• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun

    2020-05-23 07:09:12QinghuaLinBaomingLi
    Defence Technology 2020年2期

    Qing-hua Lin, Bao-ming Li

    National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, P. O. Box, 210094, Nanjing, PR China

    Keywords:Electromagnetic railgun Solid armature Fracture Explicit finite element Numerical simulation

    ABSTRACT The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical, thermal and mechanical process in the interior ballistic cycle. In this paper present, we first introduced a multi-physical field model of railgun, followed by several examples to investigate the launching process. Especially, we used the explicit finite element method, in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature. The results show that the dynamic mechanical process of armature is dependent on the armature geometry, material and exciting electric current. By the numerical simulation, the understanding of the fracture mechanism of solid armature was deepened.

    1. Introduction

    The electromagnetic railgun technology utilizes a high electric current of several mega-amperes to produce the Lorentz force and propel the projectile. Over the past few decades, researches have been focused mainly on the solid armature railgun that achieves the conversion from electric energy to kinetic energy by a sliding solid conductor [1].

    Although the solid armature serves as a key component during the interior ballistic cycle,it is only a parasitic mass for the launch package. The solid armature should be as light as possible. However, over-light armature often has insufficient structural strength and is prone to large deformation or even fracture. Broken armatures were often seen in the high-speed videos of launching experiments. Moreover, the recovered armatures present severe distortion or fracture sometimes, as shown in Fig. 1. These phenomena suggest that the structure design was inappropriate, or that launching parameters exceed the armature's carrying capacity.

    The large deformation and fracture inside the bore may lead to the failure of launching, even damage the bore materials and reduce the bore life. Moreover, the large deformation and fracture of the solid armature after it leaves the muzzle and before it is completely separated with the projectile, may disturb the flight of the projectile and increase its dispersion.Therefore,it is necessary to understand the deformation and fracture mechanisms of solid armature.

    During the launching process of a railgun, the rail damage and armature damage are always associated. The mechanisms of rail damage including the gouging, grooving and arc transition have been researched extensively [2-5]. In the armature aspect, the melting and wear are the two major kinds of damage.F.Stefani[6-7]investigated the current melt-wave erosion of the solid armature and found that the armature contact surface experienced a fast heating and melting process. R. Merrill [8] proposed a turbulent melt-lubrication model to describe the surface wear of the armature. In addition, T. J. Watt [9-11] conducted experimental and computational investigations on the melting and cracking in the throat region of C-Shaped solid armatures. He attributed the armature damage to the magnetic saw effect.

    Generally, it is thought that the armature damage is related to the material behaviors at the condition of rapid heating,high-speed impact and excessive force.In order to describe these details during the launching cycle, some computation software for railgun's multi-physical field were developed. D. Rodger [12] used the general 2D and 3D electromagnetic and heat transfer program (called MEGA)in some railgun simulations.Kuo-Ta Hsieh[13-14]analyzed the startup behavior in a “C-Shaped” armature using linked EMAP3D/DYNA3D finite element codes.H.Shatoff[15]developed a moving armature railgun code (called HERB) for coupled electromagnetic, thermal and structural fields using the general purpose code ANSYS as the underlying computational engine.Similar multiphysical field programs also included RGUN3D, EFFE, and others[16-19]. At present, LS-DYNA [20] is one of the few commercial software that have the capability to solve the railgun's coupled multi-physical field problem.

    Fig.1. Photos of damaged armature.

    Over the years we have been committed to develop the 3D transient multi-physical field model for railgun [21]. In order to make calculation more flexible in dealing with some key issues such as data exchange between fields,mesh deformation,element failure, contact and impact, we wrote a FORTRAN source code program for the coupled electromagnetic, thermal and structural fields. In this paper present, we utilized this multi-physical field solver to simulate the launching process, investigate the dynamic deformation behaviors, and explore the fracture damage mechanism of solid armature.

    2. Models

    The computation model is composed of three parts, which are the electromagnetic field model,thermal field model and structural field model. The computational regions of rails and armature are discretized by hexahedral elements,and each physical field shares the same mesh. The electromagnetic field is solved by the finiteelement/boundary-element coupling scheme, the thermal field is solved by the implicit finite element scheme, and the structural field is solved by the explicit finite element scheme. Furthermore,material nonlinearity is considered to model the complex mechanical behavior of solid armature.

