• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of the rotating tribological pair system on circular-disc end faces

    2020-05-10 09:11:52ChenLongZhangJianrun

    Chen Long Zhang Jianrun

    (School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:In order to study the stability of friction and contact of the rotating tribological pair system, considering the influence of the changeable factors on the stability, the system dynamics analysis model based on the Lagrange equation is firstly established. The surface contact stiffness model is determined on the basis of the fractal theory. The model of the friction torque with velocities is created by using the Stribeck friction effect. The Lyapunov indirect method is employed to explore the eigenvalue problem of the system state equation. The effects of the applied load, the fractal dimension, the fractal scaling coefficient and the Stribeck coefficient on the system stability are investigated in detail. The numerical simulation results demonstrate that the tribological pair system is prone to causing system instability at low speed, and the system instability boundary value decreases when the Stribeck coefficient decreases. The fractal dimension and the fractal scaling coefficient impact the system stability slightly when fractal dimensions are large, and the system instability can be reduced by properly increasing the surface smoothness. Moreover, the system instability evidently increases with the increase in the applied load and the Stribeck coefficient. These achievements can provide a reference and theoretical support for the analysis of the dynamic performance of the tribological pair system.

    Key words:rotating tribological pair system; contact stiffness; Stribeck effect; dynamic model; stability

    High-speed rotating structures form friction in the end, which results in an unstable operation of the system and brings frictional vibration and noise. This is a common phenomenon in engineering, for instance, brakes, clutches, compressors’ crankshafts and the train wheel-rail. The mechanical model of this end rotating friction structure is a pair of high-speed disc tribological pairs. Several physical mechanisms that attempt to explain unstable friction-induced vibration have been proposed in the literature and were reviewed in Ref.[1]: the negative friction slope[2], sprag-slip instability[3], stick-slip instability[4], and mode-coupling instability[5]. However, there has been no universal consensus of an explanation for friction phenomena and the dynamic behavior of friction-induced vibration is not fully understood.

    For reducing the impact of friction on engineering and the environment, many studies have been carried out with analytical, computational and experimental techniques. To explore the frictional system, the early achievements are attributed to the dry frictional stick-slip self-excited vibration[6]and unstable structural vibration[7]. Stick-slip is often caused by the nonlinear stiffness effect[8]or nonlinear discontinuity inμ-vfriction curve[9]. Hereby, the Stribeck coefficient is usually included in the stick-slip analysis to analyze the system stability and determine the critical speed of the dynamic model[10-11]. Whereas, stick-slip theory ignores the interaction between two contacting surfaces. To overcome this shortcoming, elastic or flexible discs have been adopted. Ouyang et al.[12]examined the transverse instability of an elastic disc under the action of a rotating friction slider with stick-slip vibration. Ouyang and Mottershead[13]investigated the instability of the transverse vibration of a disk excited by two co-rotating sliders on either side of it, taking into account the bending couple acting in the circumferential direction produced by the different friction forces on the two sides of the disk. Studies show that the modal coupling theory can explain most friction phenomena under different friction causes. Hoffmann and Gaul[5]studied the qualitative and quantitative aspects of the mode-coupling instability with the presence of structural damping in sliding friction systems. Kang[14]analyzed the dynamic instability induced by friction in the ball joint system and presented the conditions of the mode-coupling instability. Sui and Ding[15]established a pad-on-disc frictional model and carried out the eigenvalue analysis to evaluate the stability of the pad considering the stochastic variation of frictional coefficients and the contact effect.

    The features of contact at the friction interface of the disc are ignored in most of the studies mentioned above. Actually, the contact stiffness is inevitably affected by the tribological pairs under the contact condition, causing the variety in system instability. For establishing an accurate dynamic analysis model, the contact stiffness model should be proposed in addition. As the fractal model can simulate the contact state with high precision, researchers have developed some fractal contact stiffness models and explored the influence of vital parameters on the model such as the fractal dimensionD, the fractal scaling coefficientGand the applied load[16-19]. Due to the effects of friction, some scholars put forward some modified models to correct the contact stiffness[20-21]. It can be concluded that the contact stiffness is modifiable with various system characteristic parameters.

