• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of high overload on the collimating lenses of laser ranging systems

    2020-05-23 07:09:12LinGnHeZhngBinLiuJunhongWng
    Defence Technology 2020年2期

    Lin Gn , He Zhng , Bin Liu , Junhong Wng

    a Nanjing University of Science and Technology, School of Mechanical Engineering, Nanjing 210094, China

    b Northwest Industrial Group Co., Ltd., Xi’an, China

    Keywords:High overload Laser ranging Emission lens Buffer isolation

    ABSTRACT Collimating lenses are an important component of laser ranging systems, and high overload environments severely affect the beam shaping effect of such lenses. This study proposes a buffer isolation method on the basis of impact stress wave attenuation theory for collimating lens spacers. ANSYS finite element software was applied to simulate the high load dynamics of collimating lenses, and the buffer isolation performance of different materials and composite structures was compared and analysed.Optical simulation analysis of the collimating lenses under different buffer conditions was performed using ZEMAX software to study the mechanism by which a high overload affects the collimating lenses.High overload and optical shaping experiments based on theoretical analysis were further conducted.Results showed the superiority of butadiene rubber to polytetrafluoroethylene after application of 70000 g impact acceleration.The combination-gasket method was superior to the single-gasket method,and the sandwich combination-gasket method was superior to the double-layer combination-gasket method.

    1. Introduction

    Laser ranging is used extensively in the civil, aerospace and military fields [1-4]. In the military field, laser ranging systems must typically withstand large launch overloads(≤70000 g)[5-7].Given the precision of laser collimating lenses and the specific properties of the material from which they are made, these lenses are plastically deformed when subjected to a high overload,thereby diminishing the accuracy of distance measurements [8,9].

    Generally, the effect of high overload on laser ranging systems can be reduced in two ways, namely, (1) optimising the laser ranging structure and (2) designing a suitable vibration isolation system [10]. For pathway 1, the literature [11,12] has studied the impact responses of high overload structures and found that despite certain benefits exerted by such approaches, they are considerably restricted by the adopted structure. By comparison,pathway 2 is a more effective technical approach because it can reduce impact loads by implementing a vibration isolation system without changing the structure of the laser system[13,14].

    This study proposes a gasket buffer vibration isolation method on the basis of impact stress wave propagation theory. The nonlinear dynamics of a high load was simulated using ANSYS finite element analysis software,and the stresses of the laser collimating lens under different buffer conditions were compared and analysed. ZEMAX software was used to simulate the laser collimating lens optically to determine the changes in beam shaping quality.High overload impact tests and optical shaping experiments were conducted to record impact acceleration curves and beam shaping quality under different buffer conditions.Finally,the actual effect of the buffer vibration isolation method was verified.

    2. Impact stress wave propagation theory

    The transmitting overload was simplified as a half-sinusoidal acceleration load, as shown in Fig.1.

    The expression is

    Fig.1. Half-sinusoidal acceleration load.

    In view of space constraints,spring isolation systems cannot be used to improve the resistance of a high overload system[15,16].In this study,a gasket was used to attenuate the impact gravitational wave [17-19]. During the impact process, the velocity of elastic wave propagation in a material under uniaxial strain is

    whereC0is the wave velocity, and ρ0C0is the material wave impedance.

    During stress wave propagation, the intensity relationship among the reflected,transmitted and incident waves is as follows:

    where the stress wave reflection coefficientFis expressed as

    The transmission coefficientTis expressed as

    The wave impedance rationof different materials is

    Fig. 2. Schematic of the spread of stress waves in a laser emission system.

    σRmeans“Stress generated by particle vibration of reflected wave”,νRmeans “The velocity of the particle vibration of the reflected wave”, σTmeans “Stress generated by particle vibration of transmitted wave”,νTmeans“The velocity of the particle vibration of the transmitted wave”.

    The propagation process of stress waves inside a laser emission system is shown in Fig. 2.

