• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Variable-Parameter-Model-Based Feedforward Compensation Method for Tracking Control

    2020-05-21 05:43:32DailinZhangZiningWangandMasayoshiTomizuka
    IEEE/CAA Journal of Automatica Sinica 2020年3期
    關(guān)鍵詞:教學管理幼兒教師多元化

    Dailin Zhang, Zining Wang, and Masayoshi Tomizuka,

    Abstract—Base on the accurate inverse of a system, the feedforward compensation method can compensate the tracking error of a linear system dramatically. However, many control systems have complex dynamics and their accurate inverses are difficult to obtain. In the paper, a variable parameter model is proposed to describe a system and a multi-step adaptive seeking approach is used to obtain its parameters in real time. Based on the proposed model, a variable-parameter-model-based feedforward compensation method is proposed, and a disturbance observer is used to overcome the influence of the model uncertainty. Theoretical analysis and simulation results show that the variable-parametermodel-based feedforward compensation method can obtain better performance than the traditional feedforward compensation.

    I. Introduction

    GENERALLY, feedforward compensation is used to reduce the tracking error of a control system, and then the control accuracy can be improved [1]–[4]. The inverse of a system is commonly obtained from the system model, and the compensation values of the feedforward compensator are calculated according to the inverse and the planned trajectory.

    Many methods were proposed to identify system models and achieve their inverses. A simple method is to use the parameter identification to obtain a system model, and then its inverse can be obtained by inversing the system model. Least squares (LS) and recursive least squares (RLS) [5], [6] are effective to identify the transfer function of a linear system. In[1], the system model of a permanent magnet linear motor(PMLM) was obtained by the RLS identification method and an adaptive feedforward component based on the inverse dominant linear model was used to reduce the tracking error.In [7], an inverse Preisach model was used for feedforward compensation of hysteresis compliance and the model was identified from drive experiments. In [8], measured data in every task was used for system identification and the feedforward controller could be updated after each task. In[9], a multi-model adaptive preview control using a set of augmented systems was proposed to enhance the feedforward performance.

    The accurate model is difficult to obtain in a real control system with complex dynamics, so the effectiveness of feedforward compensation may be limited. Some methods are able to avoid the difficulties to build accurate models. For example, ILC (iterative learning control) adjusts its control signal to a control system in every iteration by using feedback information from previous iterations, which can improve the control accuracy without knowing the accurate system model[10]–[13]. In effect, ILC can find the perfect inverse of a system for a repetitive trajectory, which makes ILC be able to compensate for the disturbances optimally [14]–[16]. ILC,however, performs badly in the systems with uncertain factors. For example, the change of reference trajectory will result in varying disturbances, and changing the moment of inertia will result in the change of system model. Both uncertainties above will result in performance deterioration.

    The paper proposes to use a variable parameter model to describe a system with uncertain factors and achieve the inverse of the system in real time. The basic idea is to calculate the parameters of the variable parameter model by solving the strict equality between variable parameter model output and actual output.

    The contribution of the paper includes: Firstly, a variable parameter model with constraints is proposed and a multi-step adaptive seeking approach is used to obtain the parameters of the proposed model in real time. The multi-step adaptive seeking approach can obtain the optimal parameter in every control period by adaptive control approaches [17], [18].Secondly, a variable-parameter-model-based feedforward compensation method is proposed. The proposed variableparameter-model-based feedforward compensation method can reduce the tracking error effectively. Thirdly, a disturbance observer is used to compensate for the model uncertainty, which helps to reduce the influence of disturbances.

    The remaining of the paper is organized as follows. Section II gives the problem formulation, Sections III and IV propose the variable parameter model and variable-parameter-modelbased feedforward compensation method, respectively.Section V presents the experimental results. Section VI gives the conclusion and future works.

    II. Problem Formulation

    A single input single output system is depicted in Fig. 1.The plant is described as a fixed transfer functionP(z), and the disturbances at timekared(k). The control configuration consists of a feedback controllerC(z) and a feedforward controllerF(z). With the inputr(k), the output isy(k), and then the tracking errore(k) can be calculated. The closed-loop system output can be calculated by

    whereuf f(k) is the feedforward compensation value at timek.

    Fig. 1. A system with a fixed transfer function is changed to a variable parameter system.

    The feedforward controller can be described by

    Substituting (2) into (1), we have

    According to Stearnset al. [11], the ideal feedforward controller is

    If the disturbance is zero and will be considered in the following uncertainty portion, the obtained inverse of the system has three possible solutions.

    Solution 1:Substituting (4) into (3), we have

    From (5), it can be concluded that the tracking errore(k)=r(k)?y(k)will be reduced to zero with the feedforward controller.

    Solution 2:If the ideal feedforward controller is not available because the number of zeros is bigger than that of poles, the feedforward controller can be described by

    The feedforward controller becomes

    And the reference inputr(k) becomesr(k+d) by previewingr(k)dtime steps. Obviously,F(z) is realizable and the feedforward compensation effect remains unchanged.

    Solution 3:IfP(z) has an unstable zero, zero phase error tracking control (ZPETC) can be used to reduce the tracking error [19]. In this method, the feedforward tracking control is designed as

    whereGZPETC(z) is the zero phase error tracking controller,is the denominator ofandare two parts of the numerator, which contain cancelable and uncancelable zeros, respectively.is a scale.

    Equation (8) does not produce the perfect inverse, but can help reduce the tracking error effectively. Because the variable parameter model is the main point, the paper simply focuses on (5) and (7).