    2.1. Multi-physical field model

    The electromagnetic field is described by the magnetic diffusion equations. With the assumptions that the thermal conductivity is isotropic and the railgun boundary is adiabatic, the thermal field model is simplified as a three-dimensional unsteady heat conduction problem. The ohmic heating source of thermal field is a function of the electric current density and electrical conductivity. The model of structural field is described by three equations,that is the mass conservation, momentum conservation and energy conservation, respectively. The Lorentz force density from the results of electromagnetic field is added to the structural field as body force.Detailed governing equations of the multi-physical field can be found in Ref. [21].

    2.2. Material model

    We chose the Johnson-cook material model [22]because it can not only account for the effects of elastic-plastic, temperature and strain rate,but also contains a damage model.

    2.2.1. Constitutive equation

    The yield stress is written as

    whereA,B,c,nandmare material constants,is the effective plastic strain,is the non-dimensional strain rate, andT* is the homologous temperature.

    2.2.2. Damage model

    The strain at fracture εfis given by

    where,σ*is the ratio of pressure divided by effective stress,D1~D5are the damage parameters.

    Fracture occurs when the damage parameterDexceeds the value of 1. The evolution of the damage parameter is given by

    where the summation is performed over all time steps in the analysis.

    2.2.3. Equation of state

    The equation of state (EOS) is used to describe the relations of pressure,volume and internal energy.There are two EOS model in our computing program, which are linear polynomial model and Gruneisen model.

    The linear polynomial EOS is linear in internal energy, the pressure is expressed as

    whereEis the internal energy,μ is the excess compression,andis the tension-limited excess compression. In our simulation, Eq. (4)served as the EOS for aluminum alloy 6061-T6, and the coefficients are:C0=0,C1=74.2 GPa,C2=60.5 GPa,C3=36.5 GPa,C4=1.97,C5=C6=0.

    The Gruneisen EOS with cubic shock velocity-particle velocity defines pressure for compressed materials (μ > 0) as

    whereCis the intercept of the shock velocity vs. particle velocity(vs-vp)curve,S1,S2,andS3are the coefficients of the slope of thevsvpcurve, γ0is the Gruneisen coefficient, andais the first order volume correction to γ0.

    In our simulation,Gruneisen model was used to aluminum alloy 7075-T6, and the parameters are: ρ0=2700 kg/m3,C=5386 m/s,S1=1.339,S2=S3=0,γ0=1.97,a=0.

    The other material parameters of aluminum alloy 6061 and 7075 are listed in Tables 1 and 2 [23-25].

    Table 1 Parameters of Johnson-cook strength model for Al 6061-T6 and 7075-T6.

    3. Results and discussion

    We conducted numerical simulations for the multi-physical fields of railgun. This section starts with a comparison of two examples with the same geometry and different material models.Then,the effects of exciting electric current,armature material,and railgun geometry on the deformation and fracture of armature were investigated.

    3.1. Mechanical behaviors of armature with linear and nonlinear material model

    The in-bore processes of a solid armature were calculated with the same model geometry, exciting electric current, as well as the different material models.The armature material is Al 6061,and the material models are elastic and Johnson-cook elastic-plastic respectively.In the elastic model,the Young's modulus is 68.9 GPa and the Poisson ratio is 0.33. The waveform of exciting electric current is the one labeled as “1.0” in Fig. 7.

    We selected an element to plot its stress histories and a node to plot its displacements.As shown in Fig.2,the element is marked as H1,which is located at the throat of the C-shape armature.The node is located at the outer surface of the armature arm.The armature is of a length of 50 mm,a width of 50 mm,and a thickness of 30 mm.The rail is of a length of 3 m,a width of 56 mm, and a thickness of 20 mm.

    Fig. 3 shows the stress histories of element H1. In the elastic example, the element stress reaches about 700 MPa at the time of 1.10 ms. Such high a stress is obviously impossible for real aluminum material. Moreover, the stress of elastic example presents an attenuated oscillation. The stress history of the elasticplastic example is quite different from that of the elastic one after 0.90 ms, and the magnitude of the elastic-plastic example before 0.90 ms is also lower than that of the elastic example.

    The x-directional displacements of node N1 are plotted in Fig.4.This node experiences different dynamic processes after 0.90 ms.These two examples indicate that the material model plays a key role in the numerical simulation of dynamic launching process of railgun.