    During the high overload process, the stress wave propagates from the bottom to the top of the system.When a wave encounters the interface of different materials, it is reflected and transmitted.The transmission portion of the wave propagates towards the interior of the system. When the transmission stress wave propagates to the junction of the gasket, the wave impedances of the gasket and shell materials are considerably varied. The transmission coefficient is significantly smaller than that of the outer body,and part of the stress wave is reflected to form a tensile wave and other transmission portions. The stress wave is reflected and transmitted multiple times at the gasket, thereby resulting in attenuation.

    As a gasket material, polytetrafluoroethylene (PTFE) exhibits strong corrosion and weather resistance; it is non-hygroscopic,non-flammable, chemically stable and can be used in the temperature range of 190°C-260°C. Thus, such features provide stable mechanical properties. Rubber has extremely high elasticity and tensile strength, which can effectively absorb impact energies and mitigate impact to reduce impact deformation. In this work, the buffer isolation effects of these materials were compared and analysed. Table 1 lists the parameters of the two materials.

    3. Nonlinear dynamics simulation

    Eight-node 3D Solid164 solid elements were selected for modelling.In view of structural symmetry,a 1/4 model was created to simplify the operations and ensure the accuracy of the results.

    The strain rate effect and failure were investigated when the laser ranging system was subjected to a strong impact acceleration.Simulation was performed using the *MAT_PLASTIC_KINEMATIC elastic-plastic dynamic model by adjusting β to select isotropichardening parameters or servo stiffness. The strain rate was obtained by the Cowper-Symonds model. The yield stress was calculated as

    Table 1 Housing and cushioning material parameters.

    Fig.3. Maximum stress cloud on the front side of the emission lens:(a)1 mm PTFE cushioning material,(b)1 mm butadiene rubber cushioning material,(c)0.5 mm PTFE+0.5 mm butadiene rubber and (d) 0.3 mm butadiene rubber + 0.4 mm PTFE + 0.3 mm butadiene rubber.

    Fig.4. Maximum stress cloud on the back side of the emission lens:(a)1 mm PTFE cushioning material,(b)1 mm butadiene rubber cushioning material,(c)0.5 mm PTFE+0.5 mm butadiene rubber and (d) 0.3 mm butadiene rubber + 0.4 mm PTFE + 0.3 mm butadiene rubber.

    where σ0is the initial yield stress, ε˙ is the strain rate,CandPCowper-Symonds are the strain rate parameters,is the effective plastic strain andEPis the plastic hardening modulus.

    A 70000 g half-sinusoidal impact acceleration was applied to the laser ranging system for a duration of 12 ms. The CONTACT_ERODING_SURFACE_TO_SURFACE algorithm was selected at the contact.

    Fig.3(a)and Fig.4(a)show the maximum stress cloud of a laseremitting lens with a 1 mm PTFE buffer.The maximum stress of the lens (19.75 MPa) appears at 10524 nodes, and Fig. 5(a) shows the related stress curve. Figs. 3(b) and 4(b) depict the stress cloud diagram of 1 mm butadiene rubber as the cushioning gasket. The maximum stress(1.276 MPa)appears at 10336 nodes,and Fig.5(b)shows the related stress curve.The results of this simulation show that butadiene rubber is superior to PTFE in terms of buffering performance.

    The buffering efficiency of the combination-gasket method is analysed. Firstly, a double-layer combination of 0.5 mm PTFE and butadiene rubber was implemented, and Figs. 3(c) and 4(c) show the related stress cloud diagrams.The maximum stress(1.012 MPa)appears at 10383 nodes, and Fig. 5(c) shows the related stress curve. The combination of the two gaskets further attenuates the stress wave at the interface of the different materials. As such, the maximum stress in the system is less than that observed after buffering with the monomer material, the impact curve jitter is reduced and the smoothness is improved.