    When the plant has realtime changing parameters and the system becomes a variable parameter one,F(z) should follow the corresponding changes in order to ensure the last term in(3) be equal to one.

    The variable parameter system is shown in Fig.1. The variable parameter plant isP1(z,θ) instead ofP(z) and the corresponding feedforward controller isF(z,θ) , where θ is a variable parameter. For every value of θ, the ideal feedforward controller can be obtained according to (4), (7),and (8)

    At every control period, the parameter θ should be identified and the corresponding variable parameter function is obtained.the identified function ofP1(z,θ) is supposed to bePv(z,θ),which is a variable parameter model shown in Fig. 2. The variable parameter model means the identified transfer functionPv(z,θ) will be changing with the parameter θ.GZPETC(z,θ)is the zero phase error tracking controller with variable parameter θ. And the uncertainty in the identification process will be resolved by the model uncertainty compensation based on disturbance observer in Section IV.For example, the disturbanced(k) will be considered as an uncertainty portion in the paper.

    Fig. 2. variable parameter model.

    Remark 1:If a variable parameter modelPv(z,θ), where θ=[θ1,θ2,...,θn]is a variable parameter and its the initial value is θ(0)=[11...1], has the same input and output asP1(z,θ) at every discrete timek,Pv(z,θ) is the perfect description ofP1(z,θ).

    Therefore, if we can find a variable parameter modelPv(z,θ)meeting the requirements in Remark 1 in every sampling instant, the feedforward controllerF(z,θ) will result in a very perfect tracking performance according to (4)–(9). In the next section, the variable parameter model will be proposed.

    III. The Variable Parameter Model With Constraints

    A variable parameter modelPv(z,θ) can have the same output asP1(z,θ) by tuning the variable parameter θ, but realtime performance to obtain the optimal parameters ofPv(z,θ) is very difficult to be guaranteed becausePv(z,θ) is a complex variable parameter system. This paper proposes a variable parameter model with constraints and a multi-step adaptive seeking approach to obtain the optimal parameters ofPv(z,θ)in real time.

    The constraints of the variable parameter model are set to limit the variation range of parameters, which ensure the optimal parameters be achieved within a limited seeking range[20].

    In this section, a structure combining a variable gain and an identified transfer function is used to simplify the variable parameter model. And the multi-step adaptive seeking approach computes the optimal parameters within the constrained range in real time.

    A. Variable Parameter Model With Constraints

    As shown in Fig. 2, the object under study isP1(z,θ). No disturbance is applied and the influence of disturbance will be discussed in the next section. Given a reference trajectory, we can get the outputy. At the same time, a parallel identification systemQSis set up with the variable parameter modelPv(z,θ) . ExceptPv(z,θ), the identification systemQShas the same structure as the given system and the output is assumed to beya(k). Then the identification error is

    At every period, the parameters ofPv(z,θ) need to be sought becausePv(z,θ) is a variable parameter model.

    The proposed multi-step adaptive seeking approach can iteratively runQSand tune its model parameters. The goal of the multi-step adaptive seeking approach is to obtain the optimal parameters ofPv(z,θ) to letyabe equal toy, that is, to let every ε(k) be equal to zero. Constraints of a variable parameter model will be used to accelerate the seeking process by restricting the seeking range of parameters.

    Assumption 1:It is assumed that every variable parameter of the variable parameter model has an upper and lower bound,which is to reduce the seeking range and guarantee the system stability. In other words, it can be described by

    wherei= 1 ,2,...,n, andandare upper and lower bounds of theith parameter θi, respectively.

    It is supposed that there are multiple steps of seeking process to achieve the optimal valueθ. The optimal value ofθat every timekcan be obtained by the seeking approach

    where θ?(k) is the optimal value at timek. At thejth step of seeking process, θx,j(k)=[θ1,j(k)θ2,j(k)...θn,j(k)], where θn,j(k) is the value of thenth parameter θn, is the value of the parameterθat timek.J(θx,j(k)) is the cost function of θx,j(k)

    where εj(k) is the identification error at thejth step of seeking process, respectively.

    Considering the real-time performance and complexity, too many variable parameters are not practical. In the proposed variable parameter model, the identified transfer functionP(z)is used as a fixed plant and a variable gain is used to tune the output, so only one variable parameter is used in the variable parameter model.

    The variable parameter model is described as

    wheref(θ) is a variable proportional gain, and θ includes only one variable parameter θ1, that is,f(θ)=θ1.

    B. Multi-step Variable Parameter Seeking Approach

    A multi-step variable parameter seeking approach is proposed to seek the optimal parameterf(θ) in (13). The goal is to adjust the variable proportional gainf(θ) by a multi-step adaptive seeking approach to lety(k) equalya(k) at every momentk. Here “multi-step” means the optimal parameter θ(k)is achieved through multiple calculations within one control period.