    Besides the local mechanical behaviors,the material models also affect the motion behaviors of armature as a whole.Fig.5 shows the x-directional displacements of the armature's mass center. It is found that the armatures swing at the x direction, and their amplitudes present an increasing trend.

    Fig. 2. Model of railgun and mesh of armature.

    Fig. 3. Stress histories of element H1.

    Fig. 4. Comparison of x-directional displacements of node N1.

    Fig. 5. Comparison of x-directional displacements of the armature's mass center.

    It is well known that the dynamic response of the rails is induced by a moving magnetic pressure during launch of projectiles [26]. The deformation of rails acts directly on the armature through the rail-armature contact surface.Therefore,the local and global displacement fluctuations of armature are most likely caused by the rail deformation.Despite the different material models of armature, we found that the dynamic responses of rails were similar. Fig. 6 only shows the results of nonlinear material model case. The x-directional displacements of nodes at the centerline of the rail surface fluctuate during the launching cycle.Their amplitudes are smaller than that of the armature.

    3.2. Deformation and fracture of armature at different exciting electric currents

    Using the same model as Fig. 2, we calculated the launching processes with different electric current curves. Taken the bottom curve as the benchmark,the numbers in Fig.7 represent the fold of the magnitude of the electric current curve.

    The armature is made of Al 6061-T6, and the material model is Johnson-cook.We carried out the calculation for two stages,which were the in-bore process and the free flight process of armature.

    With the increase of electric current, we found that some elements successively failed outside the bore and inside the bore. In Fig.7,the muzzle time is marked by dotted line,the time of element failure inside the bore is labeled by the symbol“★”,and the time of element failure outside the bore is labeled by “·”. Fig. 7 indicates that the higher the electric current, the earlier the element failure occurs.

    3.2.1. Deformation and fracture of armature outside bore

    The motion of the armature was tracked after it was shot out the muzzle. For the example of 1.2-fold electric current, the time sequences of the armature shape are plotted in Fig. 8. It can be seen that the armature arms are experiencing an expanding and contracting process.The swings of arms may be related to the release of elastic strain energy at the situation that the constraint of the rails to the solid armature is abruptly removed.

    In the example of 1.4-fold electric current,it was found that the armature fractured outside the bore.Fig.9 shows the process of the armature's deformation and fracture. The armature keeps normal shape when it just leaves the muzzle at 1.76 ms.Then,the armature arms expand outward and the armature is severely deformed.High stress region appears in the armature throat at 2.36 ms. Element failure occurs at 2.46 ms, and the armature fractures from the throat.

    Fig. 7. Element failure time of Al 6061 armature at different electric currents.

    Fig. 8. Geometries of the armature after leaving the muzzle.

    In reality,a high tensile stress at the throat of the armature due to the large deformation should cause cracks first,and then leads to fracture. Although the detailed generation and evolution of cracks can not be simulated by the finite element method, the fracture model based on the element failure can predict the location and condition of the damage. This is enough for armature design.

    3.2.2. Deformation and element failure of armature inside the bore

    When the armature was drove by the 1.8-fold electric current in Fig. 7, element failure occurred inside the bore. Stress contours of the armature are shown in Fig. 10. At 0.70 ms, the current curve reaches peak value.Although the maximum stress of the armature is 340 MPa and has exceeded the 6061's yield strength,there is no obvious deformation. At 0.95 ms, the stress at the armature throat reaches 420 MPa, large deformation appears and element failure occurs. The element fails latter than the peak-value time of the electric current curve, which suggests that the occurrence of armature damage has time effect. It is likely to be related to the histories of temperature rise and plastic deformation.

    Fig. 9. Process of armature deformation and fracture.

    Fig.10. Stress contours of armature driven by the 1.8-fold electric current.

    Fig.11. Temperature contours of armature driven by the 1.8-fold electric current.

    In addition,it is found that when the armature is damaged,the stress is higher than the yield strength. This suggests that the armature can also work well within a certain range of plastic deformation.If the deformation of armature is only designed in the elastic range, the current carrying capacity of armature may be underestimated.

    Fig.12. Element failure time of Al 7075 armature at different electric currents.

    Fig.13. Stress contours of railgun with a different armature geometry.

    Fig.11 shows the temperature contours at 0.70 ms and 0.96 ms.The temperature rises rapidly under the action of high electric current. The temperature of the armature throat at 0.96 ms has reached about 900 K,and is very close to the melting point listed in Table 1. At such a high temperature, occurrences of strength reduction and element failure are inevitable.