    Fig.5. Maximum stress curves:(a)1 mm PTFE cushioning material,(b)1 mm butadiene rubber cushioning material,(c)0.5 mm PTFE+0.5 mm butadiene rubber and(d)0.3 mm butadiene rubber + 0.4 mm PTFE + 0.3 mm butadiene rubber.

    Table 2 Optical simulation parameters.

    The buffering effect of the sandwich combination-gasket method was then investigated using a three-layer combination of butadiene rubber-PTFE-butadiene rubber. Figs. 3(d) and 4(d)show the related stress cloud diagrams. The maximum stress(0.7236 MPa)appears at 10426 nodes,and Fig.5(d)shows the stress curve in comparison with the two-layer buffer gasket,this method includes a third layer, and the stress wave is further attenuated inside the gasket. Therefore, the sandwich combination-gasket method displays the smallest impact stress peak and the smoothest curve among the gasket configurations tested.

    4. Emission lens optical simulation

    This study utilises a pulse semiconductor laser, and ZEMAX optical system analysis software is applied to simulate the collimation effect. Table 2 lists the relevant parameters.

    Fig. 6. Far-field spot samples: (a) Original spot,(b) spot after collimation, (c) collimation spot after impact with 1 mm PTFE, (d) collimation spot after impact with mm butadiene rubber, (e) collimation spot after impact with 0.5 mm PTFE and 0.5 mm butadiene rubber and (f) collimation spot after impact with 0.3 mm butadiene rubber + 0.4 mm PTFE + 0.3 mm butadiene rubber.

    Fig. 7. Principle and structure of the impact test.

    Fig. 6(a) shows the original spot. The spot energy is diverged,and the central irradiation brightness is 8.03×10-4W/cm2.Fig. 6(b) shows the spot obtained after the collimation of the lens.The energy of the spot is concentrated, and the central radiation brightness reaches 8.5672 W/cm2. After the application of a high overload, the collimated spot energy observed after buffering by the PTFE gasket is diverged, the spot is not uniform (Fig. 6(c)) and the central irradiation brightness is reduced to 0.7423 W/cm2. As shown in Fig.6(d),the spot energy of the butadiene rubber buffer is concentrated,the spot is uneven,the size is reduced and the central irradiation brightness is increased to 4.6214 W/cm2. As shown in Fig. 6(e), the size of the spot after buffering by the double-layer combination gasket continues to decrease, the energy is concentrated and the central irradiation brightness reaches 5.7824 W/cm2. The sandwich combination gasket exhibits the smallest uniform spot (Fig. 6(f)), which is consistent with the quality of the focused spot before impact, a concentrated energy and a central irradiation brightness of 7.8467 W/cm2. Comparison shows that the quality of the laser collimating lens spot significantly varies under different buffer conditions after the application of a 70000 g acceleration overload.Butadiene rubber is superior to Teflon,and the sandwich combination-gasket method is superior to the double-layer combination-gasket method.

    5. High overload and optical shaping experiments

    To verify the influence of high overload on laser emission systems, impact tests were conducted in the laboratory. Fig. 7 shows the principle of the impact test.An air pump generates pressure to drive the impact table to generate acceleration.The impact load is acquired by the acceleration detection module,and the lens is fixed at the top of the impact table. Shock was applied to 1 mm PTFE,1 mm butadiene rubber, 0.5 mm PTFE +0.5 mm butadiene rubber and 0.5 mm butadiene rubber +0.5 mm PTFE +0.5 mm butadiene rubber.Acceleration was set to 70000 g,and the impact was applied thrice under each condition.The impact parameters under different conditions were then recorded.Fig.8(a)~8(d)show the data curves.The largest stress peak (approximately 1200 kPa) is detected after buffering with 1 mm butadiene rubber, whereas the lowest stress peak (approximately 700 kPa) is observed from the ‘sandwich’gasket of 0.5 mm butadiene rubber + 0.5 mm PTFE + 0.5 mm butadiene rubber. The three methods show insignificant differences in pulse width, all of which are approximately thrice the original impulse pulse width. This finding is consistent with the simulation results.

