• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Moving horizon based wavelet de-noising method of dual-observed geomagnetic signal for nonlinear high spin projectile roll positioning

    2020-05-23 07:09:24TingtingYinFangxiuJiaXiaomingWang
    Defence Technology 2020年2期

    Ting-ting Yin, Fang-xiu Jia, Xiao-ming Wang

    ZNDY of Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing, 210094, China

    Keywords:High-spin projectile roll positioning Dual-observed geomagnetic signal Wavelet de-noising Discrete wavelet transform

    ABSTRACT Phase-frequency characteristics of approximate sinusoidal geomagnetic signals can be used for projectile roll positioning and other high-precision trajectory correction applications. The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment. In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence, based on the error source analysis, we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence; a moving horizon window guarantees real-time performance and non-cumulative calculation amount. The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment. The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter. The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter. These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.

    1. Introduction

    The 2-dimensional (2D) trajectory correction projectile (TCP),replacing the traditional fuse with trajectory correction module,provides an innovative approach for the traditional ammunition reconstruction.Having the advantages of high efficiency-cost ratio and precise ground attack capabilities, the TCP has become a research hotspot recently[1].The nonlinear roll attitude detection and control of canards is the foundation to generate the required correction force[2].Taking on the responsibility of forming a closed roll control loop, high spin projectile roll positioning has been an active research area due to the tough application environment and strong nonlinearity [3].

    During the whole external ballistics, due to the energy consumption caused by air and friction, the actual projectile spin rate varies with time and space, That is, the amplitude and the frequency of the sinusoidal signal vary with time and different launching conditions [4,5]. Theoretically, the launching overload reaching up to 8000-20000 g,the spin frequency ranging from 150 to 400 r/s as well as the minimal allocation space, limit the applications of gyroscopes, accelerometers, optimal sensors and satellites. Without redundant reference system and weather restrictions, approaches based on geomagnetic sensors have been developed to address the problem of nonlinear roll state estimation.

    Geomagnetic signal based positioning techniques can be classified into geomagnetic-independent, geomagnetic-gyroscopescombined and satellite-geomagnetic-combined (MR/GPS) techniques. Cao gives the solution based on the geomagneticindependent and MR/GPS techniques respectively with prior and real-time satellite provided ancillary angle information [6]. The former technique diverges in multiple trajectory correction conditions and the MR/GPS method described by Li is excluded due to error accumulation characteristics [7]. Regarding MR/GPS techniques, Yang [8] and Shi [9] describe a state estimation algorithm based on Kalman filters and quasi Newton Methods with feasibility and accuracy analysis. Cao describes the approximate roll positioning model where the low frequency satellite data are interpolated at sampling rates [10]. However, the sampled sequence is directly substituted where the noise is never considered in the above models.

    During the trajectory correction process, a high-power electromagnetic actuator is controlled by the high-frequency pulses [11],which should be considered as the TCP platform-specific environmental noise which interferes with the sinusoidal signal to a certain degree as well as the other disturbing factors like the installation error, the measurement noise, the sensor noise and the magnetic noise from iron parts. Some corresponding methods to reduce the disturbance have to be taken during the process of electromagnetic actuator and measuring system design, such as spatial isolation of the sensor and the electromagnetic actuator system, electrical separation of the important measuring signals and control pulses as well as the power supply, the frequency isolation of the control pulses and the projectile rate,the metal shield,ground connection and so on. Meanwhile, consistency and good environmental stability of the permanent magnetics, electrical components and circuit layout have been guaranteed. Even so, the TCP platformspecific disturbance can never be avoided just reduced.

    In order to conduct a successful attitude search procedure, it is desirable to decrease the specific noise before geomagnetic data substitution. The hardware-dependent filtering means, i.e.,resistance-capacitance filters, Butterworth or Chebyshev filters, is rolling period, the wavelet basis function is determined by previously acquired data. Based on the MR/GPS solution model, we compare the filtering and positioning performance based on the proposed method with the results of a Butterworth based bandpass filter.