    From Fig. 2, it can be seen that the given system and the parallel identification systemQShave the same controllerC(k). With the same reference input, there exists

    濮陽市職業(yè)中等專業(yè)學校盧巧真在《中職學前教育專業(yè)多元化人才培養(yǎng)模式探索》中提出:“要根據(jù)學生發(fā)展的可能性及學生的自身需求來設(shè)立有短期就業(yè)需要、有專業(yè)發(fā)展需要、有學歷教育需要等多元化培養(yǎng)方案來滿足他們對就業(yè)的多元化需求?!倍嘣膶W前教育人才主要包括應(yīng)用型幼兒教師、兒童讀物研 發(fā)及其他兒童文化工作者等復(fù)合型學前教育專業(yè)人才,要培養(yǎng)這樣的人才,首先,政府要高調(diào)介入,制定政策及制度來保障高校教學管理的順利進行。其次,高校要保障課程與教學運行機制的暢通。最后,形成以政府、高校、教師、學生、用人單位為主體的學前教育本科專業(yè)多元化人才培養(yǎng)機制。

    The outputs of the two systems are

    Substituting (14) into (16), it can be concluded thatPv(z,θ)will be equal toP1(z) only ify(k) equalsya(k) at every timek.

    f(θ) can be described by

    At timek, the actual output isy(k), and the seeking approach is to run the variable parameter systemQSin parallel to adaptively find the optimal value of θ(k). At thejth step, θ(k) is supposed to be equal to θ1,j(k),ya(k) can be obtained at the step, then εj(k) is obtained. The optimal value of θ (k) can be obtained by

    where θ?(k) is the optimal value, εj(k) is thejth identification error.

    Algorithm 1 Multi-step variable parameter seeking approach

    Thejth parameter update law is

    θ1,j(k) and εj(k) are recorded at every step and θ?(k) is obtained by selecting θ1,j(k) when εj(k) is smaller enough.

    In order to reduce the number of steps for obtaining the optimal value θ?(k) , the last parameter value θ(k?1) can be used as the present initial value, because the system does not change dramatically during a very small period.mvalues withinare tested to seek an optimal value θ(k?1)+θopt(k). Then the initial value can be set as θ(k?1)+θopt(k) and the parameter θ (k) can be obtained by

    In order to avoid local minima, θopt(k) can be replaced by random values everyhsteps in Algorithm 1 under the conditions that (18) is met and θ(k?1)+θopt(k) is within

    It can be seen that the variable parameter model in (13) and its parameter seeking approach are simple and practical.

    IV. Variable-Parameter-Model-Based Feedforward Compensation Method

    With the built variable parameter model, the feedforward compensation in Fig. 1 becomes variable-parameter-modelbased feedforward compensation.

    A. Variable-Parameter-Model-Based Feedforward Compensation Method

    The proposed variable-parameter-model-based feedforward compensation method is shown in Fig. 3. Compared with Fig. 1,P(z)andF(z) are replaced byPv(z,θ) andF(z,θ).

    Fig. 3. The variable-parameter-model-based feedforward compensation.

    With the variable parameter model in (13), the feedforward controller can be obtained by

    The basic variable-parameter-model-based feedforward compensation method usesF(z,θ) in (21) to compensate the tracking error.

    Becausef(θ) consists of only one parameter θ1wherethe corresponding feedforward compensation value can be obtained easily by the inverse of the parameter.To avoid the influence of high-frequency disturbances, a lowpass filterQ(z) is used in (13) and (21), thenf(θ) can be rewritten as

    With the proposed variable parameter system shown in Fig. 1,the fixed plantP(z) becomesP1(z,θ). Under the conditions in Remark 1,P1(z,θ) can be identified asPv(z,θ) by the method in Section III. If the disturbanced(k) is zero and will be considered in the next section, (1) becomes

    From Fig. 1, we haveuf f(k)=r(k)·F(z,θ). Then substituting it into (23), we have

    IfF(z) has Solution 1,F(z)P(z) will be one andy(k) is equal tor(k).

    IfF(z) has Solution 2, substituting (6) into (23) and letwe have the same result.

    IfF(z) has Solution 3,will be equal to one andy(k) is equal tor(k).

    Therefore, the tracking error is theoretically equal to zero.

    However, the variable parameter model has difficulties in obtaining the accurate model under the following conditions:1) large disturbances cause too big parameter deviation; 2)parameter value exceeds the upper or lower bounds.

    B. Model Uncertainty Compensation Based on Disturbance Observer

    To filter disturbances and improve the control accuracy, a disturbance observer [21], [22] can be applied. Based on the variable parameter model, the designed disturbance observer is shown in Fig. 3. It can be seen that the variable parameter modelPv(z,θ) has replacedP1(z,θ) in the disturbance observer. Ifd(k) in (1) is not zero,d(k) is supposed to becomedu(k) withP1(z,θ) replaced byPv(z,θ).du(k) will be compensated by the disturbance observer.

    In Fig. 3,Qd(z) is a low-pass filter. Before running the disturbance observer, the variable parameter modelPv(z,θ)should be sought and the feedforward controllerF(z) can be obtained by (21).

    It is supposed that the model uncertainty isΔP, which is calculated by

    From Fig.3, the output of the disturbance observer can be obtained by

    whereu?(k) is the sum of the outputs of the feedback controllerC(z) and feedforward controllerF(z).

    From the schematic diagram of the variable-parametermodel-based feedforward compensation shown in Fig. 3,u?(k)can be calculated by

    Remark 2:With a disturbance observer helping to observe the model uncertainty,e(k) is close toea(k) if the disturbance is fully compensated, then the variable parameter model is able to acquire the optimal estimation of the systemP1(z,θ).

