• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Moving horizon based wavelet de-noising method of dual-observed geomagnetic signal for nonlinear high spin projectile roll positioning

    2020-05-23 07:09:24TingtingYinFangxiuJiaXiaomingWang
    Defence Technology 2020年2期

    Ting-ting Yin, Fang-xiu Jia, Xiao-ming Wang

    ZNDY of Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing, 210094, China

    Keywords:High-spin projectile roll positioning Dual-observed geomagnetic signal Wavelet de-noising Discrete wavelet transform

    ABSTRACT Phase-frequency characteristics of approximate sinusoidal geomagnetic signals can be used for projectile roll positioning and other high-precision trajectory correction applications. The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment. In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence, based on the error source analysis, we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence; a moving horizon window guarantees real-time performance and non-cumulative calculation amount. The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment. The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter. The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter. These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.

    1. Introduction

    The 2-dimensional (2D) trajectory correction projectile (TCP),replacing the traditional fuse with trajectory correction module,provides an innovative approach for the traditional ammunition reconstruction.Having the advantages of high efficiency-cost ratio and precise ground attack capabilities, the TCP has become a research hotspot recently[1].The nonlinear roll attitude detection and control of canards is the foundation to generate the required correction force[2].Taking on the responsibility of forming a closed roll control loop, high spin projectile roll positioning has been an active research area due to the tough application environment and strong nonlinearity [3].

    During the whole external ballistics, due to the energy consumption caused by air and friction, the actual projectile spin rate varies with time and space, That is, the amplitude and the frequency of the sinusoidal signal vary with time and different launching conditions [4,5]. Theoretically, the launching overload reaching up to 8000-20000 g,the spin frequency ranging from 150 to 400 r/s as well as the minimal allocation space, limit the applications of gyroscopes, accelerometers, optimal sensors and satellites. Without redundant reference system and weather restrictions, approaches based on geomagnetic sensors have been developed to address the problem of nonlinear roll state estimation.

    Geomagnetic signal based positioning techniques can be classified into geomagnetic-independent, geomagnetic-gyroscopescombined and satellite-geomagnetic-combined (MR/GPS) techniques. Cao gives the solution based on the geomagneticindependent and MR/GPS techniques respectively with prior and real-time satellite provided ancillary angle information [6]. The former technique diverges in multiple trajectory correction conditions and the MR/GPS method described by Li is excluded due to error accumulation characteristics [7]. Regarding MR/GPS techniques, Yang [8] and Shi [9] describe a state estimation algorithm based on Kalman filters and quasi Newton Methods with feasibility and accuracy analysis. Cao describes the approximate roll positioning model where the low frequency satellite data are interpolated at sampling rates [10]. However, the sampled sequence is directly substituted where the noise is never considered in the above models.

    During the trajectory correction process, a high-power electromagnetic actuator is controlled by the high-frequency pulses [11],which should be considered as the TCP platform-specific environmental noise which interferes with the sinusoidal signal to a certain degree as well as the other disturbing factors like the installation error, the measurement noise, the sensor noise and the magnetic noise from iron parts. Some corresponding methods to reduce the disturbance have to be taken during the process of electromagnetic actuator and measuring system design, such as spatial isolation of the sensor and the electromagnetic actuator system, electrical separation of the important measuring signals and control pulses as well as the power supply, the frequency isolation of the control pulses and the projectile rate,the metal shield,ground connection and so on. Meanwhile, consistency and good environmental stability of the permanent magnetics, electrical components and circuit layout have been guaranteed. Even so, the TCP platformspecific disturbance can never be avoided just reduced.

    In order to conduct a successful attitude search procedure, it is desirable to decrease the specific noise before geomagnetic data substitution. The hardware-dependent filtering means, i.e.,resistance-capacitance filters, Butterworth or Chebyshev filters, is rolling period, the wavelet basis function is determined by previously acquired data. Based on the MR/GPS solution model, we compare the filtering and positioning performance based on the proposed method with the results of a Butterworth based bandpass filter.

    2. Dual observed geomagnetic signal for projectile roll positioning

    The MR/GPS positioning method is proved to be an effective solution for projectile roll attitude.The rolling sensitive axes of the geomagnetic sensor S1are consistent with a missile coordinate system,as shown in Fig.1,where ε,γ,φ denote the auxiliary angle,the magnetic measurement angle, and the desired roll angle,Bbx,Bby,BbzandBx,By,Bzrepresent the projection of geomagnetic vector B in missile and sensitive coordinates.