    Therefore, a dynamic analysis model of the rotating tribological pair system on the circular-disc end face for determining the system stability is proposed according to the Stribeck effect and fractal contact characteristics in this paper. The dynamic differential equation of the system is modeled by the Lagrange equation. The friction torque considering the Stribeck effect is produced, and the normal contact stiffness and the tangential contact stiffness are established through the fractal theorem. The system equation is deduced and the criterion of system stability is given. The system stability is investigated and discussed by the numerical simulation analysis of the effects of applied loads, Stribeck coefficients, and fractal parametersDandG. The achievements of this work will serve as a reference and a theoretical support for the analysis of the dynamic performance of frictional systems.

    1 Dynamic Model of Rotating Tribological Pair System on the End Face

    The instability of the friction pair is the cause of the instability of the system. Studying the rotational freedom and axial freedom of the friction pair can accurately describe the motion state of the friction pair. The dynamic model of a non-damping system is established, as shown in Fig.1.m1andJ1represent the mass and torque of inertia of the active part, respectively;m2andJ2represent the mass and torque of inertia of the driven part; both of them are metal parts. The displacementx1is along theXdirection;θ1andθ2are the rotation angles of the active and driven parts. The driven part connecting to the base is subject to the elastic constraints ofk1andk2;k1is in theXdirection andk2is in the direction of the circumference tangent. The parameterknis the normal contact stiffness andktrepresents the tangential contact stiffness, and they are used to connect the active part and the driven part. The loadpis applied along theXdirection;M0is the driving torque of the active part.r1andr2are the radii of the inner and outer rings of the pair on the contact surface, as shown in Fig.1(b). We assume that pointBand pointB′ are in the same position; pointBis on the surface of the active part, but pointB′ is on the driven part; there is a spring connecting two points in the circumference tangential direction, soktis the total tangential contact stiffness on the contact surface.

    (a)

    (b)

    Fig.1 The rotating tribological pair system on the circular-disc end face. (a) Diagram of friction pair system; (b) The contact surface

    In a system dynamics analysis, it is worth considering whether the flexibility of components affects the dynamic calculations. Generally speaking, the natural frequencies of the metal components being studied in this paper are much higher, and their thicknesses are not thin, so the flexibility of the component can be ignored. With the Lagrange system modeling method, the general form of the Lagrange second-class equation can be described as

    (1)

    Then, we have the dynamic differential equation of the system,

    (2)

    Consequently, the dynamic model of the rotating tribological pair system on the end face is set up, and it is a basic equation for exploring the system stability. The friction, a cause of system instability, can generate a negative damping in systems. Among the studies mentioned above, most of them modeled the friction force in the rotating system, which cannot describe the frictional features of the complete contact surfaces precisely; thus, the friction torqueMftaking into account the Stribeck effect is adopted in this paper. Under the consideration of the contact stiffness, the values ofknandktare often given definitely, omitting the contact characteristics and the effect of friction. However, the contact state is also a significant factor of the system stability, which can alter the systemic stable state, so the contact stiffness should be established correctly. The specific modeling progresses are given in the following sections.

    2 Friction and Contact Mathematical Model

    2.1 Stribeck friction torque model

    When the friction phenomenon is described by differential equations, the friction models are roughly divided into two categories: the static friction model and the dynamic friction model[22]. Armstrong-Hélouvry and Soom[23]suggested that a good static friction model could approximate the actual friction with 90% accuracy. For mathematically representing the Stribeck phenomenon, an extensively used model describing the Stribeck effect, the Gauss index model, is employed, in which the Stribeck friction coefficient dependent on the relative velocity is approximated by the following function:

    fs(v)=μk+(μs-μk)e(-v/vs)2

    (3)

    wherefs(v) is the Stribeck friction coefficient;μkis the sliding friction coefficient;μsis the maximum static friction coefficient;vsis the Stribeck coefficient.

    Then, the first derivative offs(v) is

    (4)

    Fig.2 exhibits the friction coefficient curves at different Stribeck coefficients withμs=0.18 andμk=0.12, which evidently illustrate the negative slope of friction-velocity. Therefore, the Stribeck coefficient should be deliberated in order to evaluate friction accurately.