    Proof:Suppose the transfer function from the disturbancedu(k) to the tracking error isin the proposed variableparameter-model-based feedforward compensation in Fig. 3. It is noticed that the transfer function isHDE(z) in the traditional feedforward compensation method. According to Yu and Tomizuka [21], the following relationship exists if the feedforward controller replaces the ILC in the paper

    BecauseQd(z) is a low-pass filter,Qd(z) is equal to one andcan be considered as zero when the frequency is low.According to (26) the model uncertainty at low frequency can be estimated by the disturbance observer and then compensated. So the tracking error can be further reduced compared with the traditional feedforward compensation method.

    From Fig. 2, it can be concluded thate(k) is close toea(k) if the disturbance observer is applied, so it existsu(k)≈ua(k)andy(k)≈ya(k), which implies that the variable parameter model is able to acquire the optimal estimation ofP1(z,θ). For a traditional disturbance observer used in the paper, a more accurate model will help achieve more accurate estimation of uncertainty. So the variable parameter model works better with the realtime update of the model parameter.

    In summary, there are two cases for the variable parameter model. On the one hand, the variable parameter model is theoretically equal toP1(z,θ) under the conditions that the disturbance is small and θ can be sought within its bounds. On the other hand, if the above conditions cannot be met, the model uncertainty resulted from the variable parameter model can be obtained by the disturbance observer. Therefore, the feedforward controller can reduce the tracking error to the greatest degree in the two cases.

    C. Advantage Analysis Compared With the Fixed Parameters Feedforward Compensation Method

    Considering the model uncertaintyΔP,P1(z,θ) in every control period can be estimated as

    In Fig. 3, it is supposed thatΔPis caused bydu(k). The output can be obtained by

    With the variable parameter model, ifF(z,θ) has Solution 1 or Solution 2, then (30) becomes

    The tracking error can be calculated by

    IfF(z,θ) has Solution 3,f?1(θ)inF(z,θ) andf(θ) inPv(z,θ)can be canceled, so the feedforward controller can be considered as a single ZPETC and the tracking error can be reduced. According to the theory of ZPETC, the tracking error can also be estimated by (32) if the frequency ofr(k) meets the requirement of ZPETC.

    From (32), it can be concluded that the tracking error is determined bydu(k).

    With the variable-parameter-model-based feedforward compensation, the model uncertainty can be reduced to be a very low level by using the variable parameter model, which implies

    When the parameters is over the setting constraints, the disturbance-observer-based compensation will help achieve the optimal estimation ofP1(z,θ) according to Remark 2 and model uncertainty is compensated byud(k) obtained by disturbance observer. According to (29),e(k) can be controlled to be a very small value

    With the fixed parameters model, the model uncertainty is big if disturbances exist or a model has variable parameters. In this case, the tracking error is determined bydu(k) and can be estimated by (29).

    In summary, the above theoretical analysis shows that the variable-parameter-model-based feedforward compensation is able to achieve a smaller tracking error than the fixed parameters model.

    V. Illustrative Examples

    Servo systems are often used in robots or numerical control machine tools. Two categories of application examples in servo systems are investigated: the one is thatP(z) has a varying proportional gain; the other is that a servo system is influenced by complex disturbances.

    Generally, a servo system can be described by [23]

    IfP(z) is a fixed transfer function,aiandbjare constants wherei=0,1,...,nandj=0,1,...,m.

    If the servo system has variable parameters,aiandbjare varying coefficients and the transfer function will bePv(z,θ),where θ is a vector composed ofaiandbj. But it is timeconsuming to identify the parameters and very difficult to achieve the accurate values of the vector θ. According to Section III, the variable model in (13) can be used if the conditions in Remark 1 are met. As a result, the variable parameter model is described by the product ofP(z) andf(θ),and the model uncertainty is considered asdu(k) which can be compensated by the disturbance observer in Fig. 3.

    The plant of a servo systemP(z) is set for a fixed transfer function

    The feedback controller is a proportional-derivative (PD)controller, whose transfer function is

    whereTsis the sampling period and set for 0.004 s.

    The reference input is a sine curve

    This section verifies the effectiveness of the variableparameter-model-based feedforward compensation method by analyzing the performance of the variable parameter model and comparing with ILC and a traditional feedforward compensation method. And the advantages of the variableparameter-model-based feedforward compensation are also illustrated by examples with model uncertainty.

    A. Performance Analysis of the Variable Parameter Model

    To analyze the performance of the variable parameter model the identification system in Fig. 2 is used to estimate the variable parameterf(θ). Becausef(θ) in (13) has only one parameter θ1, the variable parameter model becomes

    where θ1is a variable scalar coefficient and

    In order to evaluate the performance of the proposed variable parameter model, the variable parameter θ1is set with different changing rules and the torque disturbancedis set as a complex function. The changing rules of the variable parameter θ1are given as follows:

    1) a line

    2) a sine

    3) a sine over the set seeking range

    4) the sine in (41) with the following disturbance added

    Within the set seeking range θ1∈[0.8,1.4], the variable parameter θ1can be obtained in every timekby the seeking method in Section III. By using (40)–(43), the variable parameters are obtained and the results are shown in Figs. 4(a)–(d), respectively. In the figure, “identified” and “actual”represent the identified and actual parameters, respectively.

