• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers

    2022-09-24 08:00:14YiLiu劉毅YuanqiGu顧源琦YuNing寧鈺PengfeiChen陳鵬飛YaoYao姚堯YajunYou游亞軍WenjunHe賀文君andXiujianChou丑修建
    Chinese Physics B 2022年9期
    關(guān)鍵詞:劉毅亞軍鵬飛

    Yi Liu(劉毅) Yuanqi Gu(顧源琦) Yu Ning(寧鈺) Pengfei Chen(陳鵬飛) Yao Yao(姚堯)Yajun You(游亞軍) Wenjun He(賀文君) and Xiujian Chou(丑修建)

    1Taiyuan University of Technology,Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan 030024,China

    2Taiyuan University of Technology,Institute of Optoelectronic Engineering,College of Physics and Optoelectronics,Taiyuan 030024,China

    3Strong Digital Technology Co.,Ltd. (Thinvent),Nanchang 410000,China

    4North University of China,Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education,Taiyuan 030051,China

    5North University of China,College of Mechatronics Engineering,Taiyuan 030051,China

    6North University of China,Science and Technology on Electronic Test and Measurement Laboratory,School of Instrument and Electronics,Taiyuan 030051,China

    Keywords: Brillouin scattering,surface acoustic waves,hybrid acoustic waves,optical microfiber sensing

    1. Introduction

    Stimulated Brillouin scattering(SBS)in optical fiber is a third-order nonlinear effect[1]by photon-phonon coupling.[2]In standard optical fiber, the acoustic waves involved in SBS are bulk acoustic wave(BAW),in which the pump light both excites and interacts longitudinal and shear waves,producing backward-SBS(BSBS)and forward-SBS(FSBS),[3-6]respectively. The deviations between the pump light and the scattering light are Brillouin frequency shifts (BFS). The properties of fiber materials can be adjusted by the action of external physical field (stress, temperature, etc.), leading to corresponding changes in BFS of forward and backward scattering light. SBS has been studied intensely in applications such as forward/backward Brillouin sensors[7-11]and distributed/point fiber sensing.[12-17]Qianet al.realized the sensitive enhancement of a fiber laser sensor by Brillouin slow light.[18]Liuet al.realized a triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement.[19]Desmondet al.proposed a distributed forward Brillouin sensor based on light phase recovery.[20]

    It has been proved that both photons and phonons in optical microfibers are strongly constrained and highly overlapped in space,[21,22]producing new type of BS driven by SAWs and HAWs.[23,24]Generated by the interaction between incident light and the outer surface of the optical microfibers, SAWs’travel velocity are approximately 0.87 to 0.95 times than that of the shear waves along the microfiber surface.[25]While HAWs are generated by the strong coupling of longitudinal and shear waves, and propagate at a medium speed between shear and longitudinal waves are in the microfiber. SAWs and HAWs exist in different positions of the optical microfiber,[26]and have different Brillouin spectrum characteristic.[27]The BFS and Brillouin gain are affected by the structure, material and size of the optical microfibers. The SAW and HAW BS sensing performance of microfiber is expected to break through the limitation of standard optical fiber sensing. Moreover, the SAW BS can be controlled or enhanced by smallcore and high air-filling fraction microstructured fibers[28]and the photo-elastic and moving-boundary effects,[29]and eliminated for one polarization mode at certain core ellipticities.[30]The SAW and HAW BS have been applied to characterize of subwavelength-diameter tapered silica optical fibers,[31]obtain the values of the elastic constants[32-34]and optical sensing and detection.[35-37]

    In this paper, we demonstrate the temperature and strain sensitivities of SAW and HAW BS in optical microfibers,which is potential for new-type Brillouin fiber-optic sensing applications. We numerically simulate the frequencies of SAMs and HAMs using the elastodynamic equation including the electrostrictive stress[38-40]at 1μm diameter. Furthermore, the optical/acoustic distributions at 1μm diameter and the Brillouin spectrum of SAWs/HAWs with 1-1.3μm diameters are calculated, which are basically consistent with the reported results.[23]According to the influences of temperature and strain on material properties, the temperature/strain sensitivities and sensitivity-diameter slopes of the SAMs and HAMs are demonstrated from 1 μm to 1.3 μm diameters. In addition,it is shown that SAW and HAW BS can realize temperature and strain simultaneous sensing and have excellent sensing performance.