    The theoretic model for projectile roll positioning is given as:

    Taking the natural vector geomagnetic field as the reference coordinate system,the relationship of sensitive outputBbx,Bby,Bbzand projectile posture can be written as:one of the typical de-noising solutions [12]. However, the hardware-dependent filters cannot match different trajectory conditions due to constant parameters, additionally, severe phase shifts need to be compensated. Besides, the de-noising scheme based on Fourier transform is rejected for the time-varying spectrum.The Kalman based filter is another typical de-noising method with approximate projectile model in the roll channel[13].Among these, the unscented Kalman filter (UKF) is more adaptive to the nonlinear variance. However, the performance of the UKF heavily depends on the prior knowledge of system uncertainties, external disturbances and measurement noises,otherwise,probably leading to a suboptimal and even divergent result [14,15].

    The wavelet based de-noising techniques have been widely applied in signal processing and data optimization, having advantages of multi-resolution analysis in both time and frequency domains.Wavelet transforms use various forms of mother wavelets to approximate or decompose the unknown signal.Kaloop et al.apply wavelet de-noising for global positioning system(GPS)monitoring observations[16].Lau describes a wavelet packets based de-noising method for repeat-time multipath filtering in GPS positioning[17].Sang et al. established a wavelet based noise reduction system for hydrologic series data analysis[18]and the performance of discrete wavelet transform is verified [19]. All proposals above are built on the known decomposition and reconstruction level which is unknown and nonlinearly varies in the projectile roll detection.

    In this work,we present a dual-observer based moving horizon wavelet de-noising algorithm that may be applied to noise suppression. Instead of deviated prior information, the real-time dual observed geomagnetic signal strategy extracting rough roll rate extraction for wavelet parameter configuration is described.Considering the similarity of geomagnetic sequence shape for each where θ,ψ and φ are respectively the pitch,drift and roll angle,Bn,Be,Bddenote the projections of the reference geomagnetic vector B in navigation coordinate system.

    In the condition that the signal is known, the magnetic measurement angle is computed as

    Substituting φ=0 into Eq. (2), it becomes:

    According to Fig.1, the auxiliary angle is obtained by:

    Based on the geomagnetic field reference model, such as the World Magnetic Model 2015(WMM2015), the reference vector parameters can be derived with longitude, latitude, and altitude information provided by satellites, as shown in Eq. (6).

    whereFis defined as the total field intensity of B,DandIare the corresponding declination and inclination angle of B in geomagnetic field, shown in Fig.1.

    Fig.1. The coordinate system definitions in geomagnetic field and roll plane.

    Then the solving model for ε can be rewritten as:

    Based on the proved assumption of small angle of attack, the posture angle can be approximately substituted by ballistic inclination and deflection angle, proposed as:

    Based on the proved uniaxial rotation hypothesis,differentiating Eq. (1) gives:

    In theory, the solution for projectile roll positioning can be considered complete. However, judging from the experimental data, the original regulated circular curve has been severely distorted to a non-orthogonal, offset, and inconsistent-amplitude curve. The projectile roll rate value, as reference for the rudder control,is seriously disturbed where the noise vector is introduced and amplified by the differential operation, as shown in Fig. 2.

    The whole schedule of dual-observed geomagnetic signal for projectile roll positioning, where the geomagnetic signal is simultaneously input to the frequency identification system and AD phase sampling system,is shown in Fig. 3.

    The frequency identification system applies a zero-crossing comparison circuit and a timer capture interface, where timings such asandare recorded(see Fig. 4).

    Therefore,

    It can be seen that the trigger timing can be simply and reliably updated at every rising edge of Z-axis output by setting proper timer parameters without accumulation error, even though the system error based on the adjacent period roll rate assumption is introduced. In order to assess the feasibility of the timer captured frequency value as the reference for wavelet decomposition and reconstruction level selection, the systematic error δ ˙φ is modeled and analyzed by trajectory simulations, as shown in Fig. 5.

    It is derived from Fig.5 that the system error is less than 0.7 rad/s and approximately linear with ˙φ, suggesting that the rough roll rate value can be applied as reference for subsequent noise elimination work.

    Fig. 2. The experimentally sampled and solved geomagnetic signal.

    Fig. 3. The dual-observed geomagnetic signal with wavelet de-noising module.

