• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource allocation for NOMA-based vehicular communications

    2020-05-10 09:11:50JiangWeiSongTiechengWangCongHuJing

    Jiang Wei Song Tiecheng Wang Cong Hu Jing

    (National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    Abstract:To solve fast channel variations induced by the mobility of the vehicles and achieve effective and reliable vehicular communications, the non-orthogonal multiple access is applied to the vehicle to vehicle (V2V) pairs underlaid vehicle to infrastructure (V2I) users to solve the downlink resource allocation. A geographic position-based clustering algorithm for V2V users is proposed. The base station preassigns the channel resources and the Kuhn-Munkres algorithm is used to complete the channel assignment. Then, the verified particle swarm optimization (PSO) is adopted to achieve the optimal power allocation. The simulation results show that the proposed scheme outperforms the existing device to device (D2D) mechanism by improving the network connectivity, spectrum efficiency and data transmission rate.

    Key words:non-orthogonal multiple access; vehicle to vehicle; vehicle to infrastructure; subchannel assignment; power control

    In recent years, vehicular communications have gained attention due to their ability to improve traffic safety and efficiency, and provide abundant information services on wheels. The 802.11p networks can only provide intermittent and short-lived vehicle to infrastructure (V2I) links due to a limited radio range and lack of road side infrastructure. However, the cellular network, benefitting from wide coverage and flexibility on centralized control over network resources, guarantees the optimal performance of the network. Moreover, the vehicle to vehicle (V2V) communications have been considered to be a promising solution for alleviating the upcoming traffic pressure on core networks due to their short transmission distance between V2V pairs. The proper spectrum reuse with cellular users (CUEs) can significantly improve the spectrum efficiency. Meanwhile, non-orthogonal multiple access (NOMA) technology has become a research hotspot to further improve spectrum utilization.

    Some research has been developed to investigate the potential of NOMA in boosting the performance for device to device (D2D) communications, which helps to set the base for V2V communications. Yang et al.[1]summarized three forms of NOMA and merely applied NOMA to a small scale of users, whereas the application of NOMA was not expanded on large scale of vehicular communications. Shi et al.[2]designed the user matching and power control method based on the greedy algorithm to maximize the total data transmission rate of downlink NOMA-based D2D users, yet they did not take the QoS of D2D users into consideration. Zhu et al.[3]focused on the optimization problem of NOMA downlink channel power allocation resources, considering user QoS requirements, and the maximum and minimum fairness of D2D users. Additionally, some research focused on both the QoS of the communication links and the energy efficiency simultaneously[4-7]. Li et al.[4]aimed at maximizing the energy efficiency of the D2D pairs while ensuring the QoS for the lowest data rate of the CUEs. The non-convex problem was transformed into the subtraction objective function by the Dinkelbach method. Moreover, uplink communications were also investigated. Pei et al.[5]considered that both D2D users and CUEs can obtain energy from the downlink of the hybrid relay node, and the target was maximizing the energy efficiency of the terminal equipment in an uplink transmission scenario. Pan et al.[6]solved the power control and channel allocation problems of D2D users in the context of NOMA-based CUEs, and maximized the total transmission rate of D2D users while ensuring the lower limit data transmission rate of CUEs. Moreover, the reliability of the V2V links was also taken into consideration. Xu et al.[7]focused on maximizing the packet acceptance rate in NOMA-based V2V users. However, the authors neither take into account the performance gains with NOMA in resource allocation, nor take into account the interference from NOMA-based vehicular users (VUEs) on CUEs and the data transmission rate for both CUEs and V2V users. Some research was carried out to solve the vehicular communication resource allocation by D2D schemes[8-9]. Ren et al.[8]proposed a scheme applying D2D resource allocation to the V2V scenario to solve the resource allocation of the vehicular network, and three forms of signal to interference plus noise ratio (SINR) simplification were derived. Yue et al.[9]integrated D2D and visible light communication (VLC) into V2V communications and developed the distributed resource allocation algorithm to reduce the interference between cellular links and LTE-V2V links. However, the shortcoming of applying D2D to V2V scenarios is that the traditional methods of radio resource management (RRM) for D2D communications based on full channel state information (CSI) are not feasible since it is difficult to achieve channel variations in a short time scale.

    As mentioned above, most literature investigated applying NOMA to D2D communications or solving the V2V communications via D2D communications, while little literature studied the exertion of NOMA to V2V communication scenarios. V2V communication, as a promising solution to enable highly efficient and reliable vehicular communication, can be applied with NOMA to further improve the connectivity of the network and efficiency of the spectrum. Meanwhile, most of the existing literature set the hypothesis of known CSI at BS, which is impractical in vehicular communication scenarios. Therefore, we utilize the NOMA-based decentralized resource allocation method to compensate for it.