    2. Dual observed geomagnetic signal for projectile roll positioning

    The MR/GPS positioning method is proved to be an effective solution for projectile roll attitude.The rolling sensitive axes of the geomagnetic sensor S1are consistent with a missile coordinate system,as shown in Fig.1,where ε,γ,φ denote the auxiliary angle,the magnetic measurement angle, and the desired roll angle,Bbx,Bby,BbzandBx,By,Bzrepresent the projection of geomagnetic vector B in missile and sensitive coordinates.

    The theoretic model for projectile roll positioning is given as:

    Taking the natural vector geomagnetic field as the reference coordinate system,the relationship of sensitive outputBbx,Bby,Bbzand projectile posture can be written as:one of the typical de-noising solutions [12]. However, the hardware-dependent filters cannot match different trajectory conditions due to constant parameters, additionally, severe phase shifts need to be compensated. Besides, the de-noising scheme based on Fourier transform is rejected for the time-varying spectrum.The Kalman based filter is another typical de-noising method with approximate projectile model in the roll channel[13].Among these, the unscented Kalman filter (UKF) is more adaptive to the nonlinear variance. However, the performance of the UKF heavily depends on the prior knowledge of system uncertainties, external disturbances and measurement noises,otherwise,probably leading to a suboptimal and even divergent result [14,15].

    The wavelet based de-noising techniques have been widely applied in signal processing and data optimization, having advantages of multi-resolution analysis in both time and frequency domains.Wavelet transforms use various forms of mother wavelets to approximate or decompose the unknown signal.Kaloop et al.apply wavelet de-noising for global positioning system(GPS)monitoring observations[16].Lau describes a wavelet packets based de-noising method for repeat-time multipath filtering in GPS positioning[17].Sang et al. established a wavelet based noise reduction system for hydrologic series data analysis[18]and the performance of discrete wavelet transform is verified [19]. All proposals above are built on the known decomposition and reconstruction level which is unknown and nonlinearly varies in the projectile roll detection.

    In this work,we present a dual-observer based moving horizon wavelet de-noising algorithm that may be applied to noise suppression. Instead of deviated prior information, the real-time dual observed geomagnetic signal strategy extracting rough roll rate extraction for wavelet parameter configuration is described.Considering the similarity of geomagnetic sequence shape for each where θ,ψ and φ are respectively the pitch,drift and roll angle,Bn,Be,Bddenote the projections of the reference geomagnetic vector B in navigation coordinate system.

    In the condition that the signal is known, the magnetic measurement angle is computed as

    Substituting φ=0 into Eq. (2), it becomes:

    According to Fig.1, the auxiliary angle is obtained by:

    Based on the geomagnetic field reference model, such as the World Magnetic Model 2015(WMM2015), the reference vector parameters can be derived with longitude, latitude, and altitude information provided by satellites, as shown in Eq. (6).

    whereFis defined as the total field intensity of B,DandIare the corresponding declination and inclination angle of B in geomagnetic field, shown in Fig.1.

    Fig.1. The coordinate system definitions in geomagnetic field and roll plane.

    Then the solving model for ε can be rewritten as:

    Based on the proved assumption of small angle of attack, the posture angle can be approximately substituted by ballistic inclination and deflection angle, proposed as:

    Based on the proved uniaxial rotation hypothesis,differentiating Eq. (1) gives:

    In theory, the solution for projectile roll positioning can be considered complete. However, judging from the experimental data, the original regulated circular curve has been severely distorted to a non-orthogonal, offset, and inconsistent-amplitude curve. The projectile roll rate value, as reference for the rudder control,is seriously disturbed where the noise vector is introduced and amplified by the differential operation, as shown in Fig. 2.

    The whole schedule of dual-observed geomagnetic signal for projectile roll positioning, where the geomagnetic signal is simultaneously input to the frequency identification system and AD phase sampling system,is shown in Fig. 3.