    3.3. Effect of armature material

    For the Al 7075, similar calculations as Fig. 7 were conducted.The time of element failure are shown in Fig. 12. It is found that 7075 is of higher current carrying capacity than 6061.This is due to the higher yield strength of Al 7075.

    3.4. Effect of armature geometry

    In above examples, all of the fractures occur at the throat of armature.Actually,the location of the fracture is also dependent on the armature geometry.As shown in Fig.13 in which the armature geometry is different, the element failure occurs at the root of the armature arm.

    4. Conclusion

    Some issues about the armature's deformation and fracture were investigated in this paper. The major conclusions were summarized as following:

    (1) The large plastic deformation inside the bore and the release of elastic strain energy outside the bore are the two major mechanisms of armature fracture.

    (2) The deformation and fracture of armature are affected by the material, geometry and exciting electric current.

    (3) It is permissible for the armature to undergo a certain range of plastic deformation during the launching cycle.

    The multi-physical fields modeling and simulation provided a deeper understanding on the armature's mechanical behavior.

    国产深夜福利视频在线观看| 久久久久国内视频| 成年动漫av网址| 精品亚洲成a人片在线观看| 超碰97精品在线观看| 99香蕉大伊视频| 99riav亚洲国产免费| x7x7x7水蜜桃| 免费不卡黄色视频| 欧美日韩成人在线一区二区| 亚洲av美国av| cao死你这个sao货| 一夜夜www| 露出奶头的视频| 久久久国产精品麻豆| 亚洲av日韩在线播放| 99热国产这里只有精品6| 国产精华一区二区三区| 中文欧美无线码| 精品无人区乱码1区二区| 国产精品免费大片| av天堂久久9| 少妇裸体淫交视频免费看高清 | 精品亚洲成国产av| 亚洲成人手机| 国产精品秋霞免费鲁丝片| 人成视频在线观看免费观看| 搡老岳熟女国产| 精品久久久久久,| 亚洲第一青青草原| 99re6热这里在线精品视频| 久久精品人人爽人人爽视色| 欧美亚洲 丝袜 人妻 在线| 在线av久久热| 久久草成人影院| 人成视频在线观看免费观看| 欧美色视频一区免费| 69av精品久久久久久| 日韩三级视频一区二区三区| 一级a爱片免费观看的视频| 高清欧美精品videossex| 香蕉久久夜色| 久久影院123| 一夜夜www| 亚洲精品国产精品久久久不卡| 久久香蕉国产精品| 国产精品免费一区二区三区在线 | 久久久久久久精品吃奶| 大香蕉久久网| 国产免费av片在线观看野外av| 国产主播在线观看一区二区| 91成人精品电影| 亚洲av成人不卡在线观看播放网| 岛国在线观看网站| 国产免费男女视频| 欧美精品啪啪一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩高清在线视频| svipshipincom国产片| 最近最新中文字幕大全电影3 | 日本a在线网址| 欧美精品一区二区免费开放| 色婷婷av一区二区三区视频| 首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| 欧美av亚洲av综合av国产av| 老汉色av国产亚洲站长工具| 狠狠狠狠99中文字幕| 热99久久久久精品小说推荐| 日韩成人在线观看一区二区三区| 精品亚洲成国产av| 精品人妻1区二区| 国产亚洲精品第一综合不卡| 亚洲自偷自拍图片 自拍| 成人18禁在线播放| 精品国内亚洲2022精品成人 | 黑人欧美特级aaaaaa片| 两性午夜刺激爽爽歪歪视频在线观看 | netflix在线观看网站| 亚洲色图综合在线观看| 午夜91福利影院| 成人特级黄色片久久久久久久| 99国产极品粉嫩在线观看| 人人妻,人人澡人人爽秒播| 免费黄频网站在线观看国产| 在线观看www视频免费| 校园春色视频在线观看| 日本精品一区二区三区蜜桃| 视频区图区小说| 19禁男女啪啪无遮挡网站| 国产蜜桃级精品一区二区三区 | 99久久综合精品五月天人人| 