    In this paper,we investigate the resource allocation in the NOMA-based V2V users underlaid V2I highway unicast vehicular communication scenario including centralized subchannel assignment and distributed power control for V2V user pairs. We aim to maximize the sum transmission rate of V2V users while satisfying the transmission rate QoS for both CUEs and VUEs. In the subchannel assignment procedures, we use the clustering algorithm for V2V transmitters (Tx) to decrease the SINR of V2V receivers in the overlapping area of VUE Txs’ transmission range. Afterwards, the Kuhn-Munkres algorithm is applied to complete the subchannel assignment, and then the verified PSO algorithm is designed during the power control procedure.

    1 System Model

    Consider a downlink unicast NOMA-based V2V communication network, where the base station (BS) serves CUEs throughNsubchannels (SCs). As shown in Fig.1, the BS is responsible for the geographic position-based subchannel assignment. The VUE Txs will take charge of the distributed power allocation in a decentralized way. Additionally, the VUE Rxs will decode the corresponding signals from the VUE Txs following the signal interference cancellation (SIC) order.

    Fig.1 V2V highway scenario

    In Fig.1,Ris the transmission distance for the BS, and the vehicles run on the highway satisfying the Poisson process. There are CUEs, VUE Txs and their corresponding VUE receivers (Rxs) exerting NOMA to the V2V pairs.QV2V pairs are multiplexed in the NOMA manner by splitting them in the power domain. Meanwhile, there areP(P≤N) underlaid CUEs. DenoteQ={1,2,…,Q} andN={1,2,…,N} as the sets of VUEs and subchannels, respectively.

    In dynamic scheduling, resource allocation for every transmission in each time slot needs the real-time CSI, which is impractical due to the fact that channels vary rapidly. However, semi-persistent scheduling (SPS) can compensate for the drawback by allocating the predefined resources to those users asking for transmission during every SPS period. Here, we set one SPS period in a one-time slot as one resource block (RB). Also, we apply SPS to our proposed resource allocation for the NOMA-based vehicular communication model.

    The BS allocates spectrum resources to the VUE user pair at the beginning of the SPS period, in which the BS implements interference suppression on the frequency resource allocation according to the location information of all the vehicles. Unlike traditional orthogonal multiple access (OMA), co-channel interference needs to be considered here.

    For VUE Rxi, its SINR is

    (1)

    (2)

    (3)

    For CUEp, its SINR is

    (4)

    Taking the downlink transmission rate QoS for VUE Rxs and CUEs into consideration, we have

    (5)

    (6)

    In this paper, we aim to maximize the throughput of all the V2V user pairs in one SPS period, subject to the SINR constraints and the maximum transmission power constraints for both CUEs and VUEs, as well as the V2V user pairs’ interference constraints with respect to the SIC order. Generally, our optimization problem can be expressed as

    (7)

    (8)

    (9)

    (10)

    (11)

    It is apparent that the optimization problem is non-convex because of the binary variable. Therefore, we decompose the optimization problem into two steps, including the subchannel assignment based on the V2V user pairs’ global position centralized in the BS and the dynamic distributed power control by VUE Txs.

    2 Resource Allocation for the Vehicular System

    In this section, the clustering method for V2V Txs is introduced, then the subchannel assignment via the Kuhn-Munkres algorithm is achieved, and the power control for each V2V Tx is calculated through the verified PSO. Finally, we analyze the complexity and the performance of the proposed algorithms.

    2.1 Subchannel assignment

    In the subchannel assignment, vehicles which keep a distance away are chosen to reuse RB in the NOMA method, which lowers the chance for the VUE Rxs to be in the overlapping area of the VUE Txs’ transmission range so that the SINR of the VUE Rxs in these areas will be influenced. Through the givenτ, which is the distance threshold between different clusters, the VUE Tx can be clustered into several different clusters. In one certain VUE Tx cluster, the inter-distance of any VUE Txs is above the distance thresholdτ. Each of the VUE Tx clusters reuses one subchannel with CUEs. The distance criterion can be depicted as follows:

    (12)

    (13)

    dij≥τ

    (14)

    wheredijis the distance between VUE Txsiandj;dkiis the distance between VUE Txskandi; andGtris the set storing all the VUE Txs in the covering area of one BS. We introduceλas the maximum VUE Tx cluster scale. Formula (12) is introduced to choose the VUE Tx near the cluster which has not reached the maximum scaleλ. Formula (14) is the inter-distance condition in terms of the VUE Txs in the same cluster.