    The frequency identification system applies a zero-crossing comparison circuit and a timer capture interface, where timings such asandare recorded(see Fig. 4).

    Therefore,

    It can be seen that the trigger timing can be simply and reliably updated at every rising edge of Z-axis output by setting proper timer parameters without accumulation error, even though the system error based on the adjacent period roll rate assumption is introduced. In order to assess the feasibility of the timer captured frequency value as the reference for wavelet decomposition and reconstruction level selection, the systematic error δ ˙φ is modeled and analyzed by trajectory simulations, as shown in Fig. 5.

    It is derived from Fig.5 that the system error is less than 0.7 rad/s and approximately linear with ˙φ, suggesting that the rough roll rate value can be applied as reference for subsequent noise elimination work.

    Fig. 2. The experimentally sampled and solved geomagnetic signal.

    Fig. 3. The dual-observed geomagnetic signal with wavelet de-noising module.

    Fig. 4. The rough roll rate detection for wavelet de-noising parameter determination.

    Fig. 5. The systematic error based on the adjacent period roll rate assumption.

    3. De-noising with discrete wavelet transform (DWT)

    The proposed wavelet de-noising approach consists of two steps. A selective wavelet basis function and level for signal decomposition is the first step.The second step is applying wavelet shrinkage to the wavelet coefficients of the sub-bands selected by a rough captured roll rate value and realizing wavelet reconstruction with the shrunken wavelet coefficients. A detailed description of the above steps is provided as follows.

    The essence of the wavelet transform is to reveal the similarity degree between the decomposed signal and the wavelet basis function. The approximately sinusoidal shaped functions with positive symmetry and regularity, where no phase distortion and signal smoothness are promised,are preferential choices.The basic shape feature of geomagnetic signal is basically unchanged,which suggests that the basis wavelet function selection can be completed off-line with previous experimental data. The functions to be selected are numbered and the decomposition, data classification and reconstruction are repeated to find out the only function closest to the ideal signal.

    Fig. 6 describes the three-level discrete wavelet de-noising procedure as well as the sub-band distribution. The input signal is a discrete time seriesXi=xi-N+1,xi-N+2, …,xi, with the moving horizon window of lengthNillustrated in Fig. 7.

    Fig. 6. The discrete wavelet decomposition and reconstruction tree.

    Fig. 7. Moving horizon window for wavelet de-noising.

    The broad range of decomposition level, denotingNd,can be determined by the following rules withfmin andfmax provided by trajectory simulations.With the captured rough roll rate before,the decomposition level selection range can be further narrowed,where σ1represents the relatively small observational error which can be directly derived from Fig. 2.

    Fig. 8. The experimental geomagnetic sensitive and detection modules.

    Fig.9. The experimentally obtained rough projectile roll rate information and wavelet decomposition levels.

    As an example, the sampling frequency for geomagnetic signalFs is 20 kHz and the timer captured roll rate value is 198 Hz.Therefore,fmin=188 Hz andfmax=208 Hz, and according to equation,Nd=7.

    According to the frequency band distribution in Fig.6,the highfrequency sub-band at the highest decomposition level is the desired frequency band. Reserving coefficients of the corresponding band HNdand setting the rest coefficients to zero, the coefficients for reconstruction are prepared. The final step reconstructs the de-noised geomagnetic signal from the shrunken coefficients with the selected basis wavelet function.

    4. Results and analysis

    In order to assess the impact of the proposed projectile roll positioning based on moving horizon wavelet de-noising,the data acquisition test where the geomagnetic signal is dually observed in amplitude and frequency is conducted, as shown in Fig. 8. The photometrical module based on solar azimuth is also installed onboard. With corrected posture angle as well as accurate solar azimuth vector as input parameters, the roll angle information based on solar azimuth method is obtained as reference for detection performance evaluation [20], where the nonlinear moving horizon estimator and unscented estimator are applied respectively for roll rate and position measurement disturbance elimination.

