• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fast-running method for blast load prediction shielding by a protective barrier

    2020-05-23 07:09:02SungChong
    Defence Technology 2020年2期

    S.-H. Sung, J.-W. Chong

    Agency for Defense Development, Yuseong P. O. Box 35, DaeJeon, 395-600, South Korea

    Keywords:Blast loads Protective barrier Shock wave Fast running model Kingery-Bulmash

    ABSTRACT This study presents a simplified blast load prediction method on structures behind a protective barrier.The proposed method is basically an empirical approach based on Kingery-Bulamsh(K-B)chart and finite element (FE) analysis results. To this end, this study divides the structure into three regions by three critical points. Blast loads at each critical point can be calculated based on K-B chart and an approximation according to FE analysis results. Finally, peak reflected overpressure and impulse distributed on the structure can be approximately estimated by linearly connecting blast loads at each critical point.In order to confirm a feasibility of the proposed method,a series of numerical simulations were carried out.The simulation results were compared with FE analysis results which are presented in the open literature.From such comparisons,it was found that the proposed method is applicable to predict blast loads on structures behind a protective barrier.

    1. Introduction

    Structural damages can be caused by terrorist attacks and accidental explosion events. In order to protect structures from such unexpected accidents, urban planners consider the construction of a protective barrier. The protective barrier can reduce blast loads acting on a structure by blocking direct blast wave propagation.Blast loads on structures behind a barrier can be influenced by various design parameters such as detonation points, barrier heights,the distance between structures and barriers,etc.In other words,it is necessary to determine an optimal barrier position and its optimal height to minimize structural damages by unexpected accidents.

    An excellent review to predict or estimate blast loads on structures behind a protective barrier can be found in Refs. [1-3].Rose et al.[4,5]carried out scaled tests and developed contour plots of overpressure and impulse behind a blast wall. They also experimentally investigated an influence on the types of wall and concluded that non-permanent structures can provide a high degree of blast wave attenuation[6].Ngo et al.[7]conducted a series of FE analyses to confirm the effectiveness of barrier walls. Hajek and Foglar [8] numerically and experimentally investigated the effect of rigid barriers in the confined space.Hajek et al.[9]studied on the influence of barrier material and barrier shape on blast wave mitigation. Sochet et al. [10] focused on the dimensioning of protective barriers and showed the advantage of using a barrier with a vertical front or rear face.Schuldt and El-Rayes[11]developed Blast Effects Assessment Model (BEAM) capable of effectively quantifying and visualizing blast effects on a facility behind a protective barrier.Xiao et al.[12]investigated shock wave attenuation effects using protective barriers made of steel posts.

    However,it is difficult to carry out a variety of experiments and finite element (FE) analyses since it takes a lot of time and cost.

    For this reason, the development of fast running models to predict blast loads on structures behind a barrier has been highly needed. A neural-network approaches [13,14] have received considerable attention to reduce an overhead of hardware requirements.Eveillard[15]developed fast running method to define effects areas near protective barriers. As another alternative tool,Zhou and Hao [16] proposed approximate pseudo-analytical formulae based on the best-fit curve of numerical simulations.The derived formulae were presented in terms of the critical parameters such as explosive weights,the distance from explosives to the structure,total height of the structure,barrier heights,etc.This method used several critical points and modification factors to simplify peak overpressure and impulse distribution along the structural height.The approximate formulae provided a simple and reliable estimation of blast loading on structures behind a protective barrier.

    This study proposes a simplified blast load prediction method on structures behind a protective barrier as another alternative fast running model. The proposed fast-running method can predict blast loads on structures behind a protective barrier in a few seconds, while FE method requires several hours or several days for the same numerical simulation case.The method uses the concept of critical point presented by Zhou and Hao[16].Each critical point is empirically estimated based on FE analysis results.Blast loads at each critical point can be calculated based on Kingery-Bulmash(KB)chart[17]and an approximation according to FE analysis results.Peak reflected overpressure and impulse distributed on the structure can be approximately estimated by linearly connecting blast loads at each critical point.