    Fig.8. Acceleration curves:(a)1 mm PTFE,(b)1 mm butadiene rubber,(c)0.5 mm PTFE and 0.5 mm butadiene rubber and(d)0.3 mm butadiene rubber+0.4 mm PTFE+0.3 mm butadiene rubber.

    Fig. 9. Spotting experimental principle.

    A spotting experiment was performed on the emission lens.Fig.9 presents the experimental principle,and Fig.10(a)~10(f)show the measured spots. The original speckle size is extremely large,and the energy dissipates. After shaping by the lens, the speckle energy is concentrated and the spot size decreases. After the application of a high overload, the spot energy obtained after buffering by the PTFE gasket is diverged, whereas that observed after buffering by the butadiene rubber gasket is concentrated and its size is reduced. The size of the spot observed after buffering by the double-layer gasket continues to decrease, and the energy is concentrated. Buffering by the sandwich combination pad yields the smallest uniform spot size and concentrated energy, which is consistent with the quality of the shaped spot before impact.Comparison indicates that the spot quality significantly varies under different buffer conditions after applying a 70,000gacceleration overload. The laser energy and spot size in the sandwich combination-gasket mode are virtually identical to those observed before impact.

    6. Conclusion

    To investigate the influence of a high overload environment on laser emission systems, this study proposes a buffer isolation method on the basis of stress wave propagation theory. Dynamic and optical simulations and experimental methods were used to compare and analyse the damping performance of different vibration isolation materials and combinations.The results show that butadiene rubber exerts excellent vibration isolation effects, and the overload observed after buffering with this material is only 1/15 that of PTFE.In addition,the beam shaping quality of the former is approximately seven times higher than that of the latter. The double-layer or sandwich combination of PTFE and rubber can further improve the buffering effects,and the buffer peak overload of the sandwich combination mode is 1/27 that of PTFE and 1/14 that of the double layer.The quality of spot shaping after buffering by the sandwich combination is consistent with the quality of spot shaping before impact.The proposed method simplifies the system structure, reduces the influence of high overload on the laser emission system and improves the working stability of the system.

    Fig.10. Experimental far-field spot samples: (a) Original spot, (b) spot after collimation, (c) collimation spot after impact with 1 mm PTFE, (d) collimation spot after impact with 1 mm butadiene rubber, (e) collimation spot after impact with 0.5 mm PTFE and 0.5 mm butadiene rubber and (f) collimation spot after impact with 0.3 mm butadiene rubber + 0.4 mm PTFE + 0.3 mm butadiene rubber.

    Funding

    National Natural Science Foundation of China (51605227); the Fundamental Research Funds for the Central Universities(NUST30915011303).