    Repeat the search until no vehicles in the same group satisfy formulae (12), (13) and (14). Then, start grouping another group, considering the constraint that each group reuses at most one subchannel with CUEs. For fear of the excess in the number of RBs, lower the thresholdτif necessary to broaden the scale of groups as compensation.

    Algorithm1VUE Tx clustering

    Input: Set of all VUE Tx-Gtrand temporaryVset to NULL, i.e., temp_Vset=?, initialize group indext=1, max|gt|=λ.

    Output: Groupgtin which vehicles use the same RB.

    Initialization:t=1,Gtr={all VUE Tx indice},

    temp_Vset=?

    do

    Choose edge VUE Txedge→gt,Gtr{VUE Txedge}

    do

    for each VUE Tx∈Gtr

    if VUE Tx satisfies (14)

    VUE Tx→temp_Vset

    end if

    end for

    for each VUE Tx∈temp_Vset

    if VUE Tx satisfies (12)

    VUE Tx→gt

    VUE TxGtr

    end if

    end for

    while |gt|<λandGtr≠?

    t=t+1

    temp_Vset=?

    whileGtr≠?

    Vehicles keep transmitting on the allocated RB until any of them changes motion states, for instance, acceleration, speed, and directions etc. Once these factors change, vehicles leave the previous groups and utilize Algorithm 1 to reallocate the RB to them, and this process is done in the BS.

    Differently from Xu et al.[7], after grouping, to allocate the frequency resources appropriately, the subchannel allocation algorithm needs to be formulated. Here, we use the Kuhn-Munkres algorithm to solve it, as described in Algorithm 2.

    Algorithm2Subchannel assignment

    Input:Clustering result, CUEs’ global position, temp_dist=?.

    Output:Subchannel reuse pattern.

    Ift+P≤N

    num(subchannel occupied)=t+P

    else

    for each VUE Txi∈gt

    end for

    dist(CUEp,gt)=minitemp_dist

    Select top(t+P-N) clustersgtin

    dist(CUEp,gt)

    Use the Kuhn-Munkres algorithm to find the reuse pattern

    end if

    2.2 Distributed power control

    In highway scenario, it is difficult for BS to obtain real-time CSI, therefore, distributed power control coupled with Tx-Rx selection can compensate for that. VUE Txs autonomously control their own transmission power to achieve overall improvement of transmission rate.

    Note that we have downlink transmission rate QoS for both VUE Rxs and CUEs in formulae (5) and (6). The transmission rate for VUE Rxiand CUEpcan be expressed as

    (15)

    (16)

    whereE[·] is the mathematical expectation.

    From formulae (4) and (6), we can infer that if the sum transmission rate for all VUE Rxs needs maximizing, then formula (6) can actually be an equation, since the higher transmission rate needs a higher VUE Txs transmission power, which leads to a higher interference for CUEs sharing the same SC. Therefore,

    (17)

    According to formula (4), we can infer that

    (18)

    Here, we adopt the verified PSO algorithm to perform the calculation of power allocation and compute the sum transmission rate of all VUEs. However, differently from the PSO, we ponder the necessity of taking a time-varying summation of all VUEs’ transmission rate instead of fixed function. The whole algorithm can be expressed in Algorithm 3.

    Algorithm3Distributed power control

    Input:Initializing the particle positions with a uniformly random vector; candidate particle set Cand_set=?; evolution velocityv; swarm scaleΨ; and the number of iterationΩ.

    Output: The best particle and the corresponding sum transmission rate of all VUEs.

    For each initialized particlezwithin the swarm scale

    ifzsatisfies (5),(6),and (18)

    Cand_set=Cand_set∪{z}

    Calculatez’s sum transmission rate

    end if

    end for

    Store best particle so far.

    Store the best particles’ best known so far.

    for each evolution time in iteration omega

    Update particles withvin Cand_set.

    for each particle in Cand_set

    ifz′ disagrees with (5), (6), and (18)

    Cand_set{z′}

    else

    Calculate sum transmission rate forz′.

    end if

    end for

    Store best particle individually so far.

    Store the particles’ best known so far.

    end for

    We first derive the initialized particles satisfying uniform distribution based on constraints (5), (6) and (18). We filter the eliminated particles and store the candidate particles and compute their corresponding sum rate based on the NOMA method. After the above processes, the best position of particles and the best known positions of the particles are stored. Then, the candidate particles are updated with a proper updating speed and number of iterations. Finally, the best particle is given as the optimal power control.