    2. Theoretical background

    2.1. Basic concept of the proposed method

    Under the assumption that a protective barrier is rigid, this study predicts blast loads behind a protective barrier on structures based on the concept of critical point. The proposed method is identical to the previous method[16]in terms of using the concept of critical point, while procedures to determine critical points and to obtain blast loads at the points are different each other. This study divides regions of the structure behind a protective barrier by three critical points, as shown in Fig.1.

    The point 1 separates regions that are influenced by the barrier and that are not. The region 1 is the part where blast loads are completely propagated without being disturbed by the barrier. On the other hand, other regions are disturbed by the barrier due to diffraction of show waves[18].The point 2 has the same height as the top of the barrier. In the region 2, the wave impinges either directly on the target structure or after one diffraction around the left corner of the barrier, and a ground-reflected wave gradually decreases along the structural height (See Fig.1). In the region 3,two diffractions occur around the both corner of the barrier,and a ground-reflected wave gradually increases along the point 2 to the point 3(See Fig.1).For this reason,the point 2 is determined as the critical point. The point 3 is the ground level of the structure.

    2.2. Estimation of blast loads at critical points

    2.2.1. Estimation of blast loads at the point 1

    In this study, a comparative study with a variety of FE analysis results described in Ref. [16] was performed to determine an optimal position of the point 1. Thus, the optimal position was estimated by examining a point that minimizes thechanging the position of the point 1,as shown in Fig.2.Finally,the optimal position of the point 1 was determined to 1.9 times of He through the parametric study(See Fig.1 and Fig.2).If additional FE analysis results are obtained under various blast scenarios and barrier configurations,the optimal position of the point 1(1.9×HE)may be modified.

    Peak reflected overpressure and impulse at the point 1 can be calculated based on K-B chart(See Fig.3)using an explosive weight(W)and a stand-off distance(d),since the region 1(See Fig.1)is the undisturbed region by the barrier.

    2.2.2. Estimation of blast loads at the point 2

    Blast loads at the point 2 can be simplified to the sum of an incident wave (Wave 1) and a ground-reflected wave(Wave 2), as depicted in Fig. 4. The Wave 1 can be calculated based on a diffraction coefficient. Miller [20] recommended the diffraction coefficient as 0.35 about a rectangular structure.Thus,information on the Wave 1 can be estimated based on K-B chart and the diffraction coefficient. (i.e., W: explosive weight,L1+L2: total stand-off distance, 0.35: diffraction coefficient).

    Fig. 2. Estimation of the optimal position of the point 1.

    Table 1 Simulation scenarios.

    Next,this study assumes that the Area 1(See Fig.4)is the room having openings. Under this assumption, the simplified internal blast pressure model[21]can be used to obtain information on the Wave 2. In the fast-running method, since the simplified internal blast pressure model is applied to estimate the Wave 2 at the point 2,Mach stem effect cannot be considered.Thus,the Wave 1 and the Wave 2 can be considered as the first triangular wave and the second triangular wave in Fig. 5, respectively. On the other hand,the third triangular wave in Fig.5 can be neglected since this study only considers major two waves, as shown in Fig. 4. Under this assumption, since the pressure-time history at the point 2 can be estimated using the major two waves in Fig. 5, the peak reflected overpressure at the point 2 is same with the peak reflected overpressure of the Wave 1(Pr),and the total impulse at the point 2 can be determined to 1.5×Ir(i.e.,Ir+1/2 ×Ir).

    2.2.3. Estimation of blast loads at the point 3

    Blast loads at the point 3 can be empirically estimated similar to the previous method [16]. The method used a maximum value among the values of critical points.However,this study suggests to use the mean value of the point 1 and the point 2 instead of the maximum value,since the use of the mean value was more reliable for various simulation cases. When the maximum value was used,the MAD between FE analysis results[16]and the proposed method results was about 82.9 kPa.On the other hand,the MAD was about 41 kPa when the mean value of the point 1 and the point 2 was utilized.