    免费看av在线观看网站| 午夜爱爱视频在线播放| 午夜老司机福利剧场| 男插女下体视频免费在线播放| 日韩亚洲欧美综合| 久久久久性生活片| 亚洲人成网站高清观看| 天堂av国产一区二区熟女人妻| 欧美人与善性xxx| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐gif免费好疼| 国产真实伦视频高清在线观看 | 一边摸一边抽搐一进一小说| 很黄的视频免费| 国产人妻一区二区三区在| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦观看免费观看视频高清| 看免费成人av毛片| 欧美最新免费一区二区三区| 亚洲美女黄片视频| 亚洲一级一片aⅴ在线观看| 色综合站精品国产| 亚洲欧美日韩高清专用| 亚洲在线观看片| 亚洲午夜理论影院| 日本五十路高清| 午夜a级毛片| 噜噜噜噜噜久久久久久91| 国内毛片毛片毛片毛片毛片| 18禁黄网站禁片午夜丰满| 免费看日本二区| 国产色爽女视频免费观看| 日本熟妇午夜| 成人国产一区最新在线观看| 久久99热这里只有精品18| 亚洲最大成人av| 国内精品宾馆在线| 中文字幕人妻熟人妻熟丝袜美| 国产免费男女视频| 色哟哟哟哟哟哟| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 亚洲一区高清亚洲精品| 赤兔流量卡办理| 国产一级毛片七仙女欲春2| 久久亚洲精品不卡| 毛片一级片免费看久久久久 | 又紧又爽又黄一区二区| 五月伊人婷婷丁香| 两个人视频免费观看高清| 国产中年淑女户外野战色| 中文字幕久久专区| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 亚洲va在线va天堂va国产| 91精品国产九色| 少妇人妻精品综合一区二区 | 久久久久久大精品| 能在线免费观看的黄片| 久久国产精品人妻蜜桃| 成人国产综合亚洲| 伦精品一区二区三区| 日韩精品中文字幕看吧| 国产免费一级a男人的天堂| 国产精品av视频在线免费观看| 一夜夜www| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 在线观看66精品国产| 亚洲美女视频黄频| 亚洲精品影视一区二区三区av| 中出人妻视频一区二区| 国内精品一区二区在线观看| 搡女人真爽免费视频火全软件 | 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 免费av不卡在线播放| 五月伊人婷婷丁香| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 看黄色毛片网站| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 久久精品国产亚洲网站| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 看黄色毛片网站| 精品人妻1区二区| 久久久久久久午夜电影| 最新在线观看一区二区三区| 日韩,欧美,国产一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 婷婷亚洲欧美| 日韩欧美一区二区三区在线观看| 丝袜美腿在线中文| 国产在视频线在精品| h日本视频在线播放| 一区福利在线观看| 我要搜黄色片| 97超级碰碰碰精品色视频在线观看| 尾随美女入室| 国产不卡一卡二| 亚洲欧美日韩卡通动漫| 亚洲国产精品久久男人天堂| 精品不卡国产一区二区三区| 美女高潮喷水抽搐中文字幕| 99在线视频只有这里精品首页| 久久国产精品人妻蜜桃| 国内精品美女久久久久久| 日韩欧美三级三区| 男人的好看免费观看在线视频| av黄色大香蕉| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 国产真实乱freesex| 国产精品一区二区免费欧美| 国产爱豆传媒在线观看| 国产精品自产拍在线观看55亚洲| 麻豆av噜噜一区二区三区| 人人妻人人看人人澡| 精品人妻偷拍中文字幕| 嫩草影院新地址| 婷婷丁香在线五月| 99视频精品全部免费 在线| 精品一区二区免费观看| 午夜精品在线福利| 麻豆一二三区av精品| 亚洲专区中文字幕在线| 一级毛片久久久久久久久女| 极品教师在线视频| 麻豆成人av在线观看| 免费电影在线观看免费观看| 给我免费播放毛片高清在线观看| 日韩一区二区视频免费看| 日韩人妻高清精品专区| av视频在线观看入口| 亚洲精品乱码久久久v下载方式| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添av毛片 | 欧美高清性xxxxhd video| 免费无遮挡裸体视频| www.