• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Auto-ignition Characteristics of Gasoline and Diesel Fuel Blends:A High-Pressure Ignition Delay and Kinetic Modelling Study

    2020-05-13 13:32:22LIYang
    含能材料 2020年5期

    LI Yang

    (1.Science and Technology on Combustion,Internal Flow and Thermo-structure Laboratory,School of Astronautics,Northwestern Polytechnical University,Xi'an 710072,China;2.Clean Combustion Research Centre,King Abdullah University of Science and Technology,Thuwal,Saudi Arabia)

    Abstract:The ignition delay times(IDTs)of two different certified gasoline and diesel fuel blends are reported.These measurements were performed in a shock tube and in a rapid compression machine over a wide range of experimental conditions(φ= 0.5-2.0,T=700-1400 K and p=10-20 bar)relevant to internal combustion engine operation.In addition,the measured IDTs were compared with two relevant gasoline fuels:Coryton gasoline and Haltermann gasoline systematically under the same experimental conditions.Two different gasoline surrogates a primary reference fuel(PRF)and toluene PRF(TPRF)were formulated,and two different gasoline surrogate models were employed to simulate the experiments.Typical pressure and equivalence ratio effects were obtained,and the reactivity of the four different fuels diverge in the negative temperature coefficient(NTC)regime(700-900 K).Particularly at 750 K,the discrepancy is about a factor of 1.5-2.0.For the high Research Octane Number(RON)and high-octane sensitivity fuel,the simulation results obtained using the TPRF surrogate was found to be unreasonably slow compared to experimental results,due to the large quantity of toluene(77.6% by volume)present.Further investigation including reactants'concentration profile,flux and sensitivity analyses were simultaneously carried out,from which,toluene chemistry and its interaction with alkane(n-heptane and iso-octane)chemistry were explained in detail.

    Key words:Gasoline and diesel;Shock tube;Rapid compression machine;Ignition delay time;Gasoline surrogate

    1 Introduction

    Commercial transportation grade gasoline and diesel are the most widely used light- and heavy-duty transportation fuels and are complex mixtures of hundreds of hydrocarbons including linear and branched paraffins,naphthenes,olefins,and aromatics[1-2].The co-optimization of fuel/engine systems requires an in-depth knowledge of the autoignition behavior of the fuel.Particularly for higher efficiency spark ignition engines, knocking of the end-gas is fundamentally related to the fuel's autoignition(combustion kinetics)characteristics[3-4].

    Recently,there have been very limited experimental autoignition measurements of gasoline and/or diesel fuels in shock tubes(ST)and rapid compression machines(RCMs) in the literature.To the best of our knowledge,the only ignition delay time(IDT)measurements of diesel fuel in a RCM were performed by Kukkadapu et al.[5],in which the IDT measurements of two well-characterized reference diesel fuels,namely commercial grade ultra-low-sulfur diesel(ULSD#2) and Fuels for Advanced Combustion Engines research diesel(FD9A).The experimental results showed that diesel blends with similar cetane ratings and different compositional makeups exhibited varying ignition propensities over different temperature regimes,thereby demonstrating the effect of molecular composition on autoignition characteristics.In particular the difference in ignition propensities was observed at temperatures at which the low temperature branching reactions are active.We have summarized the literature studies that have fo-cused on autoignition of diesel fuels in Table S1 in the Supplementary Material 1,including the facilities used and the conditions of pressure,temperature,equivalence ratio,and dilution studied in the experiments.

    Lee et al.[6]investigated the autoignition behavior of two oxygenated certification gasoline fuels:Haltermann Gasoline(RON=91)and Coryton gasoline(RON=97.5)in both a high-pressure shock tube and in a rapid compression machine at pressures of 10,20 and 40 atm,and equivalence ratios of 0.45,0.9 and 1.8.The experimental results were simulated using three different gasoline surrogate models.It was found that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature(negative temperature coefficient)regime.Also,it was shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity(S=RON-MON).

    As a succeeding investigation of the above study from Lee et al.[6],the objectives of this study are three fold:1) To investigate the autoignition characteristics of two oxygenated gasoline/diesel fuel blends over a range of pressures(10-20 bar),temperatures(700-1400 K)and equivalence ratios in a well heated ST and a RCM;2)To formulate two different gasoline surrogates;a PRF and a TPRF,and simulate the experimental results using two different gasoline surrogate models from Lawrence Livermore National Laboratory (LLNL)[7]and King Abdullah University of Science and Technology(KAUST)[8];3)To systematically compare the reactivity of the two gasoline fuels studied by Lee et al.[6]and the two gasoline/diesel fuel blends developed in this study.