    Fig. 4. The rough roll rate detection for wavelet de-noising parameter determination.

    Fig. 5. The systematic error based on the adjacent period roll rate assumption.

    3. De-noising with discrete wavelet transform (DWT)

    The proposed wavelet de-noising approach consists of two steps. A selective wavelet basis function and level for signal decomposition is the first step.The second step is applying wavelet shrinkage to the wavelet coefficients of the sub-bands selected by a rough captured roll rate value and realizing wavelet reconstruction with the shrunken wavelet coefficients. A detailed description of the above steps is provided as follows.

    The essence of the wavelet transform is to reveal the similarity degree between the decomposed signal and the wavelet basis function. The approximately sinusoidal shaped functions with positive symmetry and regularity, where no phase distortion and signal smoothness are promised,are preferential choices.The basic shape feature of geomagnetic signal is basically unchanged,which suggests that the basis wavelet function selection can be completed off-line with previous experimental data. The functions to be selected are numbered and the decomposition, data classification and reconstruction are repeated to find out the only function closest to the ideal signal.

    Fig. 6 describes the three-level discrete wavelet de-noising procedure as well as the sub-band distribution. The input signal is a discrete time seriesXi=xi-N+1,xi-N+2, …,xi, with the moving horizon window of lengthNillustrated in Fig. 7.

    Fig. 6. The discrete wavelet decomposition and reconstruction tree.

    Fig. 7. Moving horizon window for wavelet de-noising.

    The broad range of decomposition level, denotingNd,can be determined by the following rules withfmin andfmax provided by trajectory simulations.With the captured rough roll rate before,the decomposition level selection range can be further narrowed,where σ1represents the relatively small observational error which can be directly derived from Fig. 2.

    Fig. 8. The experimental geomagnetic sensitive and detection modules.

    Fig.9. The experimentally obtained rough projectile roll rate information and wavelet decomposition levels.

    As an example, the sampling frequency for geomagnetic signalFs is 20 kHz and the timer captured roll rate value is 198 Hz.Therefore,fmin=188 Hz andfmax=208 Hz, and according to equation,Nd=7.

    According to the frequency band distribution in Fig.6,the highfrequency sub-band at the highest decomposition level is the desired frequency band. Reserving coefficients of the corresponding band HNdand setting the rest coefficients to zero, the coefficients for reconstruction are prepared. The final step reconstructs the de-noised geomagnetic signal from the shrunken coefficients with the selected basis wavelet function.

    4. Results and analysis

    In order to assess the impact of the proposed projectile roll positioning based on moving horizon wavelet de-noising,the data acquisition test where the geomagnetic signal is dually observed in amplitude and frequency is conducted, as shown in Fig. 8. The photometrical module based on solar azimuth is also installed onboard. With corrected posture angle as well as accurate solar azimuth vector as input parameters, the roll angle information based on solar azimuth method is obtained as reference for detection performance evaluation [20], where the nonlinear moving horizon estimator and unscented estimator are applied respectively for roll rate and position measurement disturbance elimination.

    After applying the proposed wavelet de-noising method to the experimental data series, we detect the projectile position information with the MR/GPS based solution model. The nonlinear projectile roll rate information, as reference for wavelet parameters,is plotted in Fig. 9.

    In order to compare the conventional filtering method with the proposed one,the hardware band-pass filtered signal integrated in experimental circuits is collected at the same time with the noisy geomagnetic signal. The detailed filtering performance of three typical interrupted sequences is shown in Fig.10,where the noisy,the band-pass filtered, and the wavelet de-noised geomagnetic curves as well as the solved positioning results are displayed.

    It is obvious that the proposed wavelet de-noising strategy and the band-pass filter can both effectively eliminate the noisy component from the original geomagnetic signal with approximate sinusoidal shape and acceptable positioning errors in the heavily disturbed conditions as shown in the first data set.However,in the slightly interfered sections in the latter two data series, the bandpass filter introduced more electrical noise and distortion than the original signal due to the weak signal in the filtering and amplification link.in addition, the resulting phase shifts also need to be compensated by the empirical model in real time.In order to objectively describe the filtering performance, we use the root mean square (RMS), maximum jerk value and the mean error as measures of the detection performance, where the respective amplitudes are processed in a dimensionless manner for comparison(see Tables 1-3).