    From the results, it can be seen that the proposed seeking method can obtain the values of the variable parameter accurately. But there is model uncertainty when the parameter θ1is out of the set seeking range. For example, in Fig. 4(c)θ1can be obtained when its value is within the seeking range, but not when its value is over the seeking range, which implies that the model uncertainty exists. In this case, the parameter over the seeking range is set as the boundary value. The disturbance in (43) is complex because it changes with the change of the outputy(k?1). And its result in Fig. 4(d) shows that the identified variable parameter is not fully in accordance with (41), especially at 6.2 s, 18.8 s and 31.4 s.The disturbance causes the inconsistency of the parameters,but when the identified variable parameter is used in Fig. 5(d)the excellent compensation effectiveness verifies that the identified variable parameter matches the real system model.So it can be concluded that the variable parameter is able to be identified when the disturbance is compensated by a disturbance observer.

    Fig. 4. Identification of θ1 in the variable parameter model. Within the seeking range, the parameters under different changing rules including (a) a line,(b) a sine curve, (c) a sine curve over the set seeking range, and (d) a sine curve with the disturbance can be obtained.

    B. Comparison With a Traditional Feedforward Compensation Method

    By using the variable parameters sought in Section V-A, the variable-parameter-model-based feedforward compensation method is used to compensate the tracking error. A traditional feedforward controller shown in Fig. 1 is used to compare the compensation performance. In Fig. 3,Qd(z) andQ(z) are designed as the same second ordered Butterworth low-pass filter whose transfer function is shown as follows:

    Fig. 5. The tracking errors. Different conditions, that is, (a) a line, (b) a sine curve, (c) constant 1 with the disturbance and (d) a sine over the set seeking range, (e) with a varying transfer function, are considered.

    The compensation results are shown in Figs. 5(a)–(d),respectively. “proposed method”, “traditional method” and“without compensation” represent the tracking errors obtained by the proposed variable-parameter-model-based feedforward compensation method, traditional feedforward method and without compensation, respectively.

    From the results, it can be concluded that the variableparameter-model-based feedforward compensation method is much better than the traditional feedforward compensation. Just like the theoretical analysis, the traditional feedforward compensation can compensate the tracking error, but the inaccurate plant model limits its effectiveness. Fig. 5 shows that the proposed variable-parameter-model-based feedforward compensation method has much lower tracking errors than the traditional feedforward compensation. Fig. 5(c) and Fig. 5(d)show that the tracking error can be compensated by the variableparameter-model-based feedforward compensation with disturbance observer, even if the model uncertainty exists, i.e.,the variable parameter is over the set seeking range in Fig. 5(c),and there are the disturbance inputs in Fig. 5(d). Fig. 5(d) uses the obtained parameters in Fig. 4(d), and the result shows the tracking error can be compensated to a very small level, which implies that the disturbance can be overcome by the proposed variable-parameter-model-based feedforward compensation method.

    In addition to the variable parameter θ1, a more complex condition is considered in the paper. Under the condition that the variable parameter θ1is set with the rule in (41), at the 6th second, the plant of the servo systemP(z) in (36) is changed as follows:

    In this case, numerator polynomial coefficients in (35) are changed except for the varying parameter θ1.

    ButP(z) in the variable parameter model (39) remains unchanged. Fig. 5(e) shows that the tracking error by the traditional method becomes bigger after 6 s, but that by the proposed variable-parameter-model-based feedforward compensation method remains a small value. This result further verifies that the proposed method is effective to reduce the tracking error when the parameters of a system are varying.

    VI. Conclusion and Future Works

    In the paper, a variable-parameter-model-based feedforward compensation method is proposed to reduce the tracking error.Based on the built variable parameter model, the nonlinear plant is constructed as a variable parameter model with constraints. A multi-step adaptive seeking approach is used to obtain the parameter of the variable parameter model, and then the inverse of the system can be calculated by the variable parameter model. Finally, the proposed variableparameter-model-based feedforward compensation method can compensate the tracking error to the greatest degree.

    By an example of a servo system, the effectiveness of the variable-parameter-model-based feedforward compensation method is verified.

    1) The proposed multi-step adaptive seeking method can obtain the variable parameter accurately;

    2) The variable-parameter-model-based feedforward compensation method can achieve smaller tracking errors than a traditional feedforward compensation method, and the disturbance observer can help achieve good effectiveness even when the model uncertainty exists.

    In the future, more real systems are expected to use the variable-parameter-model-based feedforward compensation method to reduce the tracking error.