    Fig.2 Stribeck friction coefficient curves

    The friction force is modeled considering the Stribeck effect in most studies, while the friction torque is more suitable for presenting the rotating tribological pair system. Before modeling the friction torque, the micro-element surface on the contact surface is taken into account, as shown in Fig.1(b). At the radiusρ, the area of the micro-element is

    dS=ρdθdρ

    (5)

    From Fig.1(a), we have the total contact loadpn=knx1. Assuming that the contact load is uniformly distributed on the surface, the load on the micro-element is

    (6)

    whereAais the nominal contact area;knis the normal contact stiffness;x1is the displacement of the contact surface.

    In order to describe the Stribeck effect on the friction, we introduce the Stribeck friction coefficientfs(v) into the friction torque. The moment of friction force applied on the micro-element surface to the rotation axis is founded as

    (7)

    whereωis the relative rotation angular velocity,v=ωρ.

    According to Eq.(7), the moment has the same expression at any angles, and then we can obtain the friction torqueMfof the entire contact surface,

    (8)

    wherer1andr2are the radii of the inner and outer rings of the contact surface.

    2.2 Contact stiffness fractal model

    The development of the fractal theory has greatly promoted the study of surface microscopic features, which makes the contact characteristic parameters closer to the actual situation. The accurate description of the contact state is an essential prerequisite for modeling. Therefore, the establishment ofknandktis described in the following.

    The contact problem between two rough surfaces is generally equivalent to the contact problem between a rough surface and an ideal plane. Therefore, Young’s modulusEof the equivalent rough surface is given by

    (9)

    whereE1,E2,ν1andν2are the two materials’ Young’s modulus and Poisson’s ratios.

    If 1

    (10)

    IfD=1.5, the expression ofp*is written as

    (11)

    whereDis the fractal dimension;Gis the fractal scaling coefficient.DandGcan be obtained by the parameter identification of the surface.acis the critical micro-contact area at the boundary point of the elastic-plastic deformation, which is described as

    (12)

    whereK=H/σs;φ=σs/E;Handσsare the hardness and yield strength of the softer material.g1(D) andg2(D) are constants of the fractal dimension, which can be calculated as

    (13)

    The dimensionless parameters are defined as

    (14)

    whereAais the nominal contact area;Aris the real contact area;pis the applied load.

    Referring to Ref.[21] and considering the influence of friction, the critical micro-contact area is revised as

    (15)

    wherekμis a friction correction factor, and its expression depending on the friction coefficientμis

    (16)

    Approximately regarding the micro-convex body as a sphere, the normal contact stiffness dkndepending on the contact areaaof one single micro-convex body is described as

    (17)

    The maximum contact areaalhas the following relationship with the real contact areaAr,

    (18)

    Thus, the total normal contact stiffnessknof the rough surface is determined as

    (19)

    According to Ref.[17], the tangential contact stiffnessktcan be modeled as

    (20)

    whereT0is the tangential load.

    3 System Equation Deduction for the Stability Criterion

    For determining the system stability, the friction torqueMfshould be linearized due to the nonlinear Stribeck coefficientfs(v). According to Eq.(8), the Taylor expansion atx1=x10,ω=ω1is written as

    (21)

    Then, the friction torque can be expressed as

    (22)

    where the definitions ofh1andh2are given by

    (23)

    Hence, the dynamic equation of the tribological pair system can be constructed as

    (24)

    With the deliberation of the Lyapunov indirect method[25], Eq.(24) is rewritten in the state vector form:

    (25)

    Then, the coefficient matrixAof the system can be determined from Eq.(25):

    (26)

    whereO3×3is the null matrix;I3×3is the unit matrix;A1andA2are defined as

    Therefore, all the parameters modeled above are substituted into Eq.(26) for computing the eigenvalues of the matrixAthrough MATLAB. In the light of the stability determination theorem, the eigenvaluesλof the coefficient matrixAhave negative real parts on the basis of one approximation, which strongly indicates that the original nonlinear system is asymptotically stable at the equilibrium point. On the other hand, the positive real part of the eigenvalue implies the instability of the system.