美女福利国产在线| 国产成人欧美| 动漫黄色视频在线观看| 欧美乱码精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 丝袜美足系列| 91在线观看av| 国产亚洲av高清不卡| 中文字幕高清在线视频| 一本大道久久a久久精品| 飞空精品影院首页| 女人久久www免费人成看片| 脱女人内裤的视频| 亚洲国产精品合色在线| 美女视频免费永久观看网站| 国产男靠女视频免费网站| 日韩成人在线观看一区二区三区| 精品人妻熟女毛片av久久网站| 少妇裸体淫交视频免费看高清 | 久久久国产成人免费| 视频区图区小说| 丰满迷人的少妇在线观看| 啦啦啦视频在线资源免费观看| 男女高潮啪啪啪动态图| 国精品久久久久久国模美| 王馨瑶露胸无遮挡在线观看| 日韩中文字幕欧美一区二区| 热re99久久精品国产66热6| 国产深夜福利视频在线观看| 精品亚洲成国产av| 国产又色又爽无遮挡免费看| 黄色视频不卡| 亚洲av熟女| 国产精品成人在线| a在线观看视频网站| 国产精品免费视频内射| 免费在线观看亚洲国产| 一级作爱视频免费观看| 精品第一国产精品| 欧美激情久久久久久爽电影 | 亚洲人成电影观看| 丝袜人妻中文字幕| 亚洲一码二码三码区别大吗| 精品一区二区三区四区五区乱码| 夜夜夜夜夜久久久久| 亚洲免费av在线视频| 99精品久久久久人妻精品| 国产成人精品无人区| 久久久久久久精品吃奶| 免费高清在线观看日韩| 最近最新免费中文字幕在线| 国产熟女午夜一区二区三区| 国产成人欧美在线观看 | 少妇被粗大的猛进出69影院| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| bbb黄色大片| 国产激情久久老熟女| 黑人操中国人逼视频| 精品国产亚洲在线| 久久亚洲精品不卡| 视频区欧美日本亚洲| 久久久久国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 日日爽夜夜爽网站| 国产一区二区三区视频了| 成年人免费黄色播放视频| 国产欧美日韩一区二区精品| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 露出奶头的视频| 精品欧美一区二区三区在线| 国产精品电影一区二区三区 | 亚洲人成伊人成综合网2020| 99精品在免费线老司机午夜| 在线观看一区二区三区激情| 亚洲av欧美aⅴ国产| 9色porny在线观看| 久久久国产欧美日韩av| 久久性视频一级片| 一本大道久久a久久精品| 热99久久久久精品小说推荐| 热99re8久久精品国产| 免费日韩欧美在线观看| 十八禁网站免费在线| aaaaa片日本免费| 下体分泌物呈黄色| 免费高清在线观看日韩| 国产精品一区二区免费欧美| 一a级毛片在线观看| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| av天堂久久9| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 视频区欧美日本亚洲| av视频免费观看在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 国内视频| 夜夜夜夜夜久久久久| av一本久久久久| 国产精品一区二区在线不卡| 久久热在线av| 欧美国产精品一级二级三级| 国产片内射在线| 亚洲va日本ⅴa欧美va伊人久久| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 久久性视频一级片| 黄片播放在线免费| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 在线观看午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 美女国产高潮福利片在线看| 国产又爽黄色视频| 男女免费视频国产| 久久草成人影院| 国产精品乱码一区二三区的特点 | 在线av久久热| 女性被躁到高潮视频| 色在线成人网| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| av有码第一页| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一卡2卡三卡4卡5卡| www.999成人在线观看| 欧美成狂野欧美在线观看| 午夜成年电影在线免费观看| 999精品在线视频| 日韩三级视频一区二区三区| 久久这里只有精品19| 天天躁日日躁夜夜躁夜夜| 一区二区三区激情视频| 精品国产美女av久久久久小说| 欧美成狂野欧美在线观看| 天天躁日日躁夜夜躁夜夜| 午夜福利一区二区在线看| 在线观看日韩欧美| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 精品久久久精品久久久| 91成人精品电影| 最近最新免费中文字幕在线| 窝窝影院91人妻| 日本五十路高清| 国产一区二区激情短视频| 男人的好看免费观看在线视频 | 久久久久久久午夜电影 | 一级作爱视频免费观看| 夫妻午夜视频| 国产精品九九99| 女警被强在线播放| 国产激情欧美一区二区| 亚洲三区欧美一区| 精品一品国产午夜福利视频| 男女免费视频国产| 欧美日韩福利视频一区二区| 久久中文看片网| 身体一侧抽搐| 亚洲成人国产一区在线观看| 免费看十八禁软件| 精品久久久久久电影网| 超碰成人久久| 精品一品国产午夜福利视频| 国产精品美女特级片免费视频播放器 | 国产成+人综合+亚洲专区| 亚洲第一av免费看| 这个男人来自地球电影免费观看| 人人澡人人妻人| 国产精品1区2区在线观看. | 女人久久www免费人成看片| 欧美精品人与动牲交sv欧美| 