色视频.com| www.www免费av| 国产综合懂色| 午夜福利高清视频| 观看美女的网站| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 少妇的逼好多水| 精品无人区乱码1区二区| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 97热精品久久久久久| 一本精品99久久精品77| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 久久久久性生活片| 波野结衣二区三区在线| 亚洲熟妇熟女久久| 免费看av在线观看网站| 亚洲国产精品合色在线| 日韩欧美三级三区| 国产美女午夜福利| 国产探花极品一区二区| 他把我摸到了高潮在线观看| 国内精品宾馆在线| 免费看光身美女| 国产高清激情床上av| 午夜老司机福利剧场| 亚洲在线自拍视频| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 美女高潮的动态| 看十八女毛片水多多多| 日韩欧美三级三区| 国产视频内射| 国产精品一区二区三区四区免费观看 | 国内精品一区二区在线观看| 久久久久久久久久黄片| 在线免费十八禁| 亚洲,欧美,日韩| 男人舔女人下体高潮全视频| 久久久久久九九精品二区国产| 亚洲av日韩精品久久久久久密| 欧美3d第一页| 国产精品98久久久久久宅男小说| 久久精品国产自在天天线| 最后的刺客免费高清国语| 免费人成在线观看视频色| 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 国产成人a区在线观看| 12—13女人毛片做爰片一| 美女xxoo啪啪120秒动态图| 精品午夜福利视频在线观看一区| ponron亚洲| 免费观看人在逋| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 极品教师在线视频| 22中文网久久字幕| 色精品久久人妻99蜜桃| 久久久久免费精品人妻一区二区| 在线免费观看的www视频| 国产成人av教育| 人妻制服诱惑在线中文字幕| 久久精品综合一区二区三区| 天堂影院成人在线观看| 色在线成人网| 国产真实乱freesex| 日本熟妇午夜| 久久久久久国产a免费观看| 欧美色视频一区免费| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄 | 波多野结衣高清无吗| 亚洲黑人精品在线| 午夜免费男女啪啪视频观看 | 国产高清有码在线观看视频| 国产色婷婷99| 午夜福利欧美成人| 久久久国产成人免费| 中文字幕高清在线视频| 精品乱码久久久久久99久播| 校园春色视频在线观看| 97碰自拍视频| 亚洲va在线va天堂va国产| 日韩欧美在线乱码| 国产黄a三级三级三级人| 五月伊人婷婷丁香| 午夜激情福利司机影院| 亚洲国产日韩欧美精品在线观看| 日韩一本色道免费dvd| 色哟哟·www| 伊人久久精品亚洲午夜| 精品一区二区三区人妻视频| 久久久久久久久久黄片| 琪琪午夜伦伦电影理论片6080| 听说在线观看完整版免费高清| 一级黄片播放器| 欧美潮喷喷水| 日本-黄色视频高清免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人av| 国产成人aa在线观看| 校园春色视频在线观看| 日韩在线高清观看一区二区三区 | 国产不卡一卡二| 夜夜爽天天搞| 夜夜夜夜夜久久久久| 窝窝影院91人妻| 一个人看的www免费观看视频| 香蕉av资源在线| 国产精品久久久久久av不卡| 内地一区二区视频在线| 成年版毛片免费区| 美女免费视频网站| 男女之事视频高清在线观看| 51国产日韩欧美| 午夜免费男女啪啪视频观看 | 不卡一级毛片| 国产精品,欧美在线| 夜夜爽天天搞| 国产精品伦人一区二区| 国产精品人妻久久久久久| 日韩欧美精品v在线| 成人午夜高清在线视频| 国产亚洲欧美98| 久久精品国产亚洲av涩爱 | 久久国内精品自在自线图片| 国产色婷婷99| 亚洲中文字幕一区二区三区有码在线看| 五月玫瑰六月丁香| 不卡视频在线观看欧美| 1000部很黄的大片| 亚洲精品国产成人久久av| 春色校园在线视频观看| 亚洲国产日韩欧美精品在线观看| 成人av一区二区三区在线看| 99热网站在线观看| 久久久色成人| 成人综合一区亚洲| 又粗又爽又猛毛片免费看| 成人特级av手机在线观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 日本免费一区二区三区高清不卡| 极品教师在线免费播放| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 变态另类成人亚洲欧美熟女| 狂野欧美激情性xxxx在线观看| 久久久国产成人免费| 精品久久久噜噜| 一进一出抽搐gif免费好疼| 国产成人福利小说| 免费av毛片视频| or卡值多少钱| 