    4 Numerical Results and Discussion

    In this paper, the stability analysis of the rotating tribological pair system on the end face is carried out with the dynamic model. The example of calculating the eigenvalues of matrixAis studied in this section with the given parameter values shown in Tab.1.

    Tab.1 Model calculation parameters

    The curves of the real part of eigenvalues Re(λ) at different speeds demonstrate that the system tends to be stable at higher speed whereas the system exhibits an unstable state at lower speed, as shown in Fig.3. Moreover, the real part of the first-order eigenvalue is invariably equivalent to zero, and the third-order shows a positive real part inferring system instability. Hence, the second- and third- order eigenvalues become the focus of this study. Due to the friction characteristics, there are many factors influencing the system stability such as the surface roughnessRa, the applied loadpand the Stribeck coefficientvs, and their effects on the system stability are explored and compared as follows.

    Fig.3 Real part of eigenvalue

    The topography of the surface is one of the important factors affecting the state of frictional contact between surfaces. Statistical methods describe surface features through statistical parameters such as the surface roughnessRa, but the fractal theory uses fractal parameters to solve the problem of scale correlation. The surface roughness and fractal parameters are used as surface characteristics, so scholars have studied the relationship between them. Guan et al.[26]pointed out that the fractal dimensions of processed surfaces with the same manufacturing method are basically equal, and the fractal scaling coefficient changes with surface roughness. Pan et al.[27]analyzed the relationship between surface roughness and fractal parameters in details. When the fractal scaling coefficientGis small, the surface roughnessRaand the fractal dimensionDhave a monotonically decreasing relationship; whenDvalue remains unchanged, the relationship betweenRaandGcan be expressed as

    Ra∝GD-1

    (27)

    Therefore, the effect of surface roughness on the analysis model is indirectly reflected by studying the fractal parameters.

    Fig.4 describes the variation of the real part of the second-order and third-order eigenvalues of the system with four fractal dimensions. It can be inferred from Fig.4(b) that the fractal dimension has little impact on the system instability, but its value at 1.75 makes the system unstable with the lowest trend. The relationship between the speed and the real part of eigenvalues at four different fractal scaling coefficients is shown in Fig.5. It obviously appears that the instability trend of the system increases first and then decreases along with the increase in the fractal scaling coefficient. Actually, when the fractal dimensionDincreases and the fractal scaling coefficientGdecreases, the surface is smoother. The appropriate increase in surface roughness is beneficial for the system to reduce the instability phenomenon. When the surface roughness exceeds a certain value, a smoother surface is more prone to unstable friction. Most noteworthy, the peak values of curves and instability boundary values are constant. Hence, it is difficult to improve the system stability within the range of 1.65 and 1.80 of the fractal dimension.

    (a)

    (b)

    Fig.4 Effects of the fractal dimensionDon the real part of eigenvalues. (a) The second-order eigenvalue;(b) The third-order eigenvalue

    (a)

    (b)

    Fig.5 Effects of the fractal scaling coefficientGon the real part of eigenvalues.(a) The second-order eigenvalue;(b) The third-order eigenvalue

    Similarly, the relationship between the speed and the real part of eigenvalues at four different loads is shown in Fig.6. It can be seen from Fig.6(b) that the instability trend of the system rises apparently with the increase in the applied load. Although the applied load has a great influence on system stability, its value should not be changed due to the index requirement in practical engineering. Fig.7 depicts the variation of system stability trends under different Stribeck coefficients. Evidently, decreasing the Stribeck coefficient makes the system more unstable, but can reduce the system instability boundary value and expand the stability interval. Actually, it is an extremely complex procedure to vary the Stribeck coefficient affected by nonlinear factors. Hence, the selection of the Stribeck coefficient should be determined according to the particular system requirements.

    By comparing Fig.4 to Fig.7, it can be concluded that the instability boundary value and the speed corresponding to the peak value are not changed with the parameters ofD,Gorp, while they are influenced by the Stribeck coefficient. No matter how the other parameters are changed with the determined value of the Stribeck coefficient, only the trend of the system instability is changeable. Moreover, a proper surface roughness can reduce the system instability, but the smoother the surface, the more likely it is to cause friction instability.