    猜你喜歡
    教學管理幼兒教師多元化
    德國:加快推進能源多元化
    教學管理信息化問題研究
    大學(2021年2期)2021-06-11 01:13:24
    新時期高中教學管理改革與實踐
    甘肅教育(2020年17期)2020-10-28 09:01:24
    談教學管理的藝術(shù)
    甘肅教育(2020年4期)2020-09-11 07:41:24
    幼兒教師能力提升策略
    甘肅教育(2020年4期)2020-09-11 07:41:20
    幼兒教師專業(yè)成長的三個維度
    滿足多元化、高品質(zhì)出行
    中國公路(2017年8期)2017-07-21 14:26:20
    柔性制造系統(tǒng)多元化實踐教學
    性人權(quán)與性多元化
    小學體育教學管理七要點
    體育師友(2011年2期)2011-03-20 15:29:29
    国产精品香港三级国产av潘金莲| 精品乱码久久久久久99久播| 99国产综合亚洲精品| 丝袜美腿在线中文| 99热这里只有精品一区| 香蕉久久夜色| 男女午夜视频在线观看| 天天添夜夜摸| 国模一区二区三区四区视频| 欧美丝袜亚洲另类 | 无遮挡黄片免费观看| 国产精品久久久人人做人人爽| 最近视频中文字幕2019在线8| 一级作爱视频免费观看| 美女被艹到高潮喷水动态| 午夜两性在线视频| 欧美黄色片欧美黄色片| 国产亚洲精品久久久com| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 国内精品美女久久久久久| 在线观看一区二区三区| 久久亚洲真实| 精品日产1卡2卡| 在线国产一区二区在线| 午夜福利18| 俄罗斯特黄特色一大片| 国产日本99.免费观看| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 97超视频在线观看视频| 久久久久九九精品影院| 国产色爽女视频免费观看| 亚洲专区国产一区二区| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 成人国产综合亚洲| 97碰自拍视频| 超碰av人人做人人爽久久 | 999久久久精品免费观看国产| 香蕉av资源在线| 国产精品久久视频播放| 天堂影院成人在线观看| av在线蜜桃| 美女黄网站色视频| 国产真实乱freesex| 怎么达到女性高潮| 97碰自拍视频| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 国产三级中文精品| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 在线a可以看的网站| 精品国产三级普通话版| 久久精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 两个人的视频大全免费| 美女免费视频网站| 国产精品三级大全| 岛国在线免费视频观看| 亚洲av成人av| 久久久精品欧美日韩精品| 国产精品久久久久久精品电影| 日韩欧美一区二区三区在线观看| 中文字幕人妻丝袜一区二区| 老汉色av国产亚洲站长工具| 欧美在线一区亚洲| 18禁美女被吸乳视频| 一个人免费在线观看电影| 男人的好看免费观看在线视频| 国产v大片淫在线免费观看| 脱女人内裤的视频| 在线播放无遮挡| 国产97色在线日韩免费| 91麻豆精品激情在线观看国产| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 波多野结衣巨乳人妻| 身体一侧抽搐| 99在线人妻在线中文字幕| 国产高清视频在线观看网站| 母亲3免费完整高清在线观看| 男女之事视频高清在线观看| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 老司机在亚洲福利影院| 免费看a级黄色片| 国产成人福利小说| 亚洲欧美日韩卡通动漫| 日韩有码中文字幕| 麻豆成人午夜福利视频| 国产成人啪精品午夜网站| 国产欧美日韩精品一区二区| 久久久久国产精品人妻aⅴ院| 午夜福利在线在线| 日本 av在线| 国产一区二区亚洲精品在线观看| a在线观看视频网站| bbb黄色大片| 国产 一区 欧美 日韩| 欧美不卡视频在线免费观看| 日韩精品青青久久久久久| 99精品欧美一区二区三区四区| АⅤ资源中文在线天堂| 搞女人的毛片| 亚洲专区国产一区二区| 国产精品影院久久| 久久亚洲精品不卡| 岛国在线免费视频观看| 欧美日韩一级在线毛片| 国产在视频线在精品| 两个人看的免费小视频| 老司机午夜十八禁免费视频| 亚洲久久久久久中文字幕| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 欧美一区二区亚洲| 午夜老司机福利剧场| 国产视频内射| 成年免费大片在线观看| 亚洲精品影视一区二区三区av| 国产精品女同一区二区软件 | 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇熟女久久| 日本一二三区视频观看| 欧美日韩一级在线毛片| 一级毛片高清免费大全| 久久精品人妻少妇| 波多野结衣高清作品| 日本免费a在线| 国产亚洲欧美98| 特级一级黄色大片| 97人妻精品一区二区三区麻豆| 俄罗斯特黄特色一大片| 午夜激情欧美在线| 天堂网av新在线| 日韩国内少妇激情av| 最好的美女福利视频网| 男人舔女人下体高潮全视频| 少妇的逼好多水| 91在线精品国自产拍蜜月 | 小说图片视频综合网站| 男人舔奶头视频| 精品国产美女av久久久久小说| 我要搜黄色片| 久久午夜亚洲精品久久| 狂野欧美白嫩少妇大欣赏| 特大巨黑吊av在线直播| 久久国产精品人妻蜜桃| 看免费av毛片| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 日本黄大片高清| 一区福利在线观看| 哪里可以看免费的av片| 国产高清有码在线观看视频| 青草久久国产| 成熟少妇高潮喷水视频| 真实男女啪啪啪动态图| 内射极品少妇av片p| 亚洲中文字幕一区二区三区有码在线看| 女人高潮潮喷娇喘18禁视频| 亚洲精品粉嫩美女一区| 免费观看的影片在线观看| 欧美国产日韩亚洲一区| av天堂在线播放| 国产精品 国内视频| 国产激情欧美一区二区| 黄色女人牲交| 国产视频内射| 日本黄大片高清| 香蕉丝袜av| 中文字幕人妻熟人妻熟丝袜美 | 在线看三级毛片| 国产精品亚洲美女久久久| 97超级碰碰碰精品色视频在线观看| 色播亚洲综合网| 久久久久国内视频| 亚洲人与动物交配视频| 精品午夜福利视频在线观看一区| 天堂av国产一区二区熟女人妻| 免费无遮挡裸体视频| 免费一级毛片在线播放高清视频| 99热6这里只有精品| 国产69精品久久久久777片| 国产精品一区二区免费欧美| 欧美+日韩+精品| 