    2. Theoretical analysis

    2.1. Elastodynamic equation including electrostrictive stress

    Electrostriction of an acoustic phonon is obtained from the interaction of two incident photons satisfying the previous phase-matching conditions. The exact contribution from each mechanism can be calculated by the elastodynamic equation including the electrostrictive stress to more accurately study and calculate the frequency and displacement distributions of the acoustic wave in optical microfibers. The elastodynamic equation can be written as

    withci jklis the isotropic elastic matrix,χkli j=εimεjnpklmn,χkli jis the fourth-order polarization tensor,ε0andεijare the vacuum dielectric constant and the dielectric tensor of the medium, respectively.pklmnis the fourth-order photoelastic tensor,EkE?lis the dyadic vector of the electric field. The phonon lifetime takes into account the elastic losses assuming a complex elastic tensor whose imaginary part is a constant viscosity tensor times frequency. This loss model is compatible with the usual assumption that theQ×f=5 THz is a constant for a given material, withQthe quality factor andfthe acoustic frequency.

    The Brillouin gain factor and the backward Brillouin gain of acoustic mode can be written as[41]

    2.2. Temperature and strain sensing principles

    The temperature changes will affect the fiber’s four main material properties (refractive index, density, Poisson’s ratio and Young’s modulus) to influence the BFS (i.e., acoustic mode frequency). The effects of temperature and strain on material properties are[41]

    withn0= 1.444,ρ0= 2203 kg/m3,γ0= 0.17,E0=72.553 GPa are the initial refractive index, density, Poisson’s ratio and Young’s modulus of fused silica at 27°C.ΔTis the temperature change value.

    While the strain will induce elastic anisotropy in optical microfibers. The effective elastic tensor can be written as[42]

    withλ=16 GPa andμ=31 GPa are the Lam′e constants of fused silica and°denotes the Hadamard product. ˉεzzis the tensile strain.

    3. Results and discussion

    3.1. SAW and HAW BS in optical microfibers

    The cylindrical waveguide with 1μm diameter is numerically simulated based on a finite-element method.[43]The solid core made of silica is surrounded by air (n=1). With this size, the influence of radiation pressure is almost negligible in principle.[44]The optical power density of the fundamental guided optical mode in the silica bridge forλ=1550 nm is displayed in Fig. 1(a). The calculated effective refractive index is 1.1715. It can be indicated that a small part of the energy of the optical wave will leak out of the optical fiber from an evanescent field,but most of the energy of the optical wave is trapped in the optical fiber.

    The Brillouin spectra of SAWs and HAWs are significantly changed because their propagation speeds are different from that of BAWs. The BFSs of SAWs and HAWs are~6 GHz and~9 GHz, respectively. In addition, the SAWs are extremely sensitive to the fiber surface change, and the HAWs will produce multi-peak Brillouin scattering structures due to the different coupling ratios of longitudinal and shear waves. We numerically simulate the frequencies of SAMs at 5.34 GHz(SAM1)and 5.67 GHz(SAM2),HAMs at 8.48 GHz(HAM1) and 9.16 GHz (HAM2) with 1 μm fiber diameter,which are basically consistent with the reported results.[23]Every normalized acoustic mode displacement and density distribution are shown in Figs.1(b)-1(i),respectively.It can be seen the acoustic mode energy density of the SAWs is limited to the air-silica interface of the optical microfiber,causing mechanical ripples of several picometers. Inside of the microfiber,the acoustic mode density gradually decreases with the distance from the surface. The acoustic mode energy density of the HAWs is still confined in the center of the optical microfiber.

    Fig. 2. (a) Numerical simulation of the Brillouin spectra with optical microfiber diameter varying from 1μm to 1.3μm. (b)The acoustic frequency and Brillouin gain as a function of microfiber diameter.