    After applying the proposed wavelet de-noising method to the experimental data series, we detect the projectile position information with the MR/GPS based solution model. The nonlinear projectile roll rate information, as reference for wavelet parameters,is plotted in Fig. 9.

    In order to compare the conventional filtering method with the proposed one,the hardware band-pass filtered signal integrated in experimental circuits is collected at the same time with the noisy geomagnetic signal. The detailed filtering performance of three typical interrupted sequences is shown in Fig.10,where the noisy,the band-pass filtered, and the wavelet de-noised geomagnetic curves as well as the solved positioning results are displayed.

    It is obvious that the proposed wavelet de-noising strategy and the band-pass filter can both effectively eliminate the noisy component from the original geomagnetic signal with approximate sinusoidal shape and acceptable positioning errors in the heavily disturbed conditions as shown in the first data set.However,in the slightly interfered sections in the latter two data series, the bandpass filter introduced more electrical noise and distortion than the original signal due to the weak signal in the filtering and amplification link.in addition, the resulting phase shifts also need to be compensated by the empirical model in real time.In order to objectively describe the filtering performance, we use the root mean square (RMS), maximum jerk value and the mean error as measures of the detection performance, where the respective amplitudes are processed in a dimensionless manner for comparison(see Tables 1-3).

    The statistical information of the first data sequence proves that under the condition that the geomagnetic signal is exposed tostrong disturbances, the DWT and BPF methods can respectively increase the signal quality by nearly 70% and 50% while the BPF methods need extra phase compensation computation.The second and third data sequences indicate that when autocorrelation of the original geomagnetic signal is better, on the contrary, the SNR(signal-to-noise-ratio) of the hardware filtered signal is worse. On the whole, the DWT based de-noising strategy has much better adaptability without limitations of launching conditions and geomagnetic environments.

    Table 2 Statistical comparison of de-noising performance for the second data sequence.

    Table 3 Statistical comparison of de-noising performance for the third data sequence.

    5. Conclusion

    The geomagnetic signal can be dual observed in frequency and phase domains after simple signal conditioning circuit, where the rough projectile roll rate information can be obtained by integrated timers. With the captured information as reference where the feasibility is proved by trajectory simulations, the moving horizon wavelet de-noising parameters can be determined while the wavelet function selection is conducted off-line with previous experimental data.The experimentally collected original and bandpass filtered geomagnetic signals as well as the simulation wavelet de-noised signals are compared by wave parameters, positioning results shown as curves and statistical information. The noise reduction performance and the positioning stability and adaptability to different experimental conditions reflect the superiority of the proposed dual-observed wavelet de-noising and positioning strategy in width-fixed moving horizon window. Furthermore,more studies of projectile roll characteristics should be conducted in the future to improve the performance wavelet-based analyses,such as noise distribution characteristics and the decomposition level prediction.

    Acknowledgement

    This paper is funded by National Natural Science Foundation of China (61201391).