    The statistical information of the first data sequence proves that under the condition that the geomagnetic signal is exposed tostrong disturbances, the DWT and BPF methods can respectively increase the signal quality by nearly 70% and 50% while the BPF methods need extra phase compensation computation.The second and third data sequences indicate that when autocorrelation of the original geomagnetic signal is better, on the contrary, the SNR(signal-to-noise-ratio) of the hardware filtered signal is worse. On the whole, the DWT based de-noising strategy has much better adaptability without limitations of launching conditions and geomagnetic environments.

    Table 2 Statistical comparison of de-noising performance for the second data sequence.

    Table 3 Statistical comparison of de-noising performance for the third data sequence.

    5. Conclusion

    The geomagnetic signal can be dual observed in frequency and phase domains after simple signal conditioning circuit, where the rough projectile roll rate information can be obtained by integrated timers. With the captured information as reference where the feasibility is proved by trajectory simulations, the moving horizon wavelet de-noising parameters can be determined while the wavelet function selection is conducted off-line with previous experimental data.The experimentally collected original and bandpass filtered geomagnetic signals as well as the simulation wavelet de-noised signals are compared by wave parameters, positioning results shown as curves and statistical information. The noise reduction performance and the positioning stability and adaptability to different experimental conditions reflect the superiority of the proposed dual-observed wavelet de-noising and positioning strategy in width-fixed moving horizon window. Furthermore,more studies of projectile roll characteristics should be conducted in the future to improve the performance wavelet-based analyses,such as noise distribution characteristics and the decomposition level prediction.

    Acknowledgement

    This paper is funded by National Natural Science Foundation of China (61201391).