    Fig. 3. K-B chart [19]: (a) Free-air burst; (b) Surface burst.

    The flow chart to evaluate peak reflected overpressure and impulse at each point on the structure is briefly summarized in Fig.6.

    3. Numerical simulation

    Fig. 5. Simplified internal blast pressure model [20].

    Prior to perform numerical simulation, a preliminary comparative study was carried out to confirm an error between K-B chart and FE analysis.To this end,blast loads at target structure without protective barrier were estimated based on K-B chart. The target structure is a 20 m building,and blast loads acting on the structure was calculated with 1 m interval from the ground level,as depicted in Fig. 7. The explosive weight is 1,000 kg, and FE analysis results were used described in Ref.[16]for comparison.The results of the preliminary study are shown in Fig. 8. In Fig. 8, thex-axis values represent overpressures (or impulses) of FE analysis results normalized by maximum overpressure (or maximum impulse) of FE analysis results. They-axis values represent overpressures (or impulses)of K-B results normalized by maximum overpressure(or maximum impulse) of FE analysis results. For peak overpressure,the two simulation results coincided well each other.On the other hand, the maximum error was about 22.5%for impulse.

    Numerical simulation was performed in the same scenarios as FE analysis described in Ref. [16]. AUTODYN3D was utilized in the previous study to carry out numerical analyses to predict pressuretime histories on structures behind a barrier. The simulation scenarios are shown in Table 1.

    For Case #1, the procedure to obtain blast loading parameter based on the flow chart in Fig. 6 is depicted in Fig. 9.

    Fig. 6. Flow chart to evaluate blast loads distributed on a structure.

    Fig. 7. Preliminary simulation scenario.

    Fig.10-Fig.12 show normalized peak reflected overpressure and normalized impulse distributed on the structure estimated from FE analysis and the proposed method for each scenario. For direct comparison with the open literature results [16], peak reflected overpressures and impulses normalized by peak reflected overpressure and impulse at the ground level evaluated from the no barrier case analysis were used. It was shown that peak reflected overpressures estimated from two different simulations coincided well each other. On the other hand, for impulse, it had a relatively large deviation compared to the peak reflected overpressure. This result is due to the difference between the impulse at the top of the structure calculated by K-B chart and the impulse at the top of the structure which is estimated from FE analysis,as shown in Fig.8.In other words,it is an inevitable error caused by the uncertainty of KB chart. The phenomenon also occurs in the method proposed by Zhou and Hao [16], if a large difference exists between blast loads estimated from FE analysis and other empirical methods at the ground level. This is a limitation of the empirical methods.

    Fig.13 and Fig.14 represent the mean absolute deviation(MAD)for peak reflected overpressure and impulse between results by FE analysis and by the proposed method.

    Fig. 8. Preliminary study results: Uncertainty estimation for K-B chart.

    Fig. 9. Flow chart to evaluate blast loading parameters for Case #1.

    whereis the blast loading parameter atj(m)height estimated from FE analysis, andKjis the blast loading parameter atj(m)height estimated from the proposed method,nis the number of measuring points along the height of the structure.

    Here,the red line is the MAD for preliminary study results(i.e.,no barrier case). For peak reflected overpressure, the mean of the MADs is about 68.3 kPa.The value is about 1.57 times of that of the preliminary study.For impulse,the mean of the MADs is about 1.02 times as compared with the no barrier case.The error has increased in the simplification process based on the empirical formula about the complex physical phenomena such as diffraction and reflection of the blast waves due to a protective barrier.