    2 Experimental method and conditions

    The two certification gasolines/diesel fuel blends used in this study were supplied by Coryton Advanced Fuels,and the fuel compositions were determined using detailed hydrocarbon analysis(DHA)at Saudi Aramco's Research and Development Center as described by Lee et al.[6].

    The compositions of Coryton gasoline and diesel were summarized in Table S2 and S3 in the Supplementary Material 1 respectively,using the above detection method.The two Coryton gasoline/diesel fuel blends used in this study were blended using 75/25 and 50/50 (% by volume) gasoline/diesel,respectively,as shown in Table 1.

    Table 1 The two Coryton gasoline/diesel fuel blends used in this study

    Table 2 summarized the experimental conditions investigated in this work,notably,experiments of Coryton Gasoline and Haltermann Gasoline were carried in the paper by Lee et al.[6].These are condi-tions of direct relevance to gasoline, diesel,and low-temperature combustion(LTC)engine technologies.In this way,for each individual fuel,the pressure and equivalence ratio effects on IDT can be systematically evaluated,and at an equivalence ratio of 0.5,1.0 and a pressure of 10,20 atm the reactivity can be consistently compared.

    Table 2 Experimental conditions of four gasoline and diesel fuels and fuel blends.

    All experiments were performed in the NUI Galway HPST and RCM facilities as described previously by Lee et al.[6].Detailed uncertainty analysis of the measurements was introduced by Li et al.[9].It is worth nothing that,to perform experiments on these two extreme,low-vapor pressure gasoline/diesel fuel blends,the heating system of the RCM was systematically upgraded,and the initial temperatures of the HPST and RCM were maintained at 120 ℃and 150 ℃,respectively.

    Furthermore,to confirm that these two low-vapor pressure gasoline/diesel fuel blends did vaporize,an optically accessible test cell was constructed to measure the IR absorption coefficients of the fuel mixture at 3.39 μm,and the measurement was carried out on the preheated HPST as well.Using this arrangement,a two-point transmitted light intensity measurement yields the test gas absorption coefficient in accordance with the Beer-Lambert law:

    whereAis light absorbance,εis the molar absorption coefficient,lis the optical path length andcis concentration.I0andITare the incident and transmitted light intensities.

    Figure 1 shows good agreement between the absorbance measurements as a function of partial pressure for the Coryton gasoline/diesel 75/25 fuel blends injected into the test cell and fuel/air mixture prepared in the HPST.The measurements in the HPST cover the upper limit of total pressure used in the experiments(≈1500 mbar),and the molar absorption coefficientεfor this gasoline/diesel blend has been calculated to be 9.62 m2·mol-1.

    In addition,a simple injection test was also performed simultaneously.By injecting 0.5-1.0 ml volume of fuel into a vacuumed fuel tank at one time,the pressure was monitored instantly.Figure 2 shows the testing results,in which a linear relation between the monitored pressure and injected volume of fuel was observed,this again testified the complete vaporization of the gasoline and diesel blends.

    Fig.1 Fuel concentration measurements by 3.39 μm He-Ne laser absorption(Coryton gasoline/diesel 75/25 fuel blends)

    Fig.2 Fuel injection test:monitored pressure as function of injected volume of fuel

    3 Surrogate model simulation

    Octane number(ON)is an important indicator of the anti-knock quality of commercial gasoline fuels.It is experimentally measured in a Cooperative Fuel Research(CFR)engine under two standard operating procedures: ASTM D2699[10]and ASTM D2700[11],resulting in the research octane number(RON)and motor octane number(MON)respectively.Primary reference fuels(PRF)is the simplest surrogate used for representing a real gasoline fuel,which are binary blends of iso-octane andn-heptane.By definition,the RON and MON values assigned for iso-octane and n-heptane are both 100 and 0 respectively.In addition,the difference and average values between the two properties are defined as octane sensitivity(S=RON-MON)and anti-knock index(AKI=(RON+MON)/2)respectively.In order to match the octane sensitivity of a commercial fuel,toluene primary reference fuel(TPRF) is another commonly used simple gasoline surrogate,which is a ternary mixture of PRF-components and toluene.Toluene is a highly unsaturated hydrocarbon or aromatic hydrocarbon,with the RON and MON values of 120 and 109 respectively[12].

    Table 3 summarized the key properties of investigated in this work and from that of Lee et al.[6],which include the research octane number(RON),motor octane number(MON),octane sensitivity and anti-knock index(AKI)values.In general,these properties all decrease as we move from the pure Coryton gasoline fuel to the(50/50)Coryton gasoline/diesel blend.Based on these properties,two different gasoline surrogates(a PRF and a TPRF blend)were formulated by emulating the AKI,RON and octane sensitivity[12-13],as shown in Table 4.