    国产熟女欧美一区二区| 亚洲在线自拍视频| 日韩欧美国产在线观看| 一级av片app| 两人在一起打扑克的视频| 国产精品美女特级片免费视频播放器| 午夜激情欧美在线| 国产中年淑女户外野战色| 亚洲久久久久久中文字幕| 午夜精品一区二区三区免费看| 99热精品在线国产| 国产精品久久电影中文字幕| 精品福利观看| 欧美区成人在线视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看免费完整高清在 | 欧美色视频一区免费| 俄罗斯特黄特色一大片| 久久精品国产清高在天天线| 日韩中字成人| 草草在线视频免费看| 亚洲综合色惰| 亚洲av美国av| 免费高清视频大片| 国产一区二区激情短视频| 嫩草影院精品99| 日本爱情动作片www.在线观看 | 久久国内精品自在自线图片| 真人一进一出gif抽搐免费| 欧美极品一区二区三区四区| 黄色日韩在线| 久久久久久久久久黄片| 禁无遮挡网站| 免费人成在线观看视频色| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 国产单亲对白刺激| 看免费成人av毛片| 久久久久久伊人网av| 国产精品久久视频播放| 在线播放国产精品三级| 不卡一级毛片| 国产av不卡久久| av女优亚洲男人天堂| 精品久久久噜噜| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 久久午夜亚洲精品久久| 亚洲中文日韩欧美视频| 国产精品无大码| 一级毛片久久久久久久久女| 91精品国产九色| 伊人久久精品亚洲午夜| 久久精品国产亚洲av香蕉五月| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 国产黄片美女视频| 亚洲av免费在线观看| 欧美色视频一区免费| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 舔av片在线| 一级黄片播放器| 久久久久久久久中文| 久久久久久九九精品二区国产| 亚洲自偷自拍三级| 日本欧美国产在线视频| 国产精品野战在线观看| 国产精品福利在线免费观看| 亚洲av第一区精品v没综合| 欧美中文日本在线观看视频| 免费人成在线观看视频色| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 春色校园在线视频观看| 久久久精品大字幕| 国产视频一区二区在线看| 免费av毛片视频| 欧美成人一区二区免费高清观看| 极品教师在线视频| 伦精品一区二区三区| 婷婷精品国产亚洲av在线| 国产一区二区激情短视频| 午夜激情欧美在线| 国产精品亚洲美女久久久| 国产一区二区三区av在线 | 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 一级a爱片免费观看的视频| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 成人特级黄色片久久久久久久| 亚洲精品色激情综合| 亚洲国产色片| 亚洲成av人片在线播放无| 99国产极品粉嫩在线观看| 我要看日韩黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 永久网站在线| 最近视频中文字幕2019在线8| 亚洲成a人片在线一区二区| 国产探花极品一区二区| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 色尼玛亚洲综合影院| 欧美日韩综合久久久久久 | 人妻少妇偷人精品九色| 亚洲在线观看片| 日本黄大片高清| 丰满人妻一区二区三区视频av| 99久久无色码亚洲精品果冻| 国产色婷婷99| 国产精品福利在线免费观看| 亚洲黑人精品在线| 欧美一级a爱片免费观看看| 身体一侧抽搐| 日本与韩国留学比较| 五月玫瑰六月丁香| 性色avwww在线观看| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 国产人妻一区二区三区在| 看黄色毛片网站| av在线观看视频网站免费| 免费大片18禁| 九色国产91popny在线| 悠悠久久av| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 联通29元200g的流量卡| 亚洲,欧美,日韩| 欧美不卡视频在线免费观看| 国产极品精品免费视频能看的| 最新中文字幕久久久久| 国产男人的电影天堂91| 搡老岳熟女国产| 婷婷精品国产亚洲av在线| 色在线成人网| 亚洲熟妇中文字幕五十中出| 亚洲狠狠婷婷综合久久图片| 免费大片18禁| 午夜福利在线观看吧| 国产单亲对白刺激| 联通29元200g的流量卡| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| 九九热线精品视视频播放| 国产成人影院久久av| 国产精品伦人一区二区| 