    Consequently, it was found that the proposed method can quickly predict the tendency of blast loads distributed on structures behind a protective barrier. However, it should be noted that the proposed fast-running method may induce relatively large errors compared to FE analysis results. This is a limitation of empirical formula-based fast-running methods.

    4. Conclusion

    In this study, a simplified blast load prediction method on structures behind a protective barrier was proposed.

    · The method can empirically evaluate blast loads distributed on the structures based on K-B chart and an approximation in accordance with FE analysis results.

    · The concept of critical point was used to quickly predict blast loads behind a protective barrier. Thus, the structure can be divided into three regions by three critical points, and information on each critical point can be calculated based on K-B chart and the approximation. Finally, blast loads distributed on the structure can be approximately evaluated by linearly connecting blast loads at each critical point.

    Fig.10. Case #1~Case #4 (a) Normalized peak reflected overpressure distribution (b) Normalized impulse distribution. (·: by FE analysis, ○: by the proposed method).

    Fig.11. Case #5~Case #8 (a) Normalized peak reflected overpressure distribution (b) Normalized impulse distribution (·: by FE analysis, ○: by the proposed method).

    Fig.12. Case #9~Case #12 (a) Normalized peak reflected overpressure distribution (b) Normalized impulse distribution (·: by FE analysis, ○: by the proposed method).

    Fig.13. Mean absolute deviation of peak reflected overpressure for each simulation(by FE analysis vs by the proposed method).

    Peak reflected overpressure and impulse estimated from the proposed method were compared with FE analysis results described in the open literature.

    · Peak reflected overpressure was reliably evaluated from the proposed method.

    · On the other hand,in some cases,impulse had a relatively large error compared to the peak reflected overpressure.

    Fig.14. Mean absolute deviation of impulse for each simulation (by FE analysis vs by the proposed method).

    · This result is due to the deviation between the impulse at the top of the structure calculated by K-B chart and the impulse at the top of the structure, which is estimated from FE analysis.Thus, it is an inevitable error occurred in empirical methods.Nevertheless, mean absolute deviations of peak reflected overpressure and impulse were about 1.57 times and about 1.02 times,compared to no barrier case.

    In conclusion, the proposed method can quickly predict the tendency of blast loads distributed on structures behind a protective barrier. However, it should be noted that the proposed fastrunning method may induce relatively large errors compared to FE analysis results. In other words, if sufficient time and a small number of analysis cases are given,it is advantageous to utilize the hydro-code such as Autodyn, LS-Dyna, etc. On the other hand, if a user wants to check the trends in various simulation cases for a short time, the proposed fast-running method can be used for a predictive approach.

    Acknowledgement

    The work was supported by the Agency for Defense Development.