    Table 3 Comparison of the key properties of four different fuels

    Table 4 Gasoline surrogate formulation for four different fuels

    Two different gasoline surrogate models,one from Lawrence Livermore National Laboratory(LLNL)[7]and the other from King Abdullah University of Science and Technology(KAUST)[8],were employed to simulate the experimental data using the two gasoline surrogates formulated above:

    ?LLNL(1389 species and 5935 reactions)

    ?KAUST(2768 species and 9236 reactions)

    4 Results and Discussion

    Atφ= 1.0 andp= 10 atm,the IDTs of the four different fuels are compared,F(xiàn)igure 3.At intermediate to high temperatures(900-1400 K),the four fuels have the same reactivity(solid symbols),while in NTC regime(700-900 K),IDTs decrease with the pure Coryton fuel having the longest ignition times and the 50/50 Coryton gasoline/diesel fuel having the fastest ignition times(open symbols).Particularly at around 750 K,the IDT differ by about a factor of 2.0 between the two different(75/25 and 50/50)Coryton gasoline/diesel fuel blends.

    Fig.3 Fuel reactivity comparison at φ = 1.0 and p = 10 atm

    Figure 4 presents the pressure effect on IDTs for the Coryton gasoline/diesel 75/25 fuel blend for data measured in both the HPST and in the RCM atφ=1.0,p=10 and 20 atm.In addition,simulation results generated using KAUST model and two different gasoline surrogates are also systematically compared.Similarly,the equivalence ratio effect on IDTs for the Coryton gasoline/diesel 50/50 fuel blend is shown in Figure 5 for experimental results obtained in the RCM atφ=0.5 and 1.0,p=10 atm.Figure 5 also include simulated ignition times using KAUST model and two different gasoline surrogates.Note,because of the limitation of the length of this paper,the simulation results generated using LLNL model and two different gasoline surrogates were presented and systematically compared in supple-mentary material.All these simulations have taken the facility effects into account(heat loss of RCM),and the volume-time histories have also been provided as supplementary material.

    Fig.4 IDT simulation for Coryton gasoline/diesel 75/25 fuel blend using two different gasoline surrogates at φ=1.0,p=10 and 20 atm

    Fig.5 IDT simulation for Coryton gasoline/diesel 50/50 fuel blend using two different gasoline surrogates at φ=0.5 and 1.0,p = 10 atm

    The experimental results show a clear negative temperature coefficient(NTC)behavior in the temperature range 750 to 900 K,it is worth nothing that because of the high initial temperature(150 ℃)setting,even by using 100% CO2as diluent gas,the lowest compressed gas temperature achieved here is approximately 750 K.The reactivity increases with increasing pressure and equivalence ratio.The divergence becomes more pronounced in the NTC regime,due to an increased concentration of fuel,since fuel radical chemistry dominates the fuel's reactivity in this temperature regime.In general,both gasoline surrogates can capture well the experimental IDTs over a wide range of temperatures,equivalence ratios and pressures.The TPRF surrogate performs better than the PRF surrogate as we expected,and the PRF surrogate shows a more pronounced NTC behavior than the TPRF surrogate.

    Moreover,to systematically compare the reactivity of the four different fuels and eliminate the effect of the limited quantity of experimental data presented in Table 2 in addition to facilities effects,constant volume simulations have been performed for these four different fuels,using two different gasoline surrogates and two kinetic models,at three different equivalence ratios and two different pressures.Here,simulation results atφ=1.0 andp=10 atm were selected as representatives,shown in Figure 6.The reactivity of four different fuels were compared as a function of different gasoline surrogates and kinetic models.At intermediate to high temperatures(900-1400 K),all four fuels present the same reactivity,which indicates the dominance of oxygen chemistry over this temperature regime.In the NTC regime(700-900 K),IDTs decrease from the fuel with the highest octane number(pure gasoline) to that with the lowest (50/50 gasoline/diesel).Particularly at 750 K,the discrepancy is about a factor of 1.5-2.0.This discrepancy corresponds to the experimental data shown in Figure 3.In general,the LLNL model shows a more pronounced NTC behavior than the KAUST model,and the PRF surrogate shows a more pronounced NTC behavior than the TPRF surrogate.It is worth noting that the simulation results of the high RON and high sensitivity fuel(Coryton gasoline) using the TPRF surrogate are unreasonably slow which has been highlighted in Figure 6,this will be further investigated in the next section.

