACHARYA S, AHMAD A, et al. MicroRNA expression profiling defines the impact of electronic cigarettes on human airway epithelial cells[J]. Scientific Reports, 2017, 7: 1081.

      [22]TAYLOR M, CARR T, OKE O, et al. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke[J]. Toxicology Mechanisms and Methods, 2016, 26(6): 465-476.

      [23]HWANG J H, LYES M, SLADEWSKI K, et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria[J]. Journal of Molecular Medicine, 2016, 94(6): 667-679.

      [24]STABILE A M, MARINUCCI L, BALLONI S, et al. Long term effects of cigarette smoke extract or nicotine on nerve growth factor and its receptors in a bronchial epithelial cell line[J]. Toxicology in Vitro, 2018, 12(53): 29-36.

      [25]ROUABHIA M, PARK H J, SEMLALI A, et al. E-Cigarette vapor induces an apoptotic response in human gingival epithelial cells through the caspase-3 pathway: effect of e-cigarette on epithelial cells[J]. Journal of Cellular Physiology, 2017, 232(6): 1539-1547.

      [26]ANDERSON C, MAJESTE A, HANUS J, et al. E-cigarette aerosol exposure induces reactive oxygen species, DNA damage, and cell death in vascular endothelial cells[J]. Toxicological Sciences, 2016, 154(2): 332-340.

      [27]JACK E T, NEWBY A C, TIMPSON N J, et al. Cigarette smoke but not electronic cigarette aerosol activates a stress response in human coronary artery endothelial cells in culture[J]. Drug and Alcohol Dependence, 2016, 163: 256-260.

      [28]LERNER C A, RUTAGARAMA P, AHMAD T, et al. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts[J]. Biochemical and Biophysical Research Communications, 2016, 477(4): 620-625.

      [29]SCOTT A, LUGG S T, ALDRIDGE K, et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages[J].

      Thorax, 2018, 73: 1161-1169.

      [30]LEE H W, PARK S H, WENG M W, et al. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells[J]. Proceedings of the National Academy of Sciences, 2018, 115(7): E1560-E1569.

      [31]WEISENSEE D, POTH A, ROEMER E, et al. Cigarette smoke-induced morphological transformation of Bhas 42 cells in vitro[J]. Altern Lab Anim, 2013, 41(2): 181-189.

      [32]BREHENY D, OKE O, PANT K, et al. Comparative tumor promotion assessment of e-cigarette and cigarettes using the in vitro Bhas 42 cell transformation assay[J]. Environmental and Molecular Mutagenesis, 2017, 58(4): 190-198.

      [33]TOMMASI S, BATES S E, BEHAR R Z, et al. Limited mutagenicity of electronic cigarettes in mouse or human cells, in vitro[J]. Lung Cancer, 2017, 112: 41-46.

      [34]CURTIS D, KLAASSEN O B, WATKINS III. Casarett & doull's essentials of toxicology[M]. Third edition. New York: McGraw-Hill Education/Medical, 2015.

      [35]CANISTRO D, VIVARELLI F, CIRILLO S, et al. E-cigarettes induce toxicological effects that can raise the cancer risk[J]. Scientific Reports, 2017, 7: 2028.

      [36]CHEN H, LI G, CHAN Y L, et al. Maternal e-cigarette exposure in mice alters DNA methylation and lung cytokine expression in offspring[J]. American Journal of Respiratory Cell & Molecular Biology, 2017, 58(3): 1-17.

      [37]CROTTY A L E, DRUMMOND C A, MARK H, et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2018, 314(6): R834-R847.

      [38]DANA L, PAMELLA T, KEVIN C, et al. Frontal cortex transcriptome analysis of mice exposed to electronic cigarettes during early life stages[J]. International Journal of Environmental Research and Public Health, 2016, 13(4): 417-431.

      [39]TARA N, LI G E, HUI C, et al. Maternal E-cigarette exposure results in cognitive and epigenetic alterations in offspring in a mouse model[J]. Chemical Research in Toxicology, 2018, 31: 601-611.

      [40]ZELIKOFF J T, PARMALEE N L, CORBETT K, et al. Microglia activation and gene expression alteration of neurotrophins in the hippocampus following early-life exposure to E-cigarette aerosols in a murine model[J]. Toxicological Sciences, 2018, 162(1): 276-286.

      [41]KENNEDY A E, SURAJ K, RENE O N, et al. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells[J]. PLOS ONE, 2017, 12(9): 1-25.