    岛国毛片在线播放| 99在线人妻在线中文字幕| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 色尼玛亚洲综合影院| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 日日撸夜夜添| 18禁裸乳无遮挡免费网站照片| 国产69精品久久久久777片| 中文在线观看免费www的网站| 欧美变态另类bdsm刘玥| 纵有疾风起免费观看全集完整版 | 日韩大片免费观看网站 | 欧美高清成人免费视频www| 欧美日韩一区二区视频在线观看视频在线 | 99热6这里只有精品| 日韩 亚洲 欧美在线| 能在线免费观看的黄片| 日韩高清综合在线| 99久久无色码亚洲精品果冻| 天天躁日日操中文字幕| 午夜福利视频1000在线观看| 日韩亚洲欧美综合| 亚洲欧美一区二区三区国产| 青春草国产在线视频| 精品久久久久久久久久久久久| 午夜视频国产福利| 看免费成人av毛片| 永久网站在线| 日韩国内少妇激情av| 国产精品久久视频播放| 精品久久久久久久末码| 嫩草影院入口| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 国产探花在线观看一区二区| 亚洲性久久影院| 老司机影院毛片| 麻豆久久精品国产亚洲av| 美女脱内裤让男人舔精品视频| 国产免费一级a男人的天堂| 又粗又爽又猛毛片免费看| 亚洲国产精品sss在线观看| 内射极品少妇av片p| 久久久a久久爽久久v久久| 看黄色毛片网站| 插逼视频在线观看| 国产精品一区二区性色av| 美女大奶头视频| 国产精品久久久久久精品电影| 日本-黄色视频高清免费观看| 亚洲国产日韩欧美精品在线观看| 黄色欧美视频在线观看| 黄色欧美视频在线观看| 亚洲三级黄色毛片| 可以在线观看毛片的网站| 日韩欧美国产在线观看| 国产一区有黄有色的免费视频 | 97人妻精品一区二区三区麻豆| 91久久精品电影网| 国产极品天堂在线| 免费观看a级毛片全部| 久久精品夜夜夜夜夜久久蜜豆| 精华霜和精华液先用哪个| 久久99精品国语久久久| 日韩欧美精品v在线| 国产精品一及| a级毛片免费高清观看在线播放| 亚洲自偷自拍三级| 免费看美女性在线毛片视频| 国产黄色视频一区二区在线观看 | 成人毛片60女人毛片免费| 大话2 男鬼变身卡| 在线观看av片永久免费下载| 欧美日韩精品成人综合77777| 亚洲怡红院男人天堂| 国产成人freesex在线| 国产高潮美女av| 小说图片视频综合网站| 亚洲av二区三区四区| av福利片在线观看| 欧美区成人在线视频| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| 成人毛片a级毛片在线播放| 欧美精品一区二区大全| 汤姆久久久久久久影院中文字幕 | 最近最新中文字幕大全电影3| 亚洲精品一区蜜桃| 美女被艹到高潮喷水动态| 看免费成人av毛片| 国产精品综合久久久久久久免费| 亚洲精品乱码久久久久久按摩| 日韩欧美精品v在线| 国产伦精品一区二区三区视频9| 国产黄a三级三级三级人| 色综合站精品国产| 欧美xxxx黑人xx丫x性爽| 青青草视频在线视频观看| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 亚洲四区av| 国产精品美女特级片免费视频播放器| 国产精品久久电影中文字幕| 日韩成人伦理影院| 欧美三级亚洲精品| 三级经典国产精品| 欧美不卡视频在线免费观看| 91久久精品电影网| 亚洲欧美成人综合另类久久久 | 国产成人精品一,二区| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站| 国产不卡一卡二| 中文字幕熟女人妻在线| av国产久精品久网站免费入址| 亚洲国产精品成人久久小说| 成人亚洲精品av一区二区| 少妇的逼水好多| 国内精品一区二区在线观看| 边亲边吃奶的免费视频| 亚洲一级一片aⅴ在线观看| 国产亚洲91精品色在线| 亚洲精品国产成人久久av| 观看美女的网站| 国产精品精品国产色婷婷| 日韩亚洲欧美综合| 日本黄色片子视频| 国产综合懂色| 免费av观看视频| 免费观看在线日韩| 五月伊人婷婷丁香| 一级黄色大片毛片| 男女那种视频在线观看| 国产探花在线观看一区二区| 久久6这里有精品| 校园人妻丝袜中文字幕| 日韩欧美 国产精品| 精品一区二区免费观看| 国模一区二区三区四区视频| 少妇熟女欧美另类| 真实男女啪啪啪动态图| 国产伦一二天堂av在线观看| 国产成人一区二区在线| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区久久| 黄色一级大片看看| 夫妻性生交免费视频一级片| 男女啪啪激烈高潮av片| 久久这里只有精品中国| 久久久精品欧美日韩精品| 久久久国产成人免费| 麻豆乱淫一区二区| 秋霞伦理黄片| 国产白丝娇喘喷水9色精品| 欧美日韩一区二区视频在线观看视频在线 | 精品无人区乱码1区二区| 