    5 TPRF surrogate chemistry

    In this section,we aim to investigate the TPRF surrogate chemistry for Coryton gasoline.Given that the IDT of Coryton gasoline was over predicted by TPRF surrogate using the LLNL model[7]and KAUST model[8](shown in Figure 6),one more recently updated gasoline surrogate model developed from LLNL[14-15]is used in this section,which has been named as“LLNL_New”.The major difference between the LLNL and LLNL_New model is the toluene sub-mechanism,LLNL_New model has adopted an updated toluene model developed by Zhang et al[16],which has been well validated.Figure 7 shows the comparison of toluene IDT predictions using four different models(in different colors),it can be seen that Zhang and LLNL_New models predict identical results,so do LLNL and KAUST models.Meanwhile,the update toluene chemistry shows less reactivity than the old ones.

    Fig.6 Constant volume IDT simulation for four different fuels at φ = 1.0 and p = 10 atm

    Fig.7 Comparison of toluene IDT predictions using four different models at φ = 1.0,and p = 10 and 20 atm

    Figure 8 shows the IDT simulation based on TPRF surrogate for four different fuels using LLNL_New and KAUST models atφ=1.0 andp=10 atm.For the Coryton gasoline simulation in black color,LLNL_New model predicts much shorter IDTs than KAUST model towards low temperature(T<800 K),indicating a more pronounced NTC behavior.Interestingly,with large quantity of toluene(77.6% by volume)in the TPRF surrogate,such reactivity difference is opposite to that shown in Figure 7.Therefore,a more detailed investigation was carried out including the reactants'concentration profile,flux and sensitivity analyses,all simulation methods and approaches can be found in our recent publications[17-18].

    Figure 9 shows the reactants'concentration and pressure profiles for Coryton gasoline oxidation using TPRF surrogate and LLNL_New model atφ=1.0,p=10 atm andT=750 K.In the figure,different line colors and types stand for different components and models respectively,and the pressure traces are in magenta color corresponding to the y-axis at right side.A clear two-stage ignition event was observed for simulation using LLNL_New model,which can be attributed to the low-temperature oxidation chemistry of saturated alkyl radicals from iso-octane andn-heptane.

    Figure 10 shows the flux analysis for the TPRF surrogate blend atφ=1.0,p=10 atm,T=750 K,and at the timing of the rapid decay of reactants after the first stage ignition,which is around 30 ms.In order to make the results more visualized,only the qualitative or generalized reaction pathways were exhibited in the figure,while the quantitative values for the flux of all reactions have been gathered in the Supplementary Material 2.As can be seen,both iso-octane andn-heptane exhibit typical alkyl radical low temperature chemistries,the competition between the HO˙2radical concerted elimination from RO2and RO2isomerization to QOOH leads to the NTC behavior[19-20].

    Fig.8 IDT simulation based on TPRF surrogate for four different fuels using LLNL_New and KAUST models at φ=1.0 and p=10 atm

    Fig.9 Reactants' concentration and pressure profiles for Coryton gasoline oxidation using TPRF surrogate and LLNL_New model at φ = 1.0,p = 10 atm and T = 750 K

    Figure 11 shows the sensitivity analysis for pure toluene and TPRF surrogate blend atφ= 1.0,p= 10 atm andT= 750 K,it can be seen that,the most inhibiting reaction is the fuel initiation chemistry:H-atom abstraction from the allylic H-atom on the methyl group by O˙H radical forming the benzyl radical(C6H5CH2).Thereafter,the reactions between the formed benzyl radical(C6H5CH2)and HO˙2radical on the potential energy surface (PES) of C6H5CH2OOH took over the dominance,the association reaction forming benzyl-peroxy (BZCOOH)and chemical activation reaction forming benzoxy radical(C6H5CH2O˙) plus O˙H radical became the top reactivity inhibiting and promoting reactions respectively.Of interest is that sensitivity analysis results shows that by mixing toluene into then-heptane and iso-octane,the main promoting reaction,namely allylic H-atom abstraction by molecular oxygen (C6H5CH3+O2? C6H5CH2+HO2) turned into an inhibiting reaction,as highlighted in red rounded rectangles.The flux analysis shows that,this abstraction reaction actually occurs in the reverse direction.To summarize,by blending toluene with PRF,HO˙2radical can be sourced from the concerted elimination reaction of RO2radicals from the iso-octane and n-heptane oxidation.Then it reacts with benzyl radi-cal(C6H5CH2) via association or chemical activation reactions on the C6H5CH2OOH PES,or reacts reversely to give initial reactants(toluene and molecular oxygen).With more accurate toluene chemistry,LLNL_New model was able to predict above complex interaction,which results in more reasonable IDT results as shown in Figure 8.