    Figure 2(a) shows the numerical simulation of the Brillouin spectra with an optical microfiber diameter varying from 1 μm to 1.3 μm. The frequency of SAM1 increases from 5.3452 GHz to 5.5321 GHz and the Brillouin gain decreases from 7.2324 W-1·m-1to 6.2128 W-1·m-1. In contrast, we noticed that SAM2 has a greater frequency variation than SAM1 in Fig. 2(b). The frequency of SAM2 increases from 5.6710 GHz to 6.0858 GHz while the Brillouin gain decreases from 2.9372 W-1·m-1to 4.3159 W-1·m-1.The Brillouin gains of SAMs gradually decrease with diameter increasing, caused by strong effect of the decreased microfibers diameter on the acousto-optic interaction. The frequency of HAM1 decreases from 8.4820 GHz to 7.8046 GHz and the Brillouin gain increases from 9.9569 W-1·m-1to 37.6959 W-1·m-1, while the frequency of HAM2 increases from 9.1623 GHz to 9.5497 GHz and the Brillouin gain decreases from 9.8159 W-1·m-1to 9.5659 W-1·m-1. The phase-matching condition leads to the differences of Brillouin spectra of acoustic frequencies under different diameters. The different trends of two HAMs with diameters result from the different coupling ratios of longitudinal and shear waves under the boundary conditions of the waveguide,causing changes in group sound velocity and BFS. Compared with the Brillouin gain of 0.4 W-1·m-1in single-mode fiber,microfiber sensing has higher signal-to-noise ratio.

    3.2. Temperature and strain sensitivities

    The temperature and strain sensitivities of optical microfibers can be calculated by the variation of BFS with temperature and strain. Due to the polymer cladding,the maximal tensile strain in standard optical fibers is limited to 2%,but naturally the elasticity of silica glass allows going up to 6%.[45]Using Eqs.(3)and(4),the BFS of 1μm diameter optical fiber can be calculated at different temperatures and strains (compared with 0°C and no strain),as shown in Figs.3(a)and 3(b),respectively.It can be found that the BFS of SAMs and HAM2 are almost linear with temperature and strain. The SAM1 and SAM2 have the comparative temperature and strain coefficients with 0.458 MHz/°C(0.432 MHz/°C)and 65.94 MHz/%(73.02 MHz/%). The temperature and strain coefficients of HAM2 are 0.928 MHz/°C and 264.53 MHz/%. The BFS of HAW1 is linear 0.660 MHz/°C with temperature, but nonlinear with strain because of strain-induced elastic anisotropy.The strain sensitivity decreases with the increase of strain,ranging from 82.54 MHz/%to 109.50 MHz/%.

    Fig.3. (a)The temperature and(b)strain sensitivities of each acoustic wave mode are considered as a function of 1μm diameter optical fibers.

    3.3. Temperature and strain sensitivities under different fiber diameters

    The Brillouin resonances have high sensitivity to the geometric parameters of microfibers.[46]The temperature and strain sensitivities of each acoustic mode with a diameter varying from 1 μm to 1.3 μm as shown in Figs. 4(a) and 4(c),respectively. For unit consistency, write the strain sensitivity of 100 MHz/% as 0.01 MHz/με. The insets show the acoustic mode density distribution at 1 μm, 1.16 μm, and 1.3 μm diameters, respectively. In order to study the relationship between temperature/strain sensitivities and diameter change,we plot the temperature/strain sensitivity-diameter slope of each acoustic mode with a fiber diameter varying from 1 μm to 1.3μm as shown in Figs.4(b)and 4(d),respectively. The temperature sensitivity-diameter slopeTd= dT/ddis the derivative of temperature sensitivity to fiber diameterd, and strain sensitivity-diameter slopeSd= dS/ddis the derivative of the strain sensitivity to the fiber diameterd.

    It can be seen in Fig. 4(a) that the temperature sensitivities of the HAMs are significantly greater than that of the SAMs. As the fiber diameter changes from 1 μm to 1.3 μm, the temperature sensitivities of the SAMs gradually increase. The maximum temperature sensitivities of SAM1 and SAM2 are 0.557 MHz/°C and 0.568 MHz/°C at 1.3μm diameter,respectively,whereas those of the HAM1 and HAM2 are 0.744 MHz/°C at 1 μm diameter and 1.082 MHz/°C at 1.14μm diameter,respectively. It can be seen in Fig.4(b)that the temperature sensitivity-diameter slopes of the SAMs both are between 0.05 MHz/°C/μm and 0.25 MHz/°C/μm with diameter, while those of the HAMs are significantly changes.For instance,the temperature sensitivity-diameter slope of the HAM2 is-1.23 MHz/°C/μm at 1.3μm diameter. This means that the change in temperature sensitivity of-1.23 MHz/°C would be corresponding to the variation of one micrometer in fiber diameter.