    18禁国产床啪视频网站| 一边摸一边抽搐一进一小说| 男女做爰动态图高潮gif福利片 | 精品电影一区二区在线| 日韩高清综合在线| 精品久久久久久,| 动漫黄色视频在线观看| 在线观看www视频免费| 在线观看66精品国产| 又黄又粗又硬又大视频| 亚洲色图综合在线观看| 黄色 视频免费看| 国产精品免费视频内射| 欧美日韩av久久| 亚洲男人的天堂狠狠| 大码成人一级视频| 丁香六月欧美| 一级黄色大片毛片| 村上凉子中文字幕在线| 丰满的人妻完整版| 99精国产麻豆久久婷婷| 老鸭窝网址在线观看| 90打野战视频偷拍视频| 久久天堂一区二区三区四区| 男女做爰动态图高潮gif福利片 | 侵犯人妻中文字幕一二三四区| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| av网站免费在线观看视频| 久久精品国产99精品国产亚洲性色 | 亚洲久久久国产精品| 国产黄色免费在线视频| 国产精品一区二区在线不卡| av免费在线观看网站| 久久国产精品男人的天堂亚洲| 久久人妻福利社区极品人妻图片| 99久久国产精品久久久| 久久青草综合色| 在线观看www视频免费| 精品乱码久久久久久99久播| 中文欧美无线码| 国产高清videossex| 老司机在亚洲福利影院| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| av国产精品久久久久影院| 999久久久精品免费观看国产| a级片在线免费高清观看视频| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 欧美一区二区精品小视频在线| 国产一区二区三区综合在线观看| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站 | 精品一品国产午夜福利视频| 精品一品国产午夜福利视频| 国产成人系列免费观看| 久久久久国产精品人妻aⅴ院| 精品国产乱码久久久久久男人| 国产亚洲精品久久久久5区| 国产亚洲精品久久久久5区| 婷婷六月久久综合丁香| 欧美一区二区精品小视频在线| 神马国产精品三级电影在线观看 | 久久人人97超碰香蕉20202| 久久久久亚洲av毛片大全| 欧美激情极品国产一区二区三区| 国产精品偷伦视频观看了| 欧美大码av| 亚洲成人免费电影在线观看| 老汉色av国产亚洲站长工具| 成年人黄色毛片网站| 午夜福利免费观看在线| 日韩人妻精品一区2区三区| 天堂√8在线中文| 长腿黑丝高跟| 黑丝袜美女国产一区| 天天影视国产精品| 嫩草影视91久久| 成人特级黄色片久久久久久久| 看黄色毛片网站| 男女下面进入的视频免费午夜 | 日本五十路高清| 人人妻,人人澡人人爽秒播| 精品国产一区二区三区四区第35| 午夜福利欧美成人| 一级片'在线观看视频| 最近最新免费中文字幕在线| 女性生殖器流出的白浆| 日本黄色视频三级网站网址| 色哟哟哟哟哟哟| 久热爱精品视频在线9| 妹子高潮喷水视频| 黑人巨大精品欧美一区二区蜜桃| 国产在线观看jvid| 国产精品久久久人人做人人爽| 欧美黑人欧美精品刺激| 精品一区二区三卡| 在线av久久热| tocl精华| 很黄的视频免费| 精品午夜福利视频在线观看一区| 日韩大尺度精品在线看网址 | 色精品久久人妻99蜜桃| 国产精品 国内视频| 午夜精品久久久久久毛片777| 性欧美人与动物交配| 久久久久九九精品影院| 可以在线观看毛片的网站| 侵犯人妻中文字幕一二三四区| 久久中文看片网| 青草久久国产| 亚洲国产欧美网| 村上凉子中文字幕在线| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 国产高清视频在线播放一区| 欧美日本中文国产一区发布| 欧美丝袜亚洲另类 | 美女大奶头视频| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| www日本在线高清视频| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 久久国产亚洲av麻豆专区| 免费看a级黄色片| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 亚洲欧美激情在线| 精品久久久久久久毛片微露脸| 中文字幕色久视频| 日本黄色视频三级网站网址| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 老汉色∧v一级毛片| av有码第一页| 精品久久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 亚洲av第一区精品v没综合| 成人18禁在线播放| 91字幕亚洲| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 在线观看午夜福利视频| 在线观看舔阴道视频| 国产不卡一卡二| a在线观看视频网站| 脱女人内裤的视频| 美女大奶头视频| 免费看十八禁软件| 91在线观看av| 亚洲精品一二三| 国产精品美女特级片免费视频播放器 | 9191精品国产免费久久| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 人人妻人人添人人爽欧美一区卜| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 男人舔女人下体高潮全视频| 精品熟女少妇八av免费久了| 成年版毛片免费区| 亚洲av电影在线进入| 大码成人一级视频| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 国产精品久久久久久人妻精品电影| 国产色视频综合| 很黄的视频免费| 黑人欧美特级aaaaaa片| 欧美日韩精品网址| 日本欧美视频一区| 99精国产麻豆久久婷婷| 无人区码免费观看不卡| 久久午夜综合久久蜜桃| 18禁观看日本| 中亚洲国语对白在线视频| 日韩大尺度精品在线看网址 | 18禁美女被吸乳视频| 高清在线国产一区| 三上悠亚av全集在线观看| 午夜亚洲福利在线播放| 久久青草综合色| 国产又爽黄色视频| bbb黄色大片| 女性被躁到高潮视频| 99热只有精品国产| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 香蕉丝袜av| 级片在线观看| 三上悠亚av全集在线观看| 一a级毛片在线观看| 国产精品乱码一区二三区的特点 | 神马国产精品三级电影在线观看 | 欧美在线黄色| 超碰成人久久| 国产成+人综合+亚洲专区| 国产1区2区3区精品| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| 18禁观看日本| 欧美日本亚洲视频在线播放| 天堂动漫精品| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 国产精品偷伦视频观看了| 99久久人妻综合| 午夜影院日韩av| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 亚洲一区二区三区色噜噜 | 91成年电影在线观看| 性色av乱码一区二区三区2| 亚洲av成人不卡在线观看播放网| 亚洲精品一二三| 国产亚洲精品久久久久5区| 精品久久久久久成人av| 在线观看舔阴道视频| 精品一品国产午夜福利视频| 久久久久国内视频| 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 国产乱人伦免费视频| 日韩欧美一区视频在线观看| 亚洲五月婷婷丁香| 亚洲精品国产色婷婷电影| 激情视频va一区二区三区| 长腿黑丝高跟| 狠狠狠狠99中文字幕| 极品人妻少妇av视频| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 国产成人精品在线电影| 在线观看免费午夜福利视频| 91老司机精品| 午夜两性在线视频| 天堂√8在线中文| 精品熟女少妇八av免费久了| 一级毛片高清免费大全| 久久久久亚洲av毛片大全| 久久中文字幕一级| 一级片'在线观看视频| 伊人久久大香线蕉亚洲五| 电影成人av| 国产成人精品久久二区二区免费| 亚洲成av片中文字幕在线观看| 91麻豆av在线| 色在线成人网| bbb黄色大片| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 欧美激情 高清一区二区三区| 精品久久蜜臀av无| 新久久久久国产一级毛片| 青草久久国产| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 成人免费观看视频高清| 99热国产这里只有精品6| 老鸭窝网址在线观看| 日韩欧美免费精品| 高清黄色对白视频在线免费看| av福利片在线| 人人澡人人妻人| 日韩精品中文字幕看吧| 天天影视国产精品| 中国美女看黄片| 日韩大尺度精品在线看网址 | 丝袜美足系列| www.自偷自拍.com| 亚洲九九香蕉| 在线av久久热| 少妇 在线观看| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 精品久久久久久,| 又大又爽又粗| 真人做人爱边吃奶动态| 日韩欧美国产一区二区入口| 香蕉丝袜av| 99久久国产精品久久久| 丁香六月欧美| 91成人精品电影| 亚洲五月天丁香| 夫妻午夜视频| 亚洲在线自拍视频| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 亚洲熟妇中文字幕五十中出 | 老司机午夜福利在线观看视频| 亚洲专区字幕在线| 另类亚洲欧美激情| 大香蕉久久成人网| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| av有码第一页| 嫁个100分男人电影在线观看| 夫妻午夜视频| 热99国产精品久久久久久7| 18禁观看日本| 亚洲av熟女| 91大片在线观看| 乱人伦中国视频| 男女之事视频高清在线观看| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看 | 老熟妇乱子伦视频在线观看| av网站在线播放免费| 精品国产亚洲在线| 久久精品国产亚洲av香蕉五月| 黑人巨大精品欧美一区二区mp4| 最好的美女福利视频网| 国产一区二区激情短视频| 久久这里只有精品19| 香蕉久久夜色| 成人三级黄色视频| 在线观看午夜福利视频| 99国产精品99久久久久| 天天影视国产精品| 久久九九热精品免费| 日日爽夜夜爽网站| 天天影视国产精品| 如日韩欧美国产精品一区二区三区| av电影中文网址| 免费看a级黄色片| 两性夫妻黄色片| 看片在线看免费视频| 亚洲欧美激情在线| 国产精品二区激情视频| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 在线观看日韩欧美| 亚洲国产精品合色在线| a级片在线免费高清观看视频| x7x7x7水蜜桃| 97人妻天天添夜夜摸| 88av欧美| 久久久久国产一级毛片高清牌| 久久国产精品影院| 女生性感内裤真人,穿戴方法视频| 天堂影院成人在线观看| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 免费在线观看日本一区| 日韩三级视频一区二区三区| 国产精品野战在线观看 | 久久热在线av| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 成年人免费黄色播放视频| 国产成人av激情在线播放| 免费在线观看完整版高清| 久久影院123| 久久天堂一区二区三区四区| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 久久人妻av系列| 亚洲精品一二三| 久久人妻av系列| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频 | 色尼玛亚洲综合影院| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 日韩欧美三级三区| 免费在线观看日本一区| 亚洲av电影在线进入| 亚洲欧美一区二区三区久久| 精品免费久久久久久久清纯| a级毛片黄视频| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 麻豆av在线久日| 中文亚洲av片在线观看爽| 国产色视频综合| 成人av一区二区三区在线看| 精品久久久久久电影网| 一级a爱片免费观看的视频| 国产亚洲欧美精品永久| 亚洲激情在线av| 制服人妻中文乱码| 啦啦啦 在线观看视频| 一级毛片高清免费大全| 中文字幕人妻丝袜制服| 久久久久国产精品人妻aⅴ院| 久久久久久久精品吃奶| 亚洲五月色婷婷综合| 在线观看免费日韩欧美大片| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 久久人人精品亚洲av| 