    Fig.10 Flux analysis for the TPRF surrogate blend at φ = 1.0,p = 10 atm and T = 750 K

    Fig.11 Sensitivity analyses for pure toluene and TPRF surrogate blend at φ = 1.0,p = 10 atm and T = 750 K

    6 Conclusions

    This work represents an ignition delay study of two Coryton gasoline/diesel fuel blends(75/25 and 50/50)oxidation at elevated pressures in a HPST and in a RCM over a wide range of pressures,temperatures and equivalence ratios.The results presented provide ignition delay time(reactivity)of Coryton gasoline/diesel fuel blends at engine relevant conditions.It was found that increasing pressure resulted in shorter measured ignition delay times(higher reactivity)for all equivalence ratios investigated,which is typical of the influence of pressure on fuel reactivity.The effect of equivalence ratio on ignition delay times depended on the temperature regime of the experiment,whereas all mixtures had similar reactivity at higher temperatures(>900 K),fuel-rich mixtures are most reactive at lower temperatures(<900 K).NTC behavior was observed in the low temperature regime(700-900 K).

    In addition,the reactivity of four different gasoline and diesel fuels:Coryton gasoline,Haltermann gasoline,Coryton gasoline/diesel 75/25 and Coryton gasoline/diesel 50/50 fuel blends were systematically compared under the same experimental conditions.It was found that the lower RON fuel has shorter IDT than that of higher RON fuel,and this phenomenon becomes more pronounced the richer the fuel blend(φ=2.0),particularly in the NTC regime;at 750 K the discrepancy is about a factor of 1.5-2.0.

    It was found that TPRF surrogate simulation results for high RON and high octane sensitivity fuel(Coryton gasoline) are unreasonably slow using both LLNL and KAUST models,and this is mainly due to the large quantity of toluene(77.6% by volume)in the surrogate.A detailed investigation was then carried out using a recently published LLNL_New model which contains an updated toluene sub-mechanism.Reactants'concentration profile,flux and sensitivity analyses were simultaneously performed,from which,toluene chemistry and its interaction with alkane(n-heptane and iso-octane)chemistry were discovered.In toluene oxidation,HO˙2radical was only involved with the reaction with the benzyl radical(C6H5CH2),however,three different reaction types were found to control the reactivity comprehensively:(a) association reaction forming the benzyl-peroxy(BZCOOH);(b)chemical activation reaction forming the benzoxy radical(C6H5CH2)plus O˙H ;(c) reverse reaction of H-atom abstraction from methyl group by molecular oxygen(C6H5CH3+ O2? C6H5CH2+ HO2).