    It can be seen in Fig.4(c)that the strain sensitivity of the HAM2 is 0.0289 MHz/μεat 1.1μm diameter,which is significantly greater than those of the SAMs and HAM1.As the fiber diameter changes from 1 μm to 1.3 μm, the strain sensitivities of SAMs increase gradually,and the maximum values are 0.008 MHz/μεand 0.0078 MHz/με, respectively. Whereas the strain sensitivity of HAM1 decreases with the increase of diameter. The green areas show the variation of strain sensitivity in the tensile strain of 1%-5%. Figure 4(d)shows the strain sensitivity-diameter slope of the SAMs are both between 1×10-4MHz/με/μm and 5×10-4MHz/με/μm, which is a small fluctuation compared to that of HAMs. For instance,the maximum strain sensitivity-diameter slope of the HAM2 is-0.0096 MHz/με/μm at 1.3μm diameter. The green areas indicate that the strain sensitivity of HAM1 tends to increase uniformly with diameter under 1%-5%tensile strain.

    Fig.4. (a)The temperature sensitivity and(b)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter.(c)The strain sensitivity and(d)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter. The insets in(a),(c)show the acoustic mode density distribution at 1μm,1.16μm,and 1.3μm diameters,respectively. The gray areas in(b),(d)highlight the temperature/strain sensitivity-diameter slope 0.05 MHz/°C/μm-0.25 MHz/°C/μm and 1×10-4 MHz/με/μm-5×10-4 MHz/με/μm,respectively.

    3.4. SAW and HAW BS sensing performance

    Four acoustic modes excited at 1 μm diameter optical fiber are linearly related to strain and temperature, and their temperature and strain sensitivities are different. Therefore,the relationship between BFS and temperature/strain sensitivity is established by selecting any two acoustic modes, as shown below to realize simultaneous sensing of temperature and strain:

    withva0andvb0are any two of the acoustic mode frequencies at a temperature of 27°C and no strain, respectively.CTaandCTbare the temperature sensitivities ofva0andvb0.CεaandCεbare the strain sensitivities ofva0andvb0.

    In addition to improving the sensing sensitivities of temperature and strain,reducing the temperature and strain errors will also improve the multi-parameter sensing performance.The measurement errors of temperature and strain are due to the inaccurate determination of acoustic mode frequencies,which ignores the errors within the transfer matrix. Assume that the maximum measurement errors of acoustic mode frequencyδva=va-va0andδvb=vb-vb0are equal, denoted byδv=0.1 MHz.[47]Theδvwill be transferred to the temperature errorδTand strain errorδε, with transfer temperature coefficientβTand strain coefficientβε, which may be expressed as[48]

    withΔ=CTaCεb-CTbCεanot equal to zero.

    Through the above research, it is found that all the four acoustic modes in optical microfibers can realize multiparameter sensing. Temperature and strain errors were calculated by selecting two acoustic modes for comparison, as shown in Table 1. It can be seen the simultaneous sensing of SAW and HAW BS can achieve small temperature and strain errors. In particular, the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations are as low as 0.47°C and 21.58με,and 0.30°C-0.43°C and 15.09με-19.80με,respectively.

    Table 1. Temperature and strain errors calculated by SAMs and HAMs.

    Since the change of fiber diameter will affect the temperature and strain sensitivity of each acoustic mode,the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations under different diameters are different,as shown in Fig. 5. The minimum errors of SAM1-HAM2 combination are 0.47°C and 20.96 μεat 1.06 μm, respectively. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47με-16.25μεat 1.08μm,respectively.Then their temperature and strain error coefficients increase with the diameter increasing,and the increase amplitude of SAM1-HAM2 combination was greater than that of HAM1-HAM2 combination.

    Table 2 lists the temperature and strain errors based on SBS in different optical fibers. By comparison, the errors of multi-parameter sensing using acoustic modes in optical microfibers are smaller. In addition,when using microfiber sensing,the light field constraint ability is strong,the bending loss is low, and the bending radius can reach micron level, which can realize the manufacture of highly compact photon sensor.Microfiber has a large tensile strain of up to 6%,which is suitable for large strain sensing. And when Brillouin scattering is used in microfiber, it has large Brillouin gain, high signal-tonoise ratio and is easy to detect.