精品久久久噜噜| 欧美精品啪啪一区二区三区| 国产精品久久久久久久电影| 欧美日本亚洲视频在线播放| 日韩人妻高清精品专区| 亚洲人成伊人成综合网2020| 国产在线精品亚洲第一网站| 少妇的逼水好多| 欧美日韩综合久久久久久 | 亚洲专区中文字幕在线| 国产真实伦视频高清在线观看 | 精品久久久久久久久久久久久| 日韩精品中文字幕看吧| 国产精品福利在线免费观看| 国产精品人妻久久久影院| 一夜夜www| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 一区二区三区高清视频在线| 亚洲av美国av| 成人无遮挡网站| 成人亚洲精品av一区二区| 国产探花极品一区二区| 国产女主播在线喷水免费视频网站 | 丰满乱子伦码专区| 高清在线国产一区| 深夜a级毛片| 俺也久久电影网| 国产亚洲精品综合一区在线观看| 亚洲av免费在线观看| 日本黄色片子视频| 国产高清视频在线播放一区| 男女视频在线观看网站免费| 亚洲成av人片在线播放无| 精品一区二区免费观看| 亚洲精品456在线播放app | 波多野结衣高清无吗| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看| 无遮挡黄片免费观看| 99九九线精品视频在线观看视频| 久久人妻av系列| av在线观看视频网站免费| 99riav亚洲国产免费| 免费av观看视频| 国产免费av片在线观看野外av| 成人性生交大片免费视频hd| 在线观看免费视频日本深夜| av视频在线观看入口| 精品国内亚洲2022精品成人| 国产蜜桃级精品一区二区三区| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 亚洲av一区综合| 男女那种视频在线观看| 午夜福利欧美成人| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 色播亚洲综合网| 十八禁国产超污无遮挡网站| 日日摸夜夜添夜夜添av毛片 | 不卡视频在线观看欧美| 免费在线观看影片大全网站| 亚洲专区中文字幕在线| 美女高潮喷水抽搐中文字幕| 亚洲aⅴ乱码一区二区在线播放| 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 国产亚洲91精品色在线| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 91午夜精品亚洲一区二区三区 | 天堂av国产一区二区熟女人妻| 悠悠久久av| 综合色av麻豆| 国产日本99.免费观看| 中文资源天堂在线| 超碰av人人做人人爽久久| 内地一区二区视频在线| 搡老岳熟女国产| 能在线免费观看的黄片| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 天堂网av新在线| 久久精品国产自在天天线| 亚洲成人久久爱视频| 黄色日韩在线| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 亚洲熟妇熟女久久| 国产 一区 欧美 日韩| 一级a爱片免费观看的视频| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 欧美zozozo另类| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 国内久久婷婷六月综合欲色啪| 亚洲精品一区av在线观看| 久久国内精品自在自线图片| 国产老妇女一区| 日本a在线网址| 国产精品野战在线观看| 免费高清视频大片| 淫妇啪啪啪对白视频| 国内揄拍国产精品人妻在线| 久久草成人影院| 在线观看av片永久免费下载| 日本欧美国产在线视频| 一区二区三区激情视频| 国模一区二区三区四区视频| 色综合色国产| 99九九线精品视频在线观看视频| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 亚洲avbb在线观看| 黄片wwwwww| 日本撒尿小便嘘嘘汇集6| 国产极品精品免费视频能看的| 免费人成视频x8x8入口观看| 黄色配什么色好看| 69人妻影院| 中文字幕av在线有码专区| 我的女老师完整版在线观看| 亚洲图色成人| 一区福利在线观看| 精品日产1卡2卡| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看 | 精品久久久久久,| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 男女视频在线观看网站免费| 国产精品人妻久久久久久| 无遮挡黄片免费观看| 最近在线观看免费完整版| 欧美+日韩+精品| 男人舔女人下体高潮全视频| 国产中年淑女户外野战色| av在线蜜桃| 久久久久国内视频| 女同久久另类99精品国产91| 国产精品久久视频播放| av福利片在线观看| 欧美黑人巨大hd| 