    岛国在线观看网站| 禁无遮挡网站| 成人亚洲精品av一区二区| 人人妻人人看人人澡| 1000部很黄的大片| 免费电影在线观看免费观看| 欧美激情在线99| 欧美色欧美亚洲另类二区| 国产在线精品亚洲第一网站| 免费在线观看日本一区| 国产av一区在线观看免费| 日韩欧美在线二视频| 很黄的视频免费| 国产真实乱freesex| a在线观看视频网站| 后天国语完整版免费观看| 99精品久久久久人妻精品| 一级作爱视频免费观看| 99热6这里只有精品| 99热6这里只有精品| 欧美极品一区二区三区四区| 熟女少妇亚洲综合色aaa.| 制服人妻中文乱码| 男女那种视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 床上黄色一级片| 禁无遮挡网站| 国产精品电影一区二区三区| 18禁观看日本| 久久中文字幕人妻熟女| 非洲黑人性xxxx精品又粗又长| 国内精品久久久久精免费| 欧美日韩综合久久久久久 | 热99re8久久精品国产| 亚洲在线观看片| 国语自产精品视频在线第100页| 欧美在线黄色| 国产高清有码在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 岛国视频午夜一区免费看| 在线观看午夜福利视频| xxx96com| 午夜福利高清视频| 视频区欧美日本亚洲| 99精品久久久久人妻精品| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 88av欧美| 成人性生交大片免费视频hd| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 午夜福利欧美成人| 欧美激情在线99| 又大又爽又粗| 精品久久久久久成人av| 国产视频一区二区在线看| 在线永久观看黄色视频| 黄频高清免费视频| 成人性生交大片免费视频hd| 久久精品国产综合久久久| 不卡av一区二区三区| 国产乱人视频| 极品教师在线免费播放| 免费看日本二区| 亚洲专区字幕在线| 色在线成人网| 日日干狠狠操夜夜爽| 成年女人毛片免费观看观看9| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 国产黄色小视频在线观看| 狂野欧美激情性xxxx| 欧美绝顶高潮抽搐喷水| 午夜a级毛片| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 12—13女人毛片做爰片一| 亚洲熟妇熟女久久| 在线看三级毛片| 黑人操中国人逼视频| 日韩精品青青久久久久久| 亚洲无线在线观看| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免费看| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| 亚洲无线在线观看| 精品日产1卡2卡| www日本在线高清视频| 亚洲成人中文字幕在线播放| 午夜免费激情av| 真实男女啪啪啪动态图| 嫩草影视91久久| 露出奶头的视频| 精品无人区乱码1区二区| 91在线观看av| 国产高清激情床上av| 男女视频在线观看网站免费| 久久久精品大字幕| 午夜视频精品福利| 俄罗斯特黄特色一大片| 成人18禁在线播放| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 国产成人一区二区三区免费视频网站| 香蕉久久夜色| 美女大奶头视频| av视频在线观看入口| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 国产美女午夜福利| www日本在线高清视频| 日本 av在线| 久久天躁狠狠躁夜夜2o2o| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 国产精品自产拍在线观看55亚洲| www.精华液| 国产亚洲av高清不卡| 深夜精品福利| 欧美3d第一页| 亚洲 欧美 日韩 在线 免费| 久久中文字幕人妻熟女| 高清在线国产一区| 成人国产一区最新在线观看| 色播亚洲综合网| 国产综合懂色| 国内精品美女久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩高清专用| 欧美一级毛片孕妇| 禁无遮挡网站| 日韩欧美在线二视频| 免费看十八禁软件| 亚洲九九香蕉| 麻豆国产97在线/欧美| 99久久精品热视频| 美女大奶头视频| 国产男靠女视频免费网站| 精品国产亚洲在线| 欧美精品啪啪一区二区三区| 国产伦在线观看视频一区| 国产精品亚洲一级av第二区| avwww免费| 亚洲精品国产精品久久久不卡| 91在线精品国自产拍蜜月 | 欧美色视频一区免费| 狂野欧美激情性xxxx| 欧美一级a爱片免费观看看| 国产精品99久久久久久久久| 免费看a级黄色片| 午夜亚洲福利在线播放| 两个人看的免费小视频| 男人舔女人的私密视频| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 999精品在线视频| 久久久水蜜桃国产精品网| av片东京热男人的天堂| 在线a可以看的网站| 深夜精品福利| 精品久久蜜臀av无| 成年女人看的毛片在线观看| 日本免费a在线| 亚洲男人的天堂狠狠| 欧美三级亚洲精品| 黄色视频,在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 亚洲av免费在线观看| 国产麻豆成人av免费视频| 国产午夜精品论理片| 国产伦精品一区二区三区视频9 | 少妇的丰满在线观看| 婷婷精品国产亚洲av| 国产精品一区二区三区四区久久| 中文字幕精品亚洲无线码一区| 欧美乱色亚洲激情| 美女高潮喷水抽搐中文字幕| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区免费观看 | 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| 免费观看人在逋| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| a级毛片在线看网站| 脱女人内裤的视频| av欧美777| 后天国语完整版免费观看| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 亚洲18禁久久av| 在线看三级毛片| 国产精品98久久久久久宅男小说| 