    Table 2. The temperature and strain errors based on SBS in different optical fibers.

    Fig.5. The temperature(a)and strain(b)errors of SAM2-HAM2 and HAM1-HAM2 acoustic mode combinations are considered as a function of the fiber diameter.

    4. Conclusion

    In conclusion, the temperature and strain sensitivities of SAW/HAW BS in optical microfibers with 1 μm-1.3 μm diameters are reported. It is found that the temperature and strain sensitivities of HAMs are as high as 1.082 MHz/°C and 0.0289 MHz/μεrespectively, which are significantly greater than those of the SAMs (0.568 MHz/°C and 0.0109 MHz/με). Such results show that HAW BS is more suitable for high temperature and strain resolutions in microfiber sensing application.[53]Whereas, the temperature and strain sensitivity-diameter slopes of the SAMs range from 0.05 MHz/°C/μm to 0.25 MHz/°C/μm and 0.0001 MHz/με/μm to 0.0005 MHz/με/μm with diameter, which is much smaller than the value about-1.23 MHz/°C/μm and-0.0096 MHz/με/μm of the HAMs at 1.3μm diameter. It suggests that the temperature and strain sensitivities of the SAMs are approximately the same with the slightly non-uniform diameter, indicating that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. In addition,the applications of SAW and HAW BS in simultaneous sensing are analyzed.The combinations of SAM1-HAM2 and HAM1-HAM2 can obtain small temperature and strain errors. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47 με-16.25 με, respectively. These results indicate that microfibers have great potential in point and distributed fiber sensing.

    Acknowledgments

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167),the National Natural Science Foundation of China(Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China(Grant No.201903D121124),and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112).