婷婷丁香在线五月| 精品国产美女av久久久久小说| 欧美大码av| www.999成人在线观看| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| 老司机深夜福利视频在线观看| cao死你这个sao货| 亚洲熟女毛片儿| 午夜精品在线福利| 国产精品影院久久| 99久久综合精品五月天人人| 在线永久观看黄色视频| 国产99久久九九免费精品| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| 久久久久国内视频| 欧美日韩瑟瑟在线播放| videosex国产| 人人澡人人妻人| 精品久久久久久,| 操出白浆在线播放| 夜夜看夜夜爽夜夜摸 | 国产麻豆69| 国产一区二区三区视频了| 日韩人妻精品一区2区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产野战对白在线观看| 日本 av在线| 国产麻豆69| 国产一区二区三区视频了| 在线观看午夜福利视频| 久久久久久久久中文| 男女床上黄色一级片免费看| 在线播放国产精品三级| 亚洲成人精品中文字幕电影 | 成人黄色视频免费在线看| 亚洲专区国产一区二区| 亚洲九九香蕉| 亚洲色图综合在线观看| 国产精品国产高清国产av| 久久久久久大精品| 一级毛片女人18水好多| 深夜精品福利| 精品午夜福利视频在线观看一区| 午夜视频精品福利| 午夜免费激情av| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 亚洲人成电影免费在线| 在线观看www视频免费| 电影成人av| 成年版毛片免费区| 88av欧美| 欧美黄色淫秽网站| 韩国精品一区二区三区| 电影成人av| 看片在线看免费视频| 男人舔女人下体高潮全视频| 99久久国产精品久久久| 欧美亚洲日本最大视频资源| a在线观看视频网站| 国产精品98久久久久久宅男小说| 免费女性裸体啪啪无遮挡网站| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久电影网| 亚洲自拍偷在线| 少妇的丰满在线观看| 免费看a级黄色片| 两性夫妻黄色片| 一级a爱视频在线免费观看| 最近最新中文字幕大全免费视频| 欧美人与性动交α欧美软件| 亚洲性夜色夜夜综合| 国产精品野战在线观看 | 精品国内亚洲2022精品成人| 久久精品影院6| 日韩免费高清中文字幕av| 免费看十八禁软件| 波多野结衣高清无吗| 免费久久久久久久精品成人欧美视频| 国产精品二区激情视频| 高清欧美精品videossex| 又大又爽又粗| 精品人妻1区二区| 午夜久久久在线观看| www.999成人在线观看| 一本综合久久免费| 国产精品偷伦视频观看了| 国产男靠女视频免费网站| 国产精品 欧美亚洲| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 色在线成人网| 亚洲免费av在线视频| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区四区五区乱码| 97碰自拍视频| 免费在线观看亚洲国产| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 黄色女人牲交| 亚洲国产欧美网| 国产精品久久视频播放| 自线自在国产av| 人妻久久中文字幕网| 天堂动漫精品| 欧美日韩瑟瑟在线播放| 在线观看日韩欧美| 亚洲精品久久成人aⅴ小说| 窝窝影院91人妻| 欧美在线一区亚洲| 日韩免费av在线播放| 国产激情久久老熟女| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一出视频| 99在线视频只有这里精品首页| 天天影视国产精品| 脱女人内裤的视频| 国产成人精品无人区| 一进一出抽搐gif免费好疼 | www.999成人在线观看| 欧美 亚洲 国产 日韩一| 如日韩欧美国产精品一区二区三区| 国产在线观看jvid| 国产精品电影一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 99久久综合精品五月天人人| 成年人免费黄色播放视频| 激情在线观看视频在线高清| 人人妻人人澡人人看| 精品人妻在线不人妻| 国产成人免费无遮挡视频| 亚洲精华国产精华精| 亚洲 国产 在线| 国产片内射在线| 精品久久久久久久毛片微露脸| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 欧美老熟妇乱子伦牲交| 欧美乱色亚洲激情| 久久香蕉激情| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看 | 天天躁夜夜躁狠狠躁躁| 高清在线国产一区| 99国产综合亚洲精品| 亚洲三区欧美一区| 在线av久久热| 免费高清视频大片| 日韩精品中文字幕看吧| 午夜老司机福利片| 精品乱码久久久久久99久播| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 国产高清激情床上av| 国产成人av激情在线播放| 视频区欧美日本亚洲| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 热re99久久国产66热| 91av网站免费观看| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| 9热在线视频观看99| a在线观看视频网站| 国产高清视频在线播放一区| aaaaa片日本免费| 欧美在线黄色| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看| 人人妻人人添人人爽欧美一区卜| 视频区欧美日本亚洲| 欧美乱色亚洲激情| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 99热国产这里只有精品6| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 国产亚洲欧美在线一区二区| 亚洲欧美日韩另类电影网站| 成年女人毛片免费观看观看9| 国产亚洲欧美在线一区二区| 中文亚洲av片在线观看爽| 婷婷丁香在线五月| 国产免费现黄频在线看| 一区二区三区激情视频| 国产亚洲欧美精品永久| 黄色视频,在线免费观看| 12—13女人毛片做爰片一| 国产高清videossex| 亚洲七黄色美女视频|