    (a)

    (b)

    Fig.6 Effects of the applied loadpon the real part of eigenvalues.(a) The second-order eigenvalue; (b) The third-order eigenvalue

    (a)

    (b)

    Fig.7 Effects of the Stribeck coefficientvson the real part of eigenvalues.(a) The second-order eigenvalue;(b) The third-order eigenvalue

    5 Conclusions

    1) The rotating tribological pair system on the end face exhibits an unstable state at low speed and gradually enters a steady state at high speed.

    2) The real part of the first-order eigenvalue of the system is always zero, and the third-order eigenvalue causes the system instability.

    3) The fractal dimension and the fractal scaling coefficient have a slight impact on system stability when fractal dimensions are large, but there are optimal values for minimizing the instability trend of the system, which means that there is a best value for the surface roughness.

    4) Reducing the applied load and Stribeck coefficient can improve system stability; and the instability boundary value is only altered by the Stribeck coefficient.

    a 毛片基地| 亚洲欧美色中文字幕在线| 久久久久久久久久成人| 男女啪啪激烈高潮av片| 精品久久蜜臀av无| 日韩免费高清中文字幕av| 狠狠精品人妻久久久久久综合| 热99久久久久精品小说推荐| 久久热精品热| 国产亚洲最大av| 黄色视频在线播放观看不卡| 大又大粗又爽又黄少妇毛片口| 人体艺术视频欧美日本| 人人妻人人澡人人看| 免费大片18禁| 丝袜在线中文字幕| 不卡视频在线观看欧美| 制服诱惑二区| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 午夜日本视频在线| av天堂久久9| a级毛片黄视频| 国产日韩欧美在线精品| 我的老师免费观看完整版| 大码成人一级视频| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 99视频精品全部免费 在线| 国产精品秋霞免费鲁丝片| 亚洲,一卡二卡三卡| 麻豆精品久久久久久蜜桃| 午夜视频国产福利| 亚洲精品日韩在线中文字幕| 日韩强制内射视频| 久久99热6这里只有精品| 国产精品国产av在线观看| 国产成人精品无人区| 啦啦啦在线观看免费高清www| 高清欧美精品videossex| 亚洲精品中文字幕在线视频| 黄色欧美视频在线观看| 人人妻人人澡人人看| 亚洲欧洲国产日韩| 一级a做视频免费观看| 久久久久久久精品精品| 卡戴珊不雅视频在线播放| 卡戴珊不雅视频在线播放| 大香蕉97超碰在线| 欧美3d第一页| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 亚洲在久久综合| 色网站视频免费| 久久热精品热| 搡女人真爽免费视频火全软件| 成人国产av品久久久| 99精国产麻豆久久婷婷| 熟女电影av网| 国产国拍精品亚洲av在线观看| 老司机亚洲免费影院| 亚洲三级黄色毛片| 国产黄色免费在线视频| 视频中文字幕在线观看| 亚洲精品国产av蜜桃| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 啦啦啦中文免费视频观看日本| 丝袜在线中文字幕| .国产精品久久| 亚洲国产av影院在线观看| 丝袜美足系列| 国产亚洲av片在线观看秒播厂| 插逼视频在线观看| 亚洲综合色网址| 亚洲国产精品成人久久小说| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 亚洲欧美清纯卡通| 夜夜爽夜夜爽视频| 午夜日本视频在线| 久久99热这里只频精品6学生| 91精品国产九色| 看免费成人av毛片| 女人精品久久久久毛片| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 国产黄频视频在线观看| 午夜福利视频精品| 精品久久久噜噜| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 精品久久久久久电影网| 久久久久网色| 少妇被粗大的猛进出69影院 | 69精品国产乱码久久久| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 