      [42]EL G N, DKHILI H, DALLAGI Y, et al. Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats[J]. Life Sciences, 2016, 146: 131-138.

      [43]RODU B, PLURPHANSWAT N. E-cigarette use among US adults: population assessment of tobacco and health (PATH) study[J]. Nicotine & Tobacco Research, 2018, 20(8): 940-948.

      [44]HUA M, TALBOT P. Potential health effects of electronic cigarettes: A systematic review of case reports [J]. Preventive Medicine Reports, 2016, 4: 169-178.

      [45]MELANIE M, ARIEL S, MADISON L, et al. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster[J]. BMC Developmental Biology, 2018, 18(1): 13-15.

      [46]MASSARSKY A, ABDEL A, GLAZER L, et al. Neurobehavioral effects of 1,2-propanediol in zebrafish (Danio rerio)[J]. Neuro Toxicology, 2018, 3(65): 111-124.

      [47]LECHASSEUR A, ?RIC J, ROUTHIER J, et al. Exposure to electronic cigarette vapors affects pulmonary and systemic expression of circadian molecular clock genes[J]. Physiological Reports, 2017, 5(19): 1-13.

      [48]BEHAR R Z, LUO W, LIN S C, et al. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols[J]. Tobacco Control, 2016, 25(Suppl 2): ii94-ii102.

      [49]CLAPP P W, PAWLAK E A, LACKEY J T, et al. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function[J]. AJP Lung Cellular and Molecular Physiology, 2017, 8, 313(2): L278-L292.

      [50]SUNDAR I K, JAVED F, ROMANOS G E, et al. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts[J]. Oncotarget, 2016, 7(47): 77196-77204.

      [51]WELZ C, CANIS M, SCHWENK-ZIEGER S, et al. Cytotoxic and genotoxic effects of electronic cigarette liquids on human mucosal tissue cultures of the oropharynx[J]. J Environ Pathol Toxicol Oncol, 2016, 35(4): 343-354.

      [52]PANITZ D, SWAMY H, NEHRKE K. A C. elegans model of electronic cigarette use: physiological effects of e-liquids in nematodes[J]. BMC Pharmacology and Toxicology, 2015, 16: 32.

      [53]KOPA P N, PAWLICZAK R. Effect of smoking on gene expression profile–overall mechanism, impact on respiratory system function and reference to electronic cigarettes[J]. Toxicology Mechanisms and Methods, 2018, 28(6): 397-409.

      [54]ANTH?RIEU S, GARAT A, BEAUVAL N, et al. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells[J]. Toxicology in Vitro, 2017, 12(45): 417-425.

      [55]OTR?BA M, KO?MIDER L, KNYSAK J, et al. E-cigarettes: voltage- and concentration-dependent loss in human lung adenocarcinoma viability[J]. Journal of Applied Toxicology, 2018, 38(8): 1135-1143.

      [56]SHAHAB L, GONIEWICZ M L, BLOUNT B C, et al. Nicotine, carcinogen, and toxin exposure in long-term e-cigarette and nicotine replacement therapy users: a cross-sectional study[J]. Annals of internal medicine, 2017, 166(6): 390-400.

      [57]HOLLIDAY R, KIST R, BAULD L. E-cigarette vapour is not inert and exposure can lead to cell damage[J]. Evidence-based dentistry, 2016, 17(1): 1-3.

      作者簡介:嚴(yán)大為(1985-),男,工程師,碩士,主要從事新型煙草制品風(fēng)險(xiǎn)評(píng)價(jià)研究。E-mail:yandw@sh.tobacco.com.cn

      *通信作者,E-mail:zhengsj@sh.tobacco.com.cn

      收稿日期:2019-09-26 ? ? ? ? ? ? ? ? ? ? 修回日期:2020-02-11

      吉水县| 项城市| 基隆市| 土默特右旗| 兴安县| 贵南县| 永和县| 阜新| 松原市| 安多县| 翼城县| 吴堡县| 宁武县| 济宁市| 汨罗市| 台北县| 新丰县| 乌拉特前旗| 木兰县| 芦溪县| 万源市| 阜城县| 枣强县| 上饶县| 广宗县| 卫辉市| 姚安县| 九龙坡区| 睢宁县| 金川县| 高平市| 乐清市| 饶河县| 晴隆县| 丰县| 沁水县| 铜山县| 鸡东县| 隆化县| 峨山| 汝城县|