我的老师免费观看完整版| 久久亚洲精品不卡| 亚洲av免费在线观看| 久久6这里有精品| 熟女人妻精品中文字幕| 法律面前人人平等表现在哪些方面| 在线观看日韩欧美| 蜜桃久久精品国产亚洲av| 欧美色欧美亚洲另类二区| 欧美高清成人免费视频www| 九九在线视频观看精品| 亚洲精品日韩av片在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 在线观看免费视频日本深夜| 他把我摸到了高潮在线观看| 久久6这里有精品| x7x7x7水蜜桃| 国产aⅴ精品一区二区三区波| 天天一区二区日本电影三级| 又粗又爽又猛毛片免费看| 十八禁网站免费在线| 亚洲黑人精品在线| 一级黄片播放器| 啦啦啦韩国在线观看视频| 久久香蕉精品热| 国产一区在线观看成人免费| 19禁男女啪啪无遮挡网站| 中国美女看黄片| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 老汉色av国产亚洲站长工具| 精品久久久久久久久久久久久| 日韩人妻高清精品专区| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看 | 色综合婷婷激情| 91麻豆精品激情在线观看国产| 国产亚洲欧美98| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| av专区在线播放| 国产精品av视频在线免费观看| 亚洲欧美激情综合另类| 亚洲精品在线美女| 在线观看午夜福利视频| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 一本精品99久久精品77| 亚洲国产日韩欧美精品在线观看 | 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 国产精品女同一区二区软件 | 美女cb高潮喷水在线观看| 真实男女啪啪啪动态图| 久久久久精品国产欧美久久久| 精品久久久久久久久久久久久| 免费观看精品视频网站| h日本视频在线播放| 久久久久久久久大av| 给我免费播放毛片高清在线观看| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 中文亚洲av片在线观看爽| 热99在线观看视频| 少妇裸体淫交视频免费看高清| 一进一出抽搐动态| 校园春色视频在线观看| 手机成人av网站| 3wmmmm亚洲av在线观看| 亚洲狠狠婷婷综合久久图片| 狂野欧美激情性xxxx| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 一个人免费在线观看的高清视频| 一级黄片播放器| 国产精品99久久久久久久久| 婷婷六月久久综合丁香| 三级毛片av免费| 国产午夜福利久久久久久| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 18禁在线播放成人免费| 亚洲国产日韩欧美精品在线观看 | 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| 亚洲一区高清亚洲精品| 男女午夜视频在线观看| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| 成人无遮挡网站| 日本熟妇午夜| 免费观看人在逋| 一级毛片高清免费大全| 国产精品日韩av在线免费观看| 欧美大码av| 一a级毛片在线观看| 免费在线观看亚洲国产| 好男人电影高清在线观看| 久久性视频一级片| 一区二区三区激情视频| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 国产精品精品国产色婷婷| 精品国内亚洲2022精品成人| 国产精品一及| 亚洲成a人片在线一区二区| 色综合欧美亚洲国产小说| 国产亚洲欧美98| 最近最新中文字幕大全电影3| 成人国产一区最新在线观看| 亚洲精华国产精华精| 人人妻人人看人人澡| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 熟妇人妻久久中文字幕3abv| 亚洲乱码一区二区免费版| 欧美日韩乱码在线| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 色综合站精品国产| 欧美丝袜亚洲另类 | 日韩高清综合在线| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 俺也久久电影网| 人妻丰满熟妇av一区二区三区| 国产高潮美女av| 丝袜美腿在线中文| 蜜桃亚洲精品一区二区三区| 老司机在亚洲福利影院| 国产精品三级大全| 欧美3d第一页| 欧美日韩黄片免| 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 免费一级毛片在线播放高清视频| 搡老岳熟女国产| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 黄色成人免费大全| 99精品欧美一区二区三区四区| 黄色片一级片一级黄色片| 一级毛片高清免费大全| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 看黄色毛片网站| 在线免费观看的www视频| 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 3wmmmm亚洲av在线观看| 18美女黄网站色大片免费观看| 国产伦在线观看视频一区| 一区福利在线观看| 一级作爱视频免费观看| netflix在线观看网站| 天堂√8在线中文| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 男女之事视频高清在线观看| 怎么达到女性高潮| 国产不卡一卡二| 国产麻豆成人av免费视频| 亚洲无线观看免费| 在线免费观看的www视频| 精品99又大又爽又粗少妇毛片 | 黄色丝袜av网址大全| 嫩草影视91久久| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 国产三级黄色录像| 蜜桃久久精品国产亚洲av| 精品国产三级普通话版| 午夜福利在线观看吧| 小蜜桃在线观看免费完整版高清| 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 制服人妻中文乱码| 一级a爱片免费观看的视频| 黄色片一级片一级黄色片| 亚洲专区国产一区二区| 黄片小视频在线播放| 美女 人体艺术 gogo| 日本成人三级电影网站| 亚洲av日韩精品久久久久久密| 女人被狂操c到高潮| 中文亚洲av片在线观看爽| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 久久人人精品亚洲av| 午夜精品久久久久久毛片777| 