    2.3 Complexity analysis

    3 Simulation Results

    In this section, the proposed mechanism under the highway scenario defined by IEEE[10]is evaluated. We follow the simulation setup for the freeway case detailed in Ref.[11] and model a multi-lane freeway that passes through a single cell, where the BS is located at its center, as demonstrated in Fig.1. The vehicles pass on the highway in accordance with Poisson process and the vehicle density is determined by the factor of the velocity.PCUEs andQVUEs are randomly distributed on the highway, where V2V pairs are always formed between neighboring vehicles and CUEs are assumed to have equal shares of the total subchannels. The major parameters of simulation are listed in Tab.1, and the channel model is described in Tab.2.

    Tab.1 Parameters of simulation[12]

    Tab.2 Channel model for V2I and V2V links[12]

    D2D-enabled vehicular communication[12]is introduced as a comparison with the scheme we proposed. D2D-enabled vehicular resource allocation was maximizing the sum transmission rate for all CUEs while guaranteeing the QoS for each CUE. Each CUE can share the subchannel with at most one D2D pair. In this way, the connectivity capacity is restrained and the frequency efficiency is limited as well, meanwhile, it has to calculate the reuse pattern every time slot. However, our proposed NOMA-based resource allocation can compensate for these drawbacks and does not have to calculate the reuse pattern unless VUEs in the group change their states.

    Fig.2 presents the relationship between the velocity of VUEs and the sum throughput of all V2V user pairs with the comparisons of our proposed algorithm and the D2D-based V2V algorithm. The horizontal axis describes the VUEs’ velocity ranging from 60 to 140 km/h, while the vertical axis shows the sum transmission rate for all the V2V user pairs.

    Fig.2 Sum throughput of V2V user pairs

    Our proposed NOMA-V2V resource allocation outperforms D2D-based vehicular communication. It is apparent that with the increase in the speed of vehicles, the inter-vehicle distance becomes larger; therefore, the overall SINR becomes larger due to the overlapping area of VUE Txs in the same group becoming smaller. However, the growing speed slows down a little if the distance is safe enough, and the improvement of SINR becomes less. However, for the D2D-based resource allocation, the VUEs in the same group will suffer interference from each other, thus the overall rate decreases greatly.

    Fig.3 illustrates the relationship between the velocity of VUEs and the sum throughput of all V2V user pairs with the influence of various values ofτ. The horizontal axis describes the VUEs’ velocity ranging from 60 to 140 km/h, while the vertical axis shows the sum transmission rate for all the V2V user pairs.

    Fig.3 Sum throughput of V2V user pairs

    As shown in Fig.3, with the increase inτ, the sum rate for all VUEs is improved accordingly, since the growing threshold distance can lower the chance when VUE Rx locates in the overlapping region of VUE Txs sharing the same subchannel. However, whenτbecomes sufficiently large, improvement becomes less apparent. As the speed goes up, CUEs’ channel becomes worse, and CUEs need more transmission power to satisfyγ2. Consequently, the gap between the lines becomes narrower.

    4 Conclusion

    In this paper, a V2V resource allocation mechanism in a NOMA manner is proposed with the target of maximizing the sum transmission rate of all VUEs while guaranteeing the QoS of the transmission rate for both VUEs and CUEs. The resource allocation only occurs when vehicles change their moving status. A clustering algorithm is designed and the Kuhn Munkres algorithm is adopted to solve the subchannel assignment, then a verified PSO algorithm is designed to achieve the distributed power control. Simulation results show that the proposed scheme outperforms the D2D-based V2V resource allocation in broadening the connectivity ability of the vehicular network. The sum transmission rate for V2V pairs is improved via NOMA, and the spectrum efficiency is enhanced.

    露出奶头的视频| 桃色一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 国产精品一区二区精品视频观看| 99国产极品粉嫩在线观看| 1024香蕉在线观看| 欧美zozozo另类| x7x7x7水蜜桃| 国产成人精品久久二区二区免费| 18禁观看日本| 女生性感内裤真人,穿戴方法视频| 一本久久中文字幕| 国产精品 欧美亚洲| 国内精品久久久久精免费| 中文字幕高清在线视频| 超碰成人久久| 亚洲va日本ⅴa欧美va伊人久久| 在线国产一区二区在线| 欧美一级a爱片免费观看看 | 精品不卡国产一区二区三区| 男男h啪啪无遮挡| 国产久久久一区二区三区| 国产成人影院久久av| 欧美黑人巨大hd| 啦啦啦免费观看视频1| 天天躁夜夜躁狠狠躁