少妇人妻精品综合一区二区 | 91麻豆精品激情在线观看国产| 久久久久九九精品影院| 国产单亲对白刺激| 看十八女毛片水多多多| 日韩欧美三级三区| 日韩高清综合在线| 观看免费一级毛片| 一区二区三区高清视频在线| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 亚洲无线观看免费| 99精品在免费线老司机午夜| 女同久久另类99精品国产91| 成人av一区二区三区在线看| 国产亚洲精品久久久com| 午夜日韩欧美国产| 国产精品一及| 乱系列少妇在线播放| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 久久午夜亚洲精品久久| 色5月婷婷丁香| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 亚洲电影在线观看av| 日本 欧美在线| 国产精品野战在线观看| 91av网一区二区| 好男人在线观看高清免费视频| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 成年免费大片在线观看| 一区二区三区激情视频| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 日本 av在线| 国产精华一区二区三区| 99久久九九国产精品国产免费| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 91久久精品国产一区二区三区| 五月玫瑰六月丁香| 99riav亚洲国产免费| 国产aⅴ精品一区二区三区波| 天美传媒精品一区二区| 国产一区二区在线观看日韩| 中文字幕熟女人妻在线| 欧美在线一区亚洲| 欧美xxxx性猛交bbbb| 成人综合一区亚洲| 国产一区二区三区视频了| 美女黄网站色视频| 久久国内精品自在自线图片| 级片在线观看| 国产精品98久久久久久宅男小说| 99热网站在线观看| 亚洲精品久久国产高清桃花| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆 | 亚洲精品亚洲一区二区| 十八禁网站免费在线| 国产精品伦人一区二区| 国产三级在线视频| 在现免费观看毛片| 婷婷亚洲欧美| 嫩草影院新地址| 99精品在免费线老司机午夜| 香蕉av资源在线| 日本在线视频免费播放| 精品人妻视频免费看| 久9热在线精品视频| 国产亚洲精品久久久久久毛片| 亚洲无线在线观看| 久久人妻av系列| 白带黄色成豆腐渣| 乱人视频在线观看| 少妇人妻精品综合一区二区 | eeuss影院久久| 久久九九热精品免费| 中文字幕高清在线视频| 色综合亚洲欧美另类图片| 久久国内精品自在自线图片| 欧美区成人在线视频| 欧美日韩乱码在线| 国产精品不卡视频一区二区| 哪里可以看免费的av片| 观看免费一级毛片| 国产真实伦视频高清在线观看 | 少妇被粗大猛烈的视频| 国产91精品成人一区二区三区| 三级毛片av免费| 亚洲成人免费电影在线观看| 亚洲美女视频黄频| xxxwww97欧美| 精品一区二区三区人妻视频| videossex国产| 搡老熟女国产l中国老女人| 99热只有精品国产| 亚洲国产色片| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 韩国av在线不卡| 欧美最新免费一区二区三区| 亚洲av熟女| 国产精品不卡视频一区二区| 超碰av人人做人人爽久久| 国产综合懂色| 欧美黑人欧美精品刺激| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 免费搜索国产男女视频| 联通29元200g的流量卡| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 国产精品一区www在线观看 | 中文在线观看免费www的网站| 此物有八面人人有两片| 欧美zozozo另类| 色综合色国产| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 99久久久亚洲精品蜜臀av| 日本a在线网址| 不卡视频在线观看欧美| 亚洲熟妇熟女久久| 观看免费一级毛片| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 天天一区二区日本电影三级| 舔av片在线| 国产精品野战在线观看| 亚洲乱码一区二区免费版| 国产精品嫩草影院av在线观看 | 天堂影院成人在线观看| 亚洲乱码一区二区免费版| 天天躁日日操中文字幕| 精品一区二区三区av网在线观看| 搞女人的毛片| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| eeuss影院久久| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 