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 法律面前人人平等表现在哪些方面| 中文字幕av成人在线电影| 亚洲av成人av| 亚洲久久久久久中文字幕| 午夜影院日韩av| 麻豆成人午夜福利视频| 欧美绝顶高潮抽搐喷水| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app | 麻豆国产av国片精品| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 极品教师在线免费播放| 国产欧美日韩精品一区二区| 久久国产乱子伦精品免费另类| 亚洲av熟女| 天天一区二区日本电影三级| 99在线人妻在线中文字幕| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频| 国产精品99久久久久久久久| 丰满乱子伦码专区| 黄色丝袜av网址大全| 美女免费视频网站| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 少妇丰满av| e午夜精品久久久久久久| 神马国产精品三级电影在线观看| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av香蕉五月| 欧美成狂野欧美在线观看| 久久精品国产亚洲av涩爱 | 变态另类成人亚洲欧美熟女| 精品免费久久久久久久清纯| a级一级毛片免费在线观看| 亚洲精品色激情综合| 成人特级av手机在线观看| 国产成人av激情在线播放| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 精品国产美女av久久久久小说| 校园春色视频在线观看| 亚洲美女视频黄频| 欧美另类亚洲清纯唯美| 日本与韩国留学比较| x7x7x7水蜜桃| 日韩人妻高清精品专区| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 丁香六月欧美| 宅男免费午夜| 亚洲人成网站在线播| 亚洲自拍偷在线| av女优亚洲男人天堂| 亚洲国产高清在线一区二区三| 免费看十八禁软件| 国内精品一区二区在线观看| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看 | 18美女黄网站色大片免费观看| 免费无遮挡裸体视频| 两个人视频免费观看高清| 免费看光身美女| 我要搜黄色片| 久久久久免费精品人妻一区二区| 女生性感内裤真人,穿戴方法视频| 久久久精品大字幕| 中文字幕人妻丝袜一区二区| 久久久久久久亚洲中文字幕 | 淫秽高清视频在线观看| 午夜视频国产福利| 国产三级黄色录像| 国产伦精品一区二区三区四那| 午夜影院日韩av| 国产69精品久久久久777片| 亚洲乱码一区二区免费版| 日本在线视频免费播放| 久久久久久国产a免费观看| 内射极品少妇av片p| 俺也久久电影网| 久久欧美精品欧美久久欧美| 久久伊人香网站| 国产精品三级大全| 手机成人av网站| 最近在线观看免费完整版| 亚洲乱码一区二区免费版| 久久久久精品国产欧美久久久| 久久精品影院6| 搞女人的毛片| 成年人黄色毛片网站| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 天堂√8在线中文| 99国产精品一区二区三区| 99riav亚洲国产免费| 久久精品人妻少妇| 亚洲精品乱码久久久v下载方式 | 国产精品乱码一区二三区的特点| 美女cb高潮喷水在线观看| 免费看a级黄色片| av黄色大香蕉| 亚洲狠狠婷婷综合久久图片| 又紧又爽又黄一区二区| x7x7x7水蜜桃| 久久久久久久久大av| 99久久99久久久精品蜜桃| 夜夜爽天天搞| 日本免费一区二区三区高清不卡| 精品日产1卡2卡| 老汉色av国产亚洲站长工具| 成人高潮视频无遮挡免费网站| 美女cb高潮喷水在线观看| 欧美日本亚洲视频在线播放| 真实男女啪啪啪动态图| 免费观看人在逋| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 色吧在线观看| 搡老熟女国产l中国老女人| 性色avwww在线观看| 国产男靠女视频免费网站| 天堂影院成人在线观看| 听说在线观看完整版免费高清| 欧美日韩综合久久久久久 | 午夜亚洲福利在线播放| 亚洲色图av天堂| 国产精品 国内视频| 亚洲国产高清在线一区二区三| 日本黄色片子视频| 日本精品一区二区三区蜜桃| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线 | 夜夜躁狠狠躁天天躁| 欧美日韩乱码在线| 我的老师免费观看完整版| 午夜福利成人在线免费观看| 久久久久久国产a免费观看| 国产精品1区2区在线观看.| 午夜激情欧美在线| 91麻豆精品激情在线观看国产| 国产熟女xx| 嫁个100分男人电影在线观看| 欧美日本亚洲视频在线播放| 国产成人a区在线观看| 免费看美女性在线毛片视频| 日本黄大片高清| 亚洲av电影不卡..在线观看| 丰满乱子伦码专区| 女同久久另类99精品国产91| 成人鲁丝片一二三区免费| 亚洲熟妇中文字幕五十中出| 手机成人av网站| 美女 人体艺术 gogo| 久久精品国产清高在天天线| 欧美日韩国产亚洲二区| 日本一二三区视频观看| 啦啦啦免费观看视频1| 欧美最黄视频在线播放免费| 亚洲五月天丁香| 男女午夜视频在线观看| 高潮久久久久久久久久久不卡| 日韩av在线大香蕉| 99国产极品粉嫩在线观看| 日本一本二区三区精品| 欧美激情在线99| 神马国产精品三级电影在线观看| 国产 一区 欧美 日韩| 亚洲av第一区精品v没综合| 国内少妇人妻偷人精品xxx网站| 亚洲第一电影网av| 国产精品精品国产色婷婷| 欧美三级亚洲精品| 婷婷丁香在线五月| 九九热线精品视视频播放| 亚洲中文字幕日韩| 特大巨黑吊av在线直播| 九九热线精品视视频播放| 亚洲电影在线观看av| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利免费观看在线| 亚洲电影在线观看av| 校园春色视频在线观看| 国产精品自产拍在线观看55亚洲| 国内精品美女久久久久久| 亚洲国产精品久久男人天堂| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 精品久久久久久成人av| 亚洲狠狠婷婷综合久久图片| 国内精品美女久久久久久| 久久伊人香网站| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| 欧美中文综合在线视频| 国产精品精品国产色婷婷| 12—13女人毛片做爰片一| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美免费精品| 久久久久久九九精品二区国产| 高清在线国产一区|