亚洲免费av在线视频| 两个人看的免费小视频| 欧美乱色亚洲激情| 精品电影一区二区在线| 中文字幕人妻丝袜一区二区| 国产精品成人在线| 久久热在线av| 欧美日韩亚洲高清精品| 国产精品av久久久久免费| 成人国语在线视频| 精品福利观看| 日韩欧美三级三区| 国产免费av片在线观看野外av| videos熟女内射| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 色综合欧美亚洲国产小说| 黄色成人免费大全| 国产精品九九99| 国产男女内射视频| 中文字幕制服av| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 亚洲欧美色中文字幕在线| 亚洲五月天丁香| 真人做人爱边吃奶动态| 亚洲国产看品久久| bbb黄色大片| 曰老女人黄片| 国产一卡二卡三卡精品| 亚洲精品自拍成人| 欧美日韩亚洲国产一区二区在线观看 | 精品乱码久久久久久99久播| 午夜福利,免费看| 久久天堂一区二区三区四区| 男女下面插进去视频免费观看| 国产成人av教育| 久久精品国产综合久久久| 乱人伦中国视频| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 看黄色毛片网站| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 热re99久久国产66热| 国产一区在线观看成人免费| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美软件| 欧美午夜高清在线| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 在线观看免费视频网站a站| a级毛片在线看网站| 国产成人免费观看mmmm| 中亚洲国语对白在线视频| 精品久久久久久久久久免费视频 | 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 十八禁网站免费在线| 黄色片一级片一级黄色片| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 免费高清在线观看日韩| 最新在线观看一区二区三区| xxx96com| 亚洲国产欧美日韩在线播放| 视频区欧美日本亚洲| 精品第一国产精品| 国产高清激情床上av| 日韩有码中文字幕| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻丝袜制服| 久久影院123| 国产在线观看jvid| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 女人久久www免费人成看片| 欧美乱妇无乱码| 不卡av一区二区三区| 亚洲久久久国产精品| 国产成人啪精品午夜网站| 自线自在国产av| 国产精品 国内视频| 色综合婷婷激情| 无遮挡黄片免费观看| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡| 色94色欧美一区二区| 欧美中文综合在线视频| av天堂在线播放| 午夜精品在线福利| 男男h啪啪无遮挡| 不卡一级毛片| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品sss在线观看 | 好看av亚洲va欧美ⅴa在| 一进一出好大好爽视频| 日韩一卡2卡3卡4卡2021年| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 日韩免费av在线播放| 大型av网站在线播放| 国精品久久久久久国模美| 一区福利在线观看| 国产区一区二久久| 韩国av一区二区三区四区| 国产亚洲欧美98| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 一边摸一边抽搐一进一小说 | 91字幕亚洲| 一本一本久久a久久精品综合妖精| 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 天堂中文最新版在线下载| 91老司机精品| 久久亚洲精品不卡| 日本vs欧美在线观看视频| 国产精品免费视频内射| 天天躁日日躁夜夜躁夜夜| 欧美精品高潮呻吟av久久| 国产精品久久视频播放| 成人永久免费在线观看视频| 19禁男女啪啪无遮挡网站| 高清av免费在线| 乱人伦中国视频| 男人的好看免费观看在线视频 | av片东京热男人的天堂| 精品少妇一区二区三区视频日本电影| 黑丝袜美女国产一区| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区| 亚洲中文日韩欧美视频| 亚洲第一青青草原| 人妻久久中文字幕网| 成人国产一区最新在线观看| 一区二区三区精品91| 老司机深夜福利视频在线观看| 91精品三级在线观看| 欧美国产精品一级二级三级| 亚洲第一av免费看| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲色图综合在线观看| 精品国产美女av久久久久小说| 午夜久久久在线观看| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| 少妇 在线观看| 91九色精品人成在线观看| 在线免费观看的www视频| 99久久综合精品五月天人人| 亚洲伊人色综图| 香蕉国产在线看| 好看av亚洲va欧美ⅴa在| 亚洲男人天堂网一区| √禁漫天堂资源中文www| 精品一区二区三卡| 精品欧美一区二区三区在线| www.