欧美性感艳星| 国产av麻豆久久久久久久| 亚洲av.av天堂| 人妻久久中文字幕网| 97碰自拍视频| 成熟少妇高潮喷水视频| 午夜福利在线观看免费完整高清在 | 国产免费av片在线观看野外av| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 中文字幕高清在线视频| 日本-黄色视频高清免费观看| 欧美激情在线99| 高清在线国产一区| 欧美日韩精品成人综合77777| 亚洲精华国产精华精| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 啦啦啦观看免费观看视频高清| 国产精品一区二区性色av| 亚洲美女黄片视频| 美女高潮喷水抽搐中文字幕| 欧美一级a爱片免费观看看| 香蕉av资源在线| 午夜精品久久久久久毛片777| av天堂中文字幕网| 中亚洲国语对白在线视频| 亚洲中文字幕日韩| 中国美女看黄片| 国语自产精品视频在线第100页| 日韩欧美免费精品| av在线亚洲专区| 美女大奶头视频| 美女高潮的动态| 两个人的视频大全免费| 99riav亚洲国产免费| 联通29元200g的流量卡| 国产精品一及| 观看免费一级毛片| 国产亚洲91精品色在线| 国产色爽女视频免费观看| 少妇丰满av| 级片在线观看| 成人三级黄色视频| 亚洲一区高清亚洲精品| 黄片wwwwww| 可以在线观看的亚洲视频| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 亚洲人成网站高清观看| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 国产精品人妻久久久影院| 国产精品永久免费网站| 美女免费视频网站| 蜜桃亚洲精品一区二区三区| 日本五十路高清| 久久久久精品国产欧美久久久| 老女人水多毛片| 淫秽高清视频在线观看| 久久久久久久久久久丰满 | 国产蜜桃级精品一区二区三区| 亚洲在线观看片| 一进一出好大好爽视频| 国产亚洲精品综合一区在线观看| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 两个人视频免费观看高清| 国产精品99久久久久久久久| 最后的刺客免费高清国语| av.在线天堂| 日日干狠狠操夜夜爽| 我的老师免费观看完整版| 精品欧美国产一区二区三| 国产女主播在线喷水免费视频网站 | 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 91精品国产九色| 尤物成人国产欧美一区二区三区| 嫩草影院精品99| 国产精品久久久久久久久免| 波多野结衣高清作品| 天堂av国产一区二区熟女人妻| 嫩草影院精品99| 国产伦在线观看视频一区| 欧美性猛交╳xxx乱大交人| 在线观看免费视频日本深夜| 中国美女看黄片| 日本免费一区二区三区高清不卡| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 麻豆av噜噜一区二区三区| 国产乱人伦免费视频| 夜夜爽天天搞| 欧美最新免费一区二区三区| 很黄的视频免费| 精品人妻熟女av久视频| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 亚洲人成网站高清观看| 他把我摸到了高潮在线观看| 国产私拍福利视频在线观看| 亚洲成人中文字幕在线播放| 简卡轻食公司| a级一级毛片免费在线观看| 久久精品久久久久久噜噜老黄 | 国产在视频线在精品| 久久精品国产自在天天线| 精品久久久久久久人妻蜜臀av| 国产 一区 欧美 日韩| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 日韩国内少妇激情av| 草草在线视频免费看| 成人美女网站在线观看视频| 国产精品亚洲一级av第二区| 亚洲人与动物交配视频| 欧美日韩综合久久久久久 | 99热只有精品国产| 国产在线精品亚洲第一网站| 色哟哟·www| 中文资源天堂在线| 色综合站精品国产| 日本熟妇午夜| 国产高清视频在线观看网站| 看片在线看免费视频| 亚洲av成人av| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 免费高清视频大片| 成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲一级av第二区| 97超视频在线观看视频| 99热这里只有是精品在线观看| 男人舔奶头视频| 最新在线观看一区二区三区| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 黄色女人牲交| 成年女人毛片免费观看观看9| 99热精品在线国产| 免费看美女性在线毛片视频| 欧美日本视频| 国产一区二区三区av在线 | 亚洲在线自拍视频| 亚洲无线在线观看|