    猜你喜歡
    劉毅亞軍鵬飛
    姜亞軍治療焦慮性失眠經(jīng)驗
    吳亞軍:白手起家的女首富
    時代郵刊(2019年24期)2020-01-02 11:04:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(2019年9期)2019-10-12 06:33:44
    給自己留一條路
    河北省沙河市第二小學(xué) 劉毅可
    雙11商戰(zhàn),永久、鳳凰奪冠亞軍
    中國自行車(2017年1期)2017-04-16 02:53:45
    A Precritical Analysis of the PoemThe Passionate Shepherd to His Love by Marlowe
    亚洲欧洲精品一区二区精品久久久| 悠悠久久av| 嫩草影视91久久| 18禁国产床啪视频网站| 狠狠婷婷综合久久久久久88av| 成人黄色视频免费在线看| 中文精品一卡2卡3卡4更新| 啦啦啦视频在线资源免费观看| 国产精品一二三区在线看| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 十八禁人妻一区二区| 桃花免费在线播放| 咕卡用的链子| 十八禁高潮呻吟视频| 老汉色av国产亚洲站长工具| 日本午夜av视频| av天堂久久9| 午夜激情av网站| 搡老岳熟女国产| 免费高清在线观看日韩| 性少妇av在线| 看免费av毛片| 国产欧美日韩一区二区三区在线| 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区| 免费av中文字幕在线| 免费日韩欧美在线观看| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 操出白浆在线播放| 在线观看国产h片| 99久久综合免费| 国产99久久九九免费精品| 国精品久久久久久国模美| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 午夜福利,免费看| 色精品久久人妻99蜜桃| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 尾随美女入室| 男人操女人黄网站| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 欧美激情极品国产一区二区三区| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 18禁观看日本| 久久国产精品大桥未久av| bbb黄色大片| 一级毛片女人18水好多 | 国产精品成人在线| 免费在线观看日本一区| 午夜视频精品福利| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 妹子高潮喷水视频| 大香蕉久久网| 99久久精品国产亚洲精品| 亚洲国产欧美网| 国产爽快片一区二区三区| 日本黄色日本黄色录像| 性少妇av在线| 亚洲国产精品成人久久小说| 国产精品久久久人人做人人爽| 满18在线观看网站| www.熟女人妻精品国产| 激情视频va一区二区三区| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 黄片小视频在线播放| 亚洲人成电影观看| 国产99久久九九免费精品| 欧美成人精品欧美一级黄| √禁漫天堂资源中文www| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 十八禁网站网址无遮挡| 久久久精品国产亚洲av高清涩受| 91精品伊人久久大香线蕉| 久久久久久久国产电影| 人体艺术视频欧美日本| 一级片'在线观看视频| 女性被躁到高潮视频| 天天影视国产精品| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| www.精华液| 手机成人av网站| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 亚洲精品乱久久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 五月开心婷婷网| 亚洲人成电影免费在线| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久| 国产免费福利视频在线观看| 国产高清videossex| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 日韩av不卡免费在线播放| svipshipincom国产片| 国产黄色视频一区二区在线观看| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多 | 2018国产大陆天天弄谢| 久热爱精品视频在线9| 亚洲视频免费观看视频| 亚洲人成电影免费在线| 蜜桃国产av成人99| 亚洲伊人色综图| 人妻一区二区av| 久久99一区二区三区| 日本av免费视频播放| 色婷婷av一区二区三区视频| 国产亚洲午夜精品一区二区久久| 王馨瑶露胸无遮挡在线观看| 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 国产午夜精品一二区理论片| 亚洲av电影在线进入| 日韩人妻精品一区2区三区| 天天躁夜夜躁狠狠久久av| 这个男人来自地球电影免费观看| 最黄视频免费看| av又黄又爽大尺度在线免费看| 亚洲欧洲精品一区二区精品久久久| 丁香六月欧美| 又黄又粗又硬又大视频| 国产精品久久久久久精品电影小说| 亚洲精品成人av观看孕妇| 性色av一级| 国产av一区二区精品久久| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| av天堂久久9| 国产成人欧美| 国产一区二区激情短视频 | 真人做人爱边吃奶动态| 国产爽快片一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| 亚洲国产av影院在线观看| 王馨瑶露胸无遮挡在线观看| 考比视频在线观看| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 日韩电影二区| 婷婷色综合大香蕉| 美女福利国产在线| 男人添女人高潮全过程视频| 午夜av观看不卡| 久久青草综合色| 午夜精品国产一区二区电影| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| 99热全是精品| 香蕉丝袜av| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 久久久久精品人妻al黑| 国产精品人妻久久久影院| 国产精品免费视频内射| 成人午夜精彩视频在线观看| 免费看十八禁软件| 欧美日韩亚洲国产一区二区在线观看 | 欧美在线黄色| 精品国产一区二区三区久久久樱花| av福利片在线| 夫妻午夜视频| 一级毛片女人18水好多 | 国产精品一区二区在线观看99| av福利片在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 