欧美另类亚洲清纯唯美| 啦啦啦韩国在线观看视频| 国产伦在线观看视频一区| 成年版毛片免费区| 欧美区成人在线视频| 波多野结衣高清无吗| 国产成人福利小说| 精品人妻熟女av久视频| 成年av动漫网址| 久久久久国产网址| 国产三级在线视频| 国国产精品蜜臀av免费| 色播亚洲综合网| 国产精品久久久久久久久免| 国产淫语在线视频| 插逼视频在线观看| 身体一侧抽搐| 亚洲真实伦在线观看| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 男人狂女人下面高潮的视频| 欧美高清成人免费视频www| 亚洲国产高清在线一区二区三| 国产精品国产三级国产av玫瑰| 女人十人毛片免费观看3o分钟| 三级国产精品片| 91精品一卡2卡3卡4卡| 精品一区二区三区人妻视频| 精品一区二区免费观看| 视频中文字幕在线观看| 日韩亚洲欧美综合| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 免费播放大片免费观看视频在线观看 | 亚洲精品,欧美精品| 日日撸夜夜添| 欧美激情在线99| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 天天一区二区日本电影三级| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 亚洲国产欧洲综合997久久,| 岛国在线免费视频观看| 婷婷色av中文字幕| 搞女人的毛片| 在线观看av片永久免费下载| 变态另类丝袜制服| 国产精品久久视频播放| 久久久久久久国产电影| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品青青久久久久久| 日韩成人av中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 国产精品一及| 久久午夜福利片| 欧美成人精品欧美一级黄| 九九在线视频观看精品| 天美传媒精品一区二区| 亚洲人成网站高清观看| 久久精品国产自在天天线| 六月丁香七月| 日韩 亚洲 欧美在线| 久久精品国产自在天天线| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 久久久久国产网址| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 亚洲精品一区蜜桃| 国产精品无大码| 午夜精品在线福利| 人人妻人人澡人人爽人人夜夜 | 亚洲熟妇中文字幕五十中出| 简卡轻食公司| 成年免费大片在线观看| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 成人二区视频| 久久亚洲国产成人精品v| 寂寞人妻少妇视频99o| 久久久久久久久大av| 能在线免费看毛片的网站| 国产在视频线在精品| 精品熟女少妇av免费看| 国产精品人妻久久久影院| av女优亚洲男人天堂| 美女被艹到高潮喷水动态| 婷婷色麻豆天堂久久 | 国产探花极品一区二区| 九九热线精品视视频播放| 国产综合懂色| 精品一区二区免费观看| 国产91av在线免费观看| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 亚洲av二区三区四区| 青春草亚洲视频在线观看| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 嘟嘟电影网在线观看| ponron亚洲| 最后的刺客免费高清国语| 91狼人影院| 国产成人精品婷婷| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产极品精品免费视频能看的| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 一级二级三级毛片免费看| 99热精品在线国产| 国产精品久久久久久精品电影| 99热6这里只有精品| 日本-黄色视频高清免费观看| 99久久无色码亚洲精品果冻| 在线播放无遮挡| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 欧美bdsm另类| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 亚洲欧美日韩高清专用| 国产精品一区二区三区四区免费观看| 亚洲av一区综合| 可以在线观看毛片的网站| 美女黄网站色视频| 老女人水多毛片| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 伦理电影大哥的女人| 超碰av人人做人人爽久久| 国产免费又黄又爽又色| 97超视频在线观看视频| 国产在视频线在精品| 欧美bdsm另类| 午夜精品国产一区二区电影 | 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 久久久久久久久久久丰满| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 男人舔奶头视频| 男人和女人高潮做爰伦理| .