精品久久久久久久毛片微露脸| 亚洲精品456在线播放app | 久99久视频精品免费| 欧美绝顶高潮抽搐喷水| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| 成人国产一区最新在线观看| 亚洲五月婷婷丁香| 亚洲va日本ⅴa欧美va伊人久久| 香蕉av资源在线| 女警被强在线播放| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 国产亚洲欧美在线一区二区| 亚洲精品乱码久久久v下载方式 | 性欧美人与动物交配| 精品福利观看| or卡值多少钱| 看免费av毛片| 国产精品久久久人人做人人爽| 日韩有码中文字幕| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站 | 国产爱豆传媒在线观看| 这个男人来自地球电影免费观看| 国产伦一二天堂av在线观看| 19禁男女啪啪无遮挡网站| 欧美丝袜亚洲另类 | 1024手机看黄色片| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 99热这里只有是精品50| 99国产精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美一区二区三区黑人| 久久精品国产99精品国产亚洲性色| 老司机在亚洲福利影院| av天堂中文字幕网| 无遮挡黄片免费观看| 欧美zozozo另类| 午夜精品久久久久久毛片777| 亚洲avbb在线观看| 国产精品一区二区精品视频观看| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 99国产精品99久久久久| 男人舔女人的私密视频| 成在线人永久免费视频| 可以在线观看的亚洲视频| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 亚洲中文av在线| 国产美女午夜福利| 亚洲av成人一区二区三| 日本五十路高清| 少妇裸体淫交视频免费看高清| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 一本精品99久久精品77| 精品国产亚洲在线| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 色老头精品视频在线观看| 深夜精品福利| 色视频www国产| 婷婷精品国产亚洲av| 一二三四社区在线视频社区8| 一进一出抽搐动态| 在线观看免费视频日本深夜| 色播亚洲综合网| 国产亚洲精品av在线| 99精品欧美一区二区三区四区| 国产v大片淫在线免费观看| 亚洲专区中文字幕在线| 后天国语完整版免费观看| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 悠悠久久av| 久久精品91无色码中文字幕| 成人国产综合亚洲| 国产精品av久久久久免费| 欧美最黄视频在线播放免费| 美女黄网站色视频| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 精品一区二区三区四区五区乱码| 欧美三级亚洲精品| 成人无遮挡网站| 国产伦在线观看视频一区| 亚洲精品国产精品久久久不卡| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 亚洲av成人不卡在线观看播放网| 亚洲国产精品成人综合色| 色av中文字幕| 三级国产精品欧美在线观看 | xxx96com| 日本与韩国留学比较| 国产成人精品无人区| 日本三级黄在线观看| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 99热6这里只有精品| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 国产精品女同一区二区软件 | 成人国产综合亚洲| 麻豆国产97在线/欧美| 久久久国产成人精品二区| 网址你懂的国产日韩在线| 亚洲18禁久久av| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 成年女人永久免费观看视频| 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 岛国视频午夜一区免费看| 亚洲欧洲精品一区二区精品久久久| 午夜a级毛片| 特大巨黑吊av在线直播| av国产免费在线观看| 女人被狂操c到高潮| 女人高潮潮喷娇喘18禁视频| 国产69精品久久久久777片 | 国内久久婷婷六月综合欲色啪| 国产不卡一卡二| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 久久久久性生活片| av天堂在线播放| 在线免费观看不下载黄p国产 | 欧美黄色淫秽网站| 色在线成人网| 91麻豆av在线| 日本 av在线| 国产精品久久电影中文字幕| 99久久精品热视频| 国产 一区 欧美 日韩| 欧美午夜高清在线| xxx96com| 亚洲熟妇熟女久久| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 国产av麻豆久久久久久久| 久久久水蜜桃国产精品网| 精品国产乱子伦一区二区三区| 亚洲av免费在线观看| 两个人看的免费小视频| 老汉色av国产亚洲站长工具| 国产精品野战在线观看| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 久久精品影院6| 高潮久久久久久久久久久不卡| 天堂动漫精品| 成人一区二区视频在线观看| 久久久久久大精品| 久久久久免费精品人妻一区二区| 日本免费a在线| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 不卡av一区二区三区| 91在线精品国自产拍蜜月 | 亚洲片人在线观看| 中文字幕最新亚洲高清| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 精品国产乱码久久久久久男人| 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av| 黄色日韩在线| 日本一二三区视频观看| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 亚洲成人精品中文字幕电影| 精品99又大又爽又粗少妇毛片 | 国产激情欧美一区二区| 嫩草影院精品99| 成人永久免费在线观看视频| 69av精品久久久久久| 国产精品一区二区精品视频观看| 黄片大片在线免费观看| 老汉色∧v一级毛片| 久99久视频精品免费| 男人舔奶头视频| 国产真实乱freesex| 黄色日韩在线| 日日干狠狠操夜夜爽| 超碰成人久久| 黄片小视频在线播放| 成人亚洲精品av一区二区| 成人三级黄色视频| 母亲3免费完整高清在线观看| www国产在线视频色| 久久久久久人人人人人| 免费观看的影片在线观看| 激情在线观看视频在线高清| 亚洲精品美女久久av网站| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 亚洲无线在线观看| 日韩欧美国产在线观看| www日本黄色视频网| 欧美日韩一级在线毛片| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 日日夜夜操网爽| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| a在线观看视频网站| 婷婷亚洲欧美| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 欧美午夜高清在线| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 黑人操中国人逼视频| 性色av乱码一区二区三区2| 欧美不卡视频在线免费观看| 久久性视频一级片| 999久久久国产精品视频| 久久久久性生活片| 最新中文字幕久久久久 | 国产成人系列免费观看| 久久久久精品国产欧美久久久| 在线永久观看黄色视频| 亚洲国产中文字幕在线视频| 99久久久亚洲精品蜜臀av| 成人国产一区最新在线观看| 久久久久国内视频| 欧美乱色亚洲激情| 国产精品九九99| 九色国产91popny在线| 久久久久亚洲av毛片大全| 一本一本综合久久| 老熟妇乱子伦视频在线观看| 精品久久久久久久毛片微露脸| 高潮久久久久久久久久久不卡| 亚洲美女视频黄频| 女人被狂操c到高潮| 91字幕亚洲| 午夜精品在线福利| 国产精品99久久99久久久不卡| 免费观看人在逋| 真人做人爱边吃奶动态| 久久中文看片网| www.精华液| av国产免费在线观看| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 免费看十八禁软件| 国产高清视频在线播放一区| 老司机午夜福利在线观看视频| 国产精品久久久久久精品电影| 99热精品在线国产| 亚洲av第一区精品v没综合| 国产亚洲精品久久久久久毛片| 亚洲国产色片| 巨乳人妻的诱惑在线观看| 国产综合懂色| 天天添夜夜摸| 久久国产精品影院| 热99re8久久精品国产| 日韩 欧美 亚洲 中文字幕| 国产aⅴ精品一区二区三区波| 日韩三级视频一区二区三区| 日韩国内少妇激情av| 俺也久久电影网| 国产爱豆传媒在线观看| 色av中文字幕| 亚洲精品美女久久av网站| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 91字幕亚洲| 精品99又大又爽又粗少妇毛片 | 在线播放国产精品三级| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 日本五十路高清| www.熟女人妻精品国产| 亚洲中文av在线| 成人国产综合亚洲| 成人av在线播放网站| 亚洲国产精品999在线| 黑人欧美特级aaaaaa片| 我要搜黄色片| 欧美三级亚洲精品| 又爽又黄无遮挡网站| 丰满人妻一区二区三区视频av | h日本视频在线播放| 精品熟女少妇八av免费久了| 国产不卡一卡二| 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 午夜福利在线观看免费完整高清在 | 一二三四社区在线视频社区8| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| av天堂在线播放| 天堂影院成人在线观看| 极品教师在线免费播放| 亚洲国产高清在线一区二区三| 两人在一起打扑克的视频| 国产私拍福利视频在线观看| 香蕉久久夜色| 青草久久国产| 村上凉子中文字幕在线| 国产又黄又爽又无遮挡在线| 免费看美女性在线毛片视频| 亚洲精品在线美女| 性欧美人与动物交配| 99精品欧美一区二区三区四区| 搞女人的毛片| 久9热在线精品视频| 巨乳人妻的诱惑在线观看| 欧美最黄视频在线播放免费| 欧美在线一区亚洲| 两个人的视频大全免费| 精品99又大又爽又粗少妇毛片 | 久久久久国产精品人妻aⅴ院| 久久午夜亚洲精品久久| 国产一区在线观看成人免费| 免费在线观看日本一区| 国产精品久久久久久人妻精品电影| 国内少妇人妻偷人精品xxx网站 | 国产精品九九99| 国产黄片美女视频| 午夜激情福利司机影院| 日韩欧美一区二区三区在线观看| 91在线观看av| 国产亚洲av嫩草精品影院| 91av网一区二区| 国产精品电影一区二区三区| 欧美黑人巨大hd| 99国产极品粉嫩在线观看| 国产综合懂色| 国产黄色小视频在线观看| 亚洲成人久久性| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 久久国产精品影院| 欧美3d第一页| 哪里可以看免费的av片| 老熟妇乱子伦视频在线观看| 精品一区二区三区四区五区乱码| 久久中文看片网| 日本熟妇午夜| 女警被强在线播放| 午夜免费观看网址| 99国产精品一区二区三区| 在线观看日韩欧美| 精品国产美女av久久久久小说| 国产伦一二天堂av在线观看| 99在线视频只有这里精品首页| 热99在线观看视频| 黑人操中国人逼视频| 欧美成狂野欧美在线观看| 在线观看一区二区三区| 中文字幕av在线有码专区| 丝袜人妻中文字幕| 91av网一区二区| 麻豆一二三区av精品| 午夜免费激情av| 最好的美女福利视频网| www国产在线视频色| 国产主播在线观看一区二区| 精品国产乱子伦一区二区三区| 一个人观看的视频www高清免费观看 | 99在线人妻在线中文字幕| 老熟妇乱子伦视频在线观看| bbb黄色大片| 国产蜜桃级精品一区二区三区| 在线国产一区二区在线| 最近最新免费中文字幕在线| 人人妻,人人澡人人爽秒播| 观看免费一级毛片| 我要搜黄色片| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 国产激情欧美一区二区|