国产亚洲精品第一综合不卡| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩视频高清一区二区三区二| 亚洲欧美激情在线| av欧美777| 国产亚洲精品久久久久5区| 人人妻人人澡人人看| 成人国产av品久久久| 18禁观看日本| 精品人妻一区二区三区麻豆| 日韩视频在线欧美| 国产成人一区二区在线| 免费在线观看完整版高清| 啦啦啦 在线观看视频| 在线看a的网站| 大话2 男鬼变身卡| 久久性视频一级片| 日本wwww免费看| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 亚洲熟女毛片儿| 人人妻人人澡人人爽人人夜夜| 少妇人妻 视频| a 毛片基地| 看免费成人av毛片| 久久ye,这里只有精品| 国产一级毛片在线| 捣出白浆h1v1| 免费观看av网站的网址| 天天躁夜夜躁狠狠躁躁| 欧美人与善性xxx| 91国产中文字幕| 久久99热这里只频精品6学生| 999久久久国产精品视频| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久久久久婷婷小说| 精品一区二区三区四区五区乱码 | 女性被躁到高潮视频| 新久久久久国产一级毛片| 91麻豆精品激情在线观看国产 | a级毛片在线看网站| 亚洲成国产人片在线观看| xxxhd国产人妻xxx| 午夜激情av网站| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 国产欧美日韩一区二区三 | 美女视频免费永久观看网站| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 国产色视频综合| 啦啦啦在线观看免费高清www| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 亚洲av日韩在线播放| 我的亚洲天堂| 久久久精品免费免费高清| 少妇人妻 视频| 国产黄色视频一区二区在线观看| 精品国产乱码久久久久久男人| 精品第一国产精品| 欧美av亚洲av综合av国产av| 亚洲欧洲国产日韩| 精品福利观看| 亚洲国产日韩一区二区| av网站在线播放免费| 欧美日韩亚洲高清精品| 国产精品 国内视频| 在线观看免费高清a一片| 精品国产一区二区三区四区第35| 亚洲欧美成人综合另类久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产欧美日韩精品亚洲av| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 视频在线观看一区二区三区| 热99国产精品久久久久久7| 国产亚洲欧美在线一区二区| 久久青草综合色| 久久毛片免费看一区二区三区| 各种免费的搞黄视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品久久久久久婷婷小说| 99国产精品一区二区三区| 成人免费观看视频高清| 色视频在线一区二区三区| 国产主播在线观看一区二区 | 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 国产野战对白在线观看| 极品人妻少妇av视频| 婷婷色av中文字幕| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| 多毛熟女@视频| 韩国精品一区二区三区| 国产欧美日韩综合在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产黄色免费在线视频| 老司机在亚洲福利影院| 大型av网站在线播放| 男男h啪啪无遮挡| 亚洲av美国av| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三 | 久久久久久久精品精品| 久久av网站| 欧美少妇被猛烈插入视频| 极品少妇高潮喷水抽搐| 视频区图区小说| 亚洲精品在线美女| 国产黄频视频在线观看| 99热全是精品| 18在线观看网站| 国产老妇伦熟女老妇高清| 国产一区二区激情短视频 | 久久午夜综合久久蜜桃| 久久久欧美国产精品| 一级片'在线观看视频| 丁香六月天网| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 亚洲人成电影免费在线| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 国产成人影院久久av| 久久久久网色| 国产亚洲精品久久久久5区| 99国产精品99久久久久| av有码第一页| 国产1区2区3区精品| 免费看不卡的av| 大码成人一级视频| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 午夜福利18| 国产麻豆成人av免费视频| 丝袜在线中文字幕| 午夜精品久久久久久毛片777| 日本黄色视频三级网站网址| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 人成视频在线观看免费观看| 曰老女人黄片| 精品免费久久久久久久清纯| 亚洲最大成人中文| 久久久久久久精品吃奶| 精品福利观看| 在线观看午夜福利视频| 一边摸一边做爽爽视频免费| 黄片大片在线免费观看| 国产99白浆流出| 18禁裸乳无遮挡免费网站照片 | 少妇裸体淫交视频免费看高清 | 亚洲五月色婷婷综合| 欧美zozozo另类| 中文字幕精品免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 香蕉久久夜色| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 听说在线观看完整版免费高清| 免费一级毛片在线播放高清视频| 亚洲精品美女久久久久99蜜臀| 久久久久精品国产欧美久久久| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| av欧美777| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 国产区一区二久久| 人人妻人人澡欧美一区二区| 欧美丝袜亚洲另类 | 一级a爱视频在线免费观看| 欧美成人性av电影在线观看| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区 | 欧美大码av| 色综合亚洲欧美另类图片| 色av中文字幕| 午夜福利欧美成人| 欧美另类亚洲清纯唯美| 久热这里只有精品99| 国产v大片淫在线免费观看| 亚洲成人精品中文字幕电影| 精品久久蜜臀av无| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 亚洲激情在线av| 正在播放国产对白刺激| 亚洲成人国产一区在线观看| 我的亚洲天堂| 亚洲男人天堂网一区| 男女那种视频在线观看| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 91大片在线观看| 精品乱码久久久久久99久播| 啦啦啦韩国在线观看视频| 日本精品一区二区三区蜜桃| 美女大奶头视频| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 欧美日韩福利视频一区二区| 国产精品久久久久久亚洲av鲁大| 十分钟在线观看高清视频www| 91成人精品电影| 久久久久国产一级毛片高清牌| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清 | 欧美精品亚洲一区二区| 国产亚洲av嫩草精品影院| 亚洲成人久久性| 国产麻豆成人av免费视频| 亚洲精品一区av在线观看| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 免费在线观看日本一区| 欧美性猛交╳xxx乱大交人| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品无人区| 国产精品1区2区在线观看.