一级,二级,三级黄色视频| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 母亲3免费完整高清在线观看 | 最新的欧美精品一区二区| 国产精品女同一区二区软件| 成年av动漫网址| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 久久久久国产精品人妻一区二区| www.av在线官网国产| 国产一区二区在线观看av| 国产精品久久久久成人av| 久久婷婷青草| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看 | a级毛片在线看网站| 制服人妻中文乱码| 亚洲精品乱码久久久v下载方式| 国产av精品麻豆| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 国产在线免费精品| 国产一区亚洲一区在线观看| 欧美日韩av久久| 91精品一卡2卡3卡4卡| 免费观看a级毛片全部| 美女内射精品一级片tv| 午夜影院在线不卡| 国产黄频视频在线观看| 性色avwww在线观看| 成年女人在线观看亚洲视频| av免费观看日本| 好男人视频免费观看在线| 日本欧美视频一区| 国产精品成人在线| 最后的刺客免费高清国语| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 新久久久久国产一级毛片| 在线看a的网站| 久久久精品94久久精品| 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜| 一级毛片 在线播放| 老司机亚洲免费影院| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕 | 曰老女人黄片| 国产成人一区二区在线| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 免费看不卡的av| 国产 一区精品| 热re99久久国产66热| 亚洲欧美色中文字幕在线| 久久热精品热| 久久韩国三级中文字幕| 中文字幕久久专区| 久久99蜜桃精品久久| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 黄片播放在线免费| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 久久久久久久精品精品| 丁香六月天网| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 国产色爽女视频免费观看| 中文天堂在线官网| 在线观看美女被高潮喷水网站| 亚洲人成网站在线播| 欧美xxⅹ黑人| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品无人区| 97在线视频观看| 99热6这里只有精品| 中国美白少妇内射xxxbb| 婷婷色综合大香蕉| av电影中文网址| 久久久精品免费免费高清| 成人黄色视频免费在线看| 大片免费播放器 马上看| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 少妇被粗大的猛进出69影院 | 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 插逼视频在线观看| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| av免费观看日本| 日本欧美国产在线视频| 国产一区二区三区综合在线观看 | a级毛片黄视频| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 国产精品蜜桃在线观看| 久久热精品热| 国产亚洲精品久久久com| 欧美+日韩+精品| 七月丁香在线播放| 国产精品蜜桃在线观看| 国产女主播在线喷水免费视频网站| 国产精品女同一区二区软件| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 欧美日韩av久久| 少妇高潮的动态图| 精品一区在线观看国产| 十八禁高潮呻吟视频| 91午夜精品亚洲一区二区三区| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 少妇丰满av| 免费日韩欧美在线观看| 岛国毛片在线播放| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 欧美激情 高清一区二区三区| 国产伦精品一区二区三区视频9| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 国产av国产精品国产| 久热这里只有精品99| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 国产av精品麻豆| 国产精品女同一区二区软件| 考比视频在线观看| 精品久久蜜臀av无| 欧美成人午夜免费资源| 久久99精品国语久久久| 丝袜脚勾引网站| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 亚洲欧美色中文字幕在线| 亚洲天堂av无毛| 99九九在线精品视频| 欧美激情 高清一区二区三区| 日韩三级伦理在线观看| 亚洲不卡免费看| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 免费看不卡的av| 国产精品国产三级国产av玫瑰| 