国产精品久久| 亚洲欧美日韩卡通动漫| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 啦啦啦韩国在线观看视频| 亚洲精品乱久久久久久| 国产一区有黄有色的免费视频 | 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩无卡精品| 建设人人有责人人尽责人人享有的 | 免费观看a级毛片全部| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 国产麻豆成人av免费视频| 1000部很黄的大片| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 成人av在线播放网站| 亚洲中文字幕日韩| 国产亚洲精品久久久com| 老司机影院毛片| 国产免费视频播放在线视频 | 国产一区二区三区av在线| 亚洲欧美一区二区三区国产| 亚洲av中文av极速乱| 亚洲国产精品成人久久小说| 午夜福利高清视频| 三级毛片av免费| 国产精品综合久久久久久久免费| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 亚洲av日韩在线播放| 午夜福利视频1000在线观看| 精品一区二区三区人妻视频| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 欧美色视频一区免费| 欧美三级亚洲精品| 久久久久网色| 午夜福利高清视频| 国产中年淑女户外野战色| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 国内少妇人妻偷人精品xxx网站| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站 | 亚洲va在线va天堂va国产| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 波野结衣二区三区在线| 性色avwww在线观看| 欧美最新免费一区二区三区| 国产在视频线精品| 精品一区二区三区人妻视频| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 国产精品美女特级片免费视频播放器| 亚洲精品自拍成人| 色视频www国产| 日本免费一区二区三区高清不卡| 一级二级三级毛片免费看| 在现免费观看毛片| 久久午夜福利片| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 色播亚洲综合网| 成人一区二区视频在线观看| www日本黄色视频网| 男插女下体视频免费在线播放| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久久免| 亚洲最大成人中文| 国产精品久久久久久精品电影| 在线免费十八禁| 麻豆一二三区av精品| 亚洲av成人精品一二三区| 国产乱来视频区| 日本黄大片高清| 99国产精品一区二区蜜桃av| 91狼人影院| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 五月伊人婷婷丁香| 久久久久性生活片| 亚洲欧美精品自产自拍| 欧美zozozo另类| 午夜视频国产福利| 久久精品久久久久久噜噜老黄 | 欧美zozozo另类| 美女cb高潮喷水在线观看| 在线播放无遮挡| 国产精品,欧美在线| 青春草国产在线视频| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 国产亚洲精品av在线| 亚洲国产欧美在线一区| 亚洲不卡免费看| 亚洲精品成人久久久久久| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 亚洲人与动物交配视频| 美女大奶头视频| 亚洲美女搞黄在线观看| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 一级毛片久久久久久久久女| 久久久久久久久久久免费av| 午夜精品在线福利| 久久久午夜欧美精品| 国产视频内射| 国产又色又爽无遮挡免| 欧美一区二区国产精品久久精品| 欧美人与善性xxx| 免费搜索国产男女视频| 欧美日韩一区二区视频在线观看视频在线 | 尾随美女入室| 国产黄片视频在线免费观看| 波野结衣二区三区在线| 久久久久网色| 中文欧美无线码| 精品久久久久久成人av| 国产精品一及| 午夜视频国产福利| 免费观看人在逋| h日本视频在线播放| 插阴视频在线观看视频| 又粗又爽又猛毛片免费看| 婷婷色av中文字幕| 在线观看一区二区三区| 十八禁国产超污无遮挡网站| 日韩强制内射视频| 大香蕉久久网| 亚洲最大成人手机在线| 国产av在哪里看| 久久久久久久国产电影| 国产高清视频在线观看网站| 国产精品人妻久久久久久| 