自偷自拍.com| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 免费一级毛片在线播放高清视频 | 色播在线永久视频| 亚洲熟妇中文字幕五十中出 | 女人精品久久久久毛片| 老司机在亚洲福利影院| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 欧美亚洲 丝袜 人妻 在线| www日本在线高清视频| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 成年人黄色毛片网站| 成人18禁在线播放| 久久ye,这里只有精品| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 久热爱精品视频在线9| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区 | videosex国产| 国产高清videossex| 新久久久久国产一级毛片| 久久香蕉激情| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区蜜桃| 国产精品自产拍在线观看55亚洲 | 亚洲一区二区三区欧美精品| 韩国av一区二区三区四区| 19禁男女啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 久久精品熟女亚洲av麻豆精品| 老司机午夜福利在线观看视频| 99久久人妻综合| 午夜精品久久久久久毛片777| 在线观看66精品国产| 狠狠狠狠99中文字幕| 大香蕉久久成人网| 日本一区二区免费在线视频| 欧美日韩黄片免| 十八禁人妻一区二区| 中文亚洲av片在线观看爽 | 国产1区2区3区精品| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 国产免费现黄频在线看| 免费一级毛片在线播放高清视频 | 成年人午夜在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 日韩欧美免费精品| 国产精品乱码一区二三区的特点 | 免费日韩欧美在线观看| 欧美老熟妇乱子伦牲交| 欧美日韩亚洲国产一区二区在线观看 | 超碰成人久久| 久久久久精品人妻al黑| 久久影院123| 亚洲av美国av| 国产成人啪精品午夜网站| 亚洲成人免费av在线播放| 69精品国产乱码久久久| 悠悠久久av| 操出白浆在线播放| 老熟女久久久| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 精品一区二区三区视频在线观看免费 | 91字幕亚洲| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 欧美丝袜亚洲另类 | 老司机影院毛片| 欧美乱码精品一区二区三区| 国产三级黄色录像| 国产av一区二区精品久久| 18禁观看日本| 黄色女人牲交| 亚洲人成伊人成综合网2020| xxx96com| 亚洲精品国产区一区二| а√天堂www在线а√下载 | 久久99一区二区三区| 国产日韩一区二区三区精品不卡| 美女视频免费永久观看网站| 国产欧美亚洲国产| 女警被强在线播放| 精品第一国产精品| 精品视频人人做人人爽| 超色免费av| 99精品在免费线老司机午夜| 日本五十路高清| av超薄肉色丝袜交足视频| 少妇猛男粗大的猛烈进出视频| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 亚洲欧美精品综合一区二区三区| 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 黑人操中国人逼视频| 亚洲男人天堂网一区| 亚洲在线自拍视频| 欧美黑人精品巨大| 亚洲免费av在线视频| 国产一区有黄有色的免费视频| 国产欧美日韩综合在线一区二区| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 国产精品国产高清国产av | 中文字幕高清在线视频| 久久中文看片网| 亚洲一区高清亚洲精品| 新久久久久国产一级毛片| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 国产99久久九九免费精品| 99精品欧美一区二区三区四区| 国产高清videossex| 国产精品免费一区二区三区在线 | 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| 男人的好看免费观看在线视频 | 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 国产又爽黄色视频| 人妻久久中文字幕网| 国产av一区二区精品久久| 老司机福利观看| 黑人巨大精品欧美一区二区蜜桃| 99久久国产精品久久久| 纯流量卡能插随身wifi吗| 亚洲 欧美一区二区三区| 91成人精品电影| 精品一区二区三区四区五区乱码| 久久精品国产a三级三级三级| 久久久久精品人妻al黑| 成人影院久久| 在线观看免费视频网站a站| 亚洲精品国产色婷婷电影| 一进一出好大好爽视频| 国产精品欧美亚洲77777| 一区福利在线观看| 国产精品永久免费网站| 一本一本久久a久久精品综合妖精| 伦理电影免费视频| 久久精品国产清高在天天线| 欧美精品av麻豆av| 另类亚洲欧美激情| aaaaa片日本免费| 9热在线视频观看99| 丝瓜视频免费看黄片| 麻豆国产av国片精品| 好男人电影高清在线观看| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 老鸭窝网址在线观看| 韩国av一区二区三区四区| 国产一区二区三区在线臀色熟女 | 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 老司机亚洲免费影院|