日本熟妇午夜| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 联通29元200g的流量卡| 国产av不卡久久| 十八禁国产超污无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 亚洲不卡免费看| 亚洲自拍偷在线| 免费在线观看成人毛片| 精品人妻1区二区| 能在线免费观看的黄片| 在线观看av片永久免费下载| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频| 亚洲经典国产精华液单| 亚洲黑人精品在线| 亚洲经典国产精华液单| 欧美xxxx黑人xx丫x性爽| 色综合色国产| 嫩草影院入口| .国产精品久久| 欧美zozozo另类| 日韩国内少妇激情av| 深爱激情五月婷婷| 日韩欧美在线乱码| 国产精品日韩av在线免费观看| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av成人精品一区久久| 精品一区二区免费观看| 中文在线观看免费www的网站| 婷婷六月久久综合丁香| 久久久久精品国产欧美久久久| 国产高清激情床上av| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 久久久久性生活片| 国产av在哪里看| 乱系列少妇在线播放| av在线蜜桃| 午夜精品在线福利| 亚洲成人久久性| 久久草成人影院| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| 日本-黄色视频高清免费观看| 亚洲va在线va天堂va国产| 国产老妇女一区| 成人无遮挡网站| 又紧又爽又黄一区二区| www.www免费av| av天堂中文字幕网| a在线观看视频网站| 黄色日韩在线| 丝袜美腿在线中文| 黄色日韩在线| 桃红色精品国产亚洲av| 国内精品美女久久久久久| 美女cb高潮喷水在线观看| 熟女电影av网| 亚洲四区av| 身体一侧抽搐| 日韩在线高清观看一区二区三区 | 免费在线观看成人毛片| 色在线成人网| 校园春色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 欧美bdsm另类| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 亚洲人成伊人成综合网2020| av.在线天堂| 制服丝袜大香蕉在线| 日本三级黄在线观看| 欧美日韩瑟瑟在线播放| 国产精品三级大全| 久久人妻av系列| 亚洲成人中文字幕在线播放| 一本一本综合久久| av天堂中文字幕网| av在线天堂中文字幕| 直男gayav资源| 免费看a级黄色片| a在线观看视频网站| 国产伦一二天堂av在线观看| 99热只有精品国产| 91麻豆av在线| 中文字幕av成人在线电影| 毛片一级片免费看久久久久 | 日本与韩国留学比较| 亚洲av免费高清在线观看| 少妇高潮的动态图| 丰满乱子伦码专区| 精品人妻一区二区三区麻豆 | 国产午夜福利久久久久久| 18禁在线播放成人免费| 国产成人a区在线观看| eeuss影院久久| 国内精品久久久久久久电影| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 久久精品国产清高在天天线| 国产精品伦人一区二区| 午夜福利在线在线| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 又黄又爽又刺激的免费视频.| 久久精品国产鲁丝片午夜精品 | 小蜜桃在线观看免费完整版高清| 免费大片18禁| 黄色日韩在线| 麻豆国产av国片精品| 久久热精品热| 国产69精品久久久久777片| 日本五十路高清| 91精品国产九色| 国产精品av视频在线免费观看| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 99久久成人亚洲精品观看| 亚洲18禁久久av| 天堂av国产一区二区熟女人妻| 18禁在线播放成人免费| 精品福利观看| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 精品日产1卡2卡| 99热网站在线观看| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 亚洲精品影视一区二区三区av| 国产精品久久久久久久电影| 在线免费观看不下载黄p国产 | 国产色爽女视频免费观看| 亚洲国产欧美人成| 欧美精品啪啪一区二区三区| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 色av中文字幕| 亚洲精品色激情综合| 久久久久久久久中文| 亚洲av第一区精品v没综合| av福利片在线观看| 午夜爱爱视频在线播放| 18禁黄网站禁片免费观看直播| 精品人妻一区二区三区麻豆 | 