欧美3d第一页| 久久免费观看电影| 高清欧美精品videossex| 免费看不卡的av| 色吧在线观看| 欧美3d第一页| 成人毛片60女人毛片免费| 国产成人av激情在线播放 | 最新中文字幕久久久久| 在线观看www视频免费| 边亲边吃奶的免费视频| 男男h啪啪无遮挡| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| 日日啪夜夜爽| 亚洲怡红院男人天堂| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 午夜91福利影院| 国产探花极品一区二区| 9色porny在线观看| av视频免费观看在线观看| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 丝瓜视频免费看黄片| 国产精品偷伦视频观看了| 老司机亚洲免费影院| 亚洲在久久综合| av一本久久久久| 国产成人精品一,二区| 午夜av观看不卡| 51国产日韩欧美| 你懂的网址亚洲精品在线观看| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 久久久久久人妻| 国产极品天堂在线| 免费黄色在线免费观看| 久久免费观看电影| 午夜激情av网站| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 国产av精品麻豆| 黄色毛片三级朝国网站| av有码第一页| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 久久久国产一区二区| 国产亚洲精品第一综合不卡 | 一区二区三区四区激情视频| 国产成人freesex在线| 中文字幕最新亚洲高清| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 日韩精品免费视频一区二区三区 | 青青草视频在线视频观看| 两个人免费观看高清视频| xxx大片免费视频| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区 | 99热网站在线观看| 国产日韩欧美亚洲二区| av免费在线看不卡| 97在线人人人人妻| 七月丁香在线播放| av线在线观看网站| 成人国产麻豆网| 18禁动态无遮挡网站| 日产精品乱码卡一卡2卡三| 午夜激情av网站| 精品熟女少妇av免费看| 热re99久久国产66热| 亚洲国产精品999| 亚洲精品国产色婷婷电影| 在线观看免费视频网站a站| 免费不卡的大黄色大毛片视频在线观看| 亚洲av在线观看美女高潮| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 国产一区二区三区av在线| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 久久精品久久久久久久性| 2022亚洲国产成人精品| a级毛色黄片| 18在线观看网站| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕| a级毛色黄片| 18在线观看网站| 午夜激情福利司机影院| 18在线观看网站| 在线免费观看不下载黄p国产| a级毛片在线看网站| 亚洲精品日本国产第一区| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产最新在线播放| 免费高清在线观看日韩| 亚洲成人手机| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 内地一区二区视频在线| 日本wwww免费看| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 色婷婷av一区二区三区视频| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 免费看不卡的av| 国产高清国产精品国产三级| 国产成人一区二区在线| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 能在线免费看毛片的网站| 成人亚洲欧美一区二区av| 欧美日韩国产mv在线观看视频| 欧美日韩综合久久久久久| 一级毛片我不卡| 全区人妻精品视频| av女优亚洲男人天堂| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 一级毛片 在线播放| tube8黄色片| 亚洲精品色激情综合| 免费少妇av软件| 2018国产大陆天天弄谢| 成人午夜精彩视频在线观看| 久久综合国产亚洲精品| 不卡视频在线观看欧美| 亚洲成人手机| 成年美女黄网站色视频大全免费 | 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 婷婷色综合www| 日本黄大片高清| 黄色视频在线播放观看不卡| 日本与韩国留学比较| 亚洲av综合色区一区| 亚洲天堂av无毛| 免费黄网站久久成人精品| 国产成人91sexporn| 国产色爽女视频免费观看| 午夜激情久久久久久久| 亚洲精品一二三| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 免费观看的影片在线观看| 制服丝袜香蕉在线| 亚洲精品第二区| 黄片无遮挡物在线观看| 高清毛片免费看| 亚洲av.av天堂| 免费少妇av软件| 97在线视频观看| 久久av网站| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 