| 久久久久九九精品影院| 日韩免费av在线播放| 黄色片一级片一级黄色片| 男女午夜视频在线观看| 亚洲avbb在线观看| 黄片小视频在线播放| 成人一区二区视频在线观看| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| 中亚洲国语对白在线视频| 99在线人妻在线中文字幕| 99精品在免费线老司机午夜| 黑丝袜美女国产一区| 亚洲专区字幕在线| 国产高清有码在线观看视频 | 身体一侧抽搐| xxxwww97欧美| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类 | 亚洲人成77777在线视频| 看黄色毛片网站| 18禁美女被吸乳视频| 一级a爱视频在线免费观看| 欧美日韩乱码在线| 麻豆成人av在线观看| 国产欧美日韩一区二区精品| 欧美亚洲日本最大视频资源| 国产亚洲欧美98| 中文字幕人成人乱码亚洲影| 免费看日本二区| 少妇被粗大的猛进出69影院| 99久久综合精品五月天人人| 午夜福利一区二区在线看| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 久久久久免费精品人妻一区二区 | videosex国产| 精品国内亚洲2022精品成人| 精品国产乱码久久久久久男人| 国产熟女xx| 欧美在线一区亚洲| 亚洲色图av天堂| a在线观看视频网站| 黄色 视频免费看| 欧美色视频一区免费| 国产高清视频在线播放一区| 久久九九热精品免费| 99久久久亚洲精品蜜臀av| 亚洲精华国产精华精| 老司机靠b影院| 欧美黄色淫秽网站| 婷婷精品国产亚洲av在线| www国产在线视频色| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 99国产精品一区二区三区| www.999成人在线观看| 黄色毛片三级朝国网站| 国产一区二区在线av高清观看| 国产亚洲精品综合一区在线观看 | 美女高潮到喷水免费观看| 香蕉久久夜色| 在线观看午夜福利视频| 好男人电影高清在线观看| 99久久综合精品五月天人人| 在线免费观看的www视频| 男女那种视频在线观看| 极品教师在线免费播放| 在线观看66精品国产| 久久香蕉激情| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 欧美性猛交╳xxx乱大交人| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人午夜福利视频| 巨乳人妻的诱惑在线观看| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 国产精品免费视频内射| 国产国语露脸激情在线看| 国产一区在线观看成人免费| 亚洲人成网站高清观看| 日韩欧美免费精品| 日本成人三级电影网站| 99热6这里只有精品| 国产又色又爽无遮挡免费看| 精品国内亚洲2022精品成人| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 亚洲成a人片在线一区二区| 少妇被粗大的猛进出69影院| 看黄色毛片网站| 亚洲国产欧美一区二区综合| 久久精品人妻少妇| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 女性被躁到高潮视频| 男人操女人黄网站| 精华霜和精华液先用哪个| 黄色a级毛片大全视频| 91av网站免费观看| 国产精品亚洲一级av第二区| 国产日本99.免费观看| 美女大奶头视频| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 美女免费视频网站| 中亚洲国语对白在线视频| 一个人观看的视频www高清免费观看 | 色尼玛亚洲综合影院| 日韩欧美国产在线观看| www.999成人在线观看| 亚洲男人的天堂狠狠| 岛国在线观看网站| 99热只有精品国产| 免费观看人在逋| 国产激情欧美一区二区| 亚洲成a人片在线一区二区| 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 久久这里只有精品19| www日本在线高清视频| 成人一区二区视频在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲成av人片免费观看| 丁香六月欧美| 国产欧美日韩一区二区三| 久99久视频精品免费| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 久久精品国产综合久久久| 国产一区二区激情短视频| 夜夜躁狠狠躁天天躁| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 国产久久久一区二区三区| 午夜免费观看网址| 国内精品久久久久精免费| 亚洲av日韩精品久久久久久密| a级毛片在线看网站| 曰老女人黄片| 在线观看午夜福利视频| 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 国产99白浆流出| 久久香蕉激情| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 午夜免费成人在线视频| 国产黄色小视频在线观看| 婷婷亚洲欧美| 一级片免费观看大全| 99国产精品一区二区三区| 亚洲五月天丁香| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| www.自偷自拍.com| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| 亚洲人成电影免费在线| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 亚洲激情在线av| 久久青草综合色| 国产精品爽爽va在线观看网站 | 两个人看的免费小视频| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 久久99热这里只有精品18| 国产片内射在线| 色在线成人网| 精品无人区乱码1区二区| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 亚洲一区高清亚洲精品| 国产男靠女视频免费网站| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 久久草成人影院| 婷婷六月久久综合丁香|