久久精品久久精品一区二区三区| 在线天堂最新版资源| 水蜜桃什么品种好| 婷婷色综合大香蕉| 一级爰片在线观看| 激情 狠狠 欧美| 色综合色国产| 国产片特级美女逼逼视频| 国产av在哪里看| 欧美高清性xxxxhd video| av又黄又爽大尺度在线免费看 | 国产精品人妻久久久影院| 午夜免费男女啪啪视频观看| 日日干狠狠操夜夜爽| 插逼视频在线观看| 久久人人爽人人片av| 国产不卡一卡二| 99热这里只有是精品50| 欧美性感艳星| 国产爱豆传媒在线观看| 色视频www国产| 99久久精品热视频| 麻豆一二三区av精品| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| 非洲黑人性xxxx精品又粗又长| 国产一区二区在线观看日韩| 观看免费一级毛片| av在线天堂中文字幕| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 在线观看一区二区三区| 精品国内亚洲2022精品成人| 69人妻影院| 国产午夜福利久久久久久| 午夜激情福利司机影院| 久久亚洲精品不卡| 国产伦精品一区二区三区四那| 天美传媒精品一区二区| 成年女人看的毛片在线观看| 久久久久性生活片| 99热网站在线观看| 人人妻人人看人人澡| 99久久无色码亚洲精品果冻| 22中文网久久字幕| 欧美另类亚洲清纯唯美| 亚洲内射少妇av| 亚洲欧美日韩东京热| 99久国产av精品国产电影| 午夜福利在线在线| 又爽又黄a免费视频| 成人特级av手机在线观看| 亚洲色图av天堂| 成人性生交大片免费视频hd| 亚洲成人中文字幕在线播放| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清| 中文亚洲av片在线观看爽| 少妇熟女欧美另类| 亚洲av.av天堂| kizo精华| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 天堂影院成人在线观看| 欧美性猛交╳xxx乱大交人| 人人妻人人澡人人爽人人夜夜 | 久久久久久久国产电影| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 亚洲国产精品成人久久小说| 最新中文字幕久久久久| 国产精品野战在线观看| 91久久精品国产一区二区成人| 成人毛片a级毛片在线播放| 欧美极品一区二区三区四区| 色哟哟·www| 免费无遮挡裸体视频| 国产精品美女特级片免费视频播放器| 精品国产三级普通话版| 少妇的逼水好多| 欧美xxxx黑人xx丫x性爽| 中文天堂在线官网| 久久久久性生活片| 免费观看a级毛片全部| 99久久人妻综合| 国语自产精品视频在线第100页| 久久精品91蜜桃| 久久精品夜色国产| 亚洲欧美精品专区久久| 91精品国产九色| 国产不卡一卡二| 久久久a久久爽久久v久久| 国产一区二区亚洲精品在线观看| 中国美白少妇内射xxxbb| 两个人视频免费观看高清| 亚洲最大成人中文| 亚洲精品影视一区二区三区av| 成年女人看的毛片在线观看| 国产中年淑女户外野战色| 久久99精品国语久久久| 久久精品久久久久久久性| av免费观看日本| 亚洲久久久久久中文字幕| 国产成人91sexporn| 国产日韩欧美在线精品| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 国产精品人妻久久久影院| 成人综合一区亚洲| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 六月丁香七月| 亚洲经典国产精华液单| 一级毛片我不卡| 中文字幕av在线有码专区| 国产视频首页在线观看| 久久久久久久久中文| 91久久精品国产一区二区成人| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 午夜a级毛片| 国产精品国产三级国产专区5o | 在线免费十八禁| 日产精品乱码卡一卡2卡三| 蜜桃久久精品国产亚洲av| 最近最新中文字幕免费大全7| 亚洲人成网站在线播| 中文精品一卡2卡3卡4更新| 内射极品少妇av片p| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 99在线视频只有这里精品首页| 亚洲自拍偷在线| 国产av一区在线观看免费| 国产亚洲91精品色在线| 色5月婷婷丁香| 我要看日韩黄色一级片| 亚洲国产色片| 日韩精品青青久久久久久| 久久久国产成人精品二区| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线av高清观看| 看免费成人av毛片| 精品欧美国产一区二区三| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久 | 亚洲精品一区蜜桃| 菩萨蛮人人尽说江南好唐韦庄 | 黄色日韩在线| 麻豆成人午夜福利视频| 国产极品天堂在线| 亚洲av电影不卡..在线观看|