一本一本综合久久| 午夜日本视频在线| 亚洲国产成人一精品久久久| 99久久中文字幕三级久久日本| 欧美97在线视频| 久久人人爽人人爽人人片va| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 日韩免费高清中文字幕av| 人成视频在线观看免费观看| 久久99热6这里只有精品| 看非洲黑人一级黄片| 亚洲国产精品国产精品| 亚洲内射少妇av| 日韩成人伦理影院| 国产精品久久久久久av不卡| 男女免费视频国产| 日韩一区二区三区影片| 日韩不卡一区二区三区视频在线| 国产日韩欧美在线精品| 久久久久人妻精品一区果冻| 黄色配什么色好看| 久久国内精品自在自线图片| 汤姆久久久久久久影院中文字幕| 国产爽快片一区二区三区| 日韩大片免费观看网站| 国产精品国产av在线观看| 国产黄片视频在线免费观看| 国产有黄有色有爽视频| 狂野欧美白嫩少妇大欣赏| 制服诱惑二区| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 七月丁香在线播放| 精品视频人人做人人爽| 午夜免费鲁丝| 熟女电影av网| 秋霞在线观看毛片| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 成人漫画全彩无遮挡| 少妇高潮的动态图| 成年人午夜在线观看视频| 大香蕉久久成人网| 国产乱人偷精品视频| 精品久久久久久久久av| 亚洲精品美女久久av网站| 一本久久精品| 18在线观看网站| 18禁观看日本| 亚州av有码| 久久久欧美国产精品| 亚洲精品av麻豆狂野| 精品熟女少妇av免费看| 久久99热6这里只有精品| 国产精品秋霞免费鲁丝片| 男女无遮挡免费网站观看| 成人漫画全彩无遮挡| 成人亚洲精品一区在线观看| 国产精品久久久久久精品电影小说| 国产精品偷伦视频观看了| 99久久人妻综合| 免费久久久久久久精品成人欧美视频 | 国内精品宾馆在线| 免费人妻精品一区二区三区视频| av黄色大香蕉| 97在线视频观看| 岛国毛片在线播放| 成年人午夜在线观看视频| 如日韩欧美国产精品一区二区三区 | 免费高清在线观看日韩| 51国产日韩欧美| 亚洲天堂av无毛| 乱码一卡2卡4卡精品| 狂野欧美激情性xxxx在线观看| 看十八女毛片水多多多| 国内精品宾馆在线| 国产一区二区三区av在线| 九九爱精品视频在线观看| 国产男女内射视频| 亚洲在久久综合| 久久国内精品自在自线图片| 欧美精品一区二区免费开放| 国产精品麻豆人妻色哟哟久久| 欧美性感艳星| 肉色欧美久久久久久久蜜桃| 99热6这里只有精品| 在线观看免费日韩欧美大片 | 一级a做视频免费观看| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 日本91视频免费播放| 国产日韩一区二区三区精品不卡 | 青青草视频在线视频观看| 亚洲成人av在线免费| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区视频9| 精品人妻在线不人妻| 卡戴珊不雅视频在线播放| 国产免费一级a男人的天堂| 如何舔出高潮| 国产精品免费大片| www.av在线官网国产| 国产精品久久久久久精品电影小说| 欧美日韩视频精品一区| 午夜影院在线不卡| 综合色丁香网| 亚洲国产精品一区二区三区在线| 欧美3d第一页| 中文精品一卡2卡3卡4更新| 亚洲久久久国产精品| 亚洲四区av| 日本av免费视频播放| 免费少妇av软件| 最近中文字幕高清免费大全6| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 各种免费的搞黄视频| 久久av网站| 欧美 亚洲 国产 日韩一| 国产一区二区三区av在线| 少妇精品久久久久久久| 国产精品女同一区二区软件| 欧美xxⅹ黑人| 香蕉精品网在线| 国产男女内射视频| 久久女婷五月综合色啪小说| 最近2019中文字幕mv第一页| 色婷婷av一区二区三区视频| 国产精品人妻久久久久久| 午夜福利影视在线免费观看| 久久久午夜欧美精品| 在线观看人妻少妇| 久久影院123| 成年美女黄网站色视频大全免费 | www.色视频.com| 少妇被粗大的猛进出69影院 | 亚洲五月色婷婷综合| 亚洲国产av新网站| 亚洲无线观看免费| 日韩免费高清中文字幕av| 男人操女人黄网站| 青春草视频在线免费观看| 美女福利国产在线| 蜜臀久久99精品久久宅男| 极品少妇高潮喷水抽搐| 日韩成人av中文字幕在线观看| 亚洲欧美精品自产自拍| 亚洲人成网站在线播| 男女边吃奶边做爰视频| 99国产综合亚洲精品| 麻豆精品久久久久久蜜桃| 日韩中文字幕视频在线看片| 欧美激情国产日韩精品一区| 老司机亚洲免费影院| 最黄视频免费看| 热99久久久久精品小说推荐| 精品久久久精品久久久| 一区在线观看完整版| 两个人免费观看高清视频| 国产免费一区二区三区四区乱码| 国产午夜精品久久久久久一区二区三区| 日本91视频免费播放| av在线播放精品| 两个人的视频大全免费| 亚洲国产精品国产精品| 搡老乐熟女国产| 男女免费视频国产| 久久久久久久国产电影| 制服人妻中文乱码| 午夜福利在线观看免费完整高清在| 久久久久久久国产电影| 久久影院123| av.在线天堂| 午夜精品国产一区二区电影| 男女边吃奶边做爰视频| 全区人妻精品视频| 亚洲精品中文字幕在线视频| 免费av中文字幕在线| 国产成人精品在线电影| 亚洲成人一二三区av| 亚洲内射少妇av| 精品国产露脸久久av麻豆| 中文字幕亚洲精品专区| 91久久精品国产一区二区三区| 永久网站在线|