成人午夜高清在线视频| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区 | 国语自产精品视频在线第100页| 春色校园在线视频观看| 午夜福利在线在线| 亚洲精品乱码久久久v下载方式| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 亚洲精品久久国产高清桃花| 在线观看av片永久免费下载| 欧美3d第一页| 免费电影在线观看免费观看| 欧美高清成人免费视频www| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 国产美女午夜福利| 色噜噜av男人的天堂激情| 国产精品一区二区免费欧美| 99九九线精品视频在线观看视频| av天堂中文字幕网| 国产麻豆成人av免费视频| 亚洲精品成人久久久久久| 久久国产精品人妻蜜桃| 乱人视频在线观看| 色综合色国产| 午夜精品久久久久久毛片777| 亚洲欧美日韩无卡精品| 国产色爽女视频免费观看| 亚洲精品国产成人久久av| 日本熟妇午夜| 精品欧美国产一区二区三| 午夜影院日韩av| 久久久久精品国产欧美久久久| 精品久久国产蜜桃| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 午夜福利18| 亚洲天堂国产精品一区在线| 淫秽高清视频在线观看| 国产精品1区2区在线观看.| 成人av在线播放网站| 午夜影院日韩av| 午夜久久久久精精品| 淫秽高清视频在线观看| 亚洲专区国产一区二区| 国产中年淑女户外野战色| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 一区二区三区四区激情视频 | 在线观看免费视频日本深夜| 淫秽高清视频在线观看| 亚洲av二区三区四区| 亚洲最大成人手机在线| 深夜a级毛片| 男女那种视频在线观看| 亚洲av一区综合| 成人特级黄色片久久久久久久| 99热这里只有是精品在线观看| 免费av毛片视频| 欧美高清成人免费视频www| 最近最新免费中文字幕在线| 日韩精品青青久久久久久| 久久精品国产亚洲av天美| 国产精品日韩av在线免费观看| 少妇高潮的动态图| 可以在线观看的亚洲视频| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| av视频在线观看入口| 我的老师免费观看完整版| 免费看日本二区| 国产男人的电影天堂91| 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 可以在线观看毛片的网站| 亚洲国产精品成人综合色| 在线观看av片永久免费下载| 日本在线视频免费播放| 久久久精品欧美日韩精品| 欧美区成人在线视频| 久久99热6这里只有精品| 精品乱码久久久久久99久播| 国产免费男女视频| 最近在线观看免费完整版| 日韩中字成人| 免费一级毛片在线播放高清视频| 日本 欧美在线| 欧美又色又爽又黄视频| 国产综合懂色| 一个人免费在线观看电影| 身体一侧抽搐| 99热这里只有精品一区| 久久久久久大精品| 在线观看免费视频日本深夜| 啦啦啦啦在线视频资源| 国产亚洲91精品色在线| 白带黄色成豆腐渣| 国产成人av教育| 免费av毛片视频| 国产伦一二天堂av在线观看| 日韩亚洲欧美综合| eeuss影院久久| 99久久精品一区二区三区| 色精品久久人妻99蜜桃| 亚洲精品一区av在线观看| 亚洲人成网站高清观看| 欧美成人性av电影在线观看| 日韩人妻高清精品专区| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 我的老师免费观看完整版| 内地一区二区视频在线| 最近视频中文字幕2019在线8| 一区二区三区激情视频| 女的被弄到高潮叫床怎么办 | 成人高潮视频无遮挡免费网站| 国产精品一区www在线观看 | 看片在线看免费视频| 在线观看午夜福利视频| 精品久久久久久,| 成人一区二区视频在线观看| 国产精品久久视频播放| 亚洲成人精品中文字幕电影| 十八禁国产超污无遮挡网站| 色综合站精品国产| 不卡视频在线观看欧美| 一区二区三区免费毛片| 免费无遮挡裸体视频| 桃红色精品国产亚洲av| 身体一侧抽搐| 能在线免费观看的黄片| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 亚洲欧美日韩无卡精品| 直男gayav资源| 国产国拍精品亚洲av在线观看| 日韩欧美在线乱码| 女人十人毛片免费观看3o分钟| 精品不卡国产一区二区三区| 国产人妻一区二区三区在| 国产精品无大码| 精品久久久久久久久久久久久| 亚洲熟妇熟女久久| 亚洲,欧美,日韩| 中国美女看黄片| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 性欧美人与动物交配| 他把我摸到了高潮在线观看| 国产伦精品一区二区三区四那| 亚洲av一区综合| 国产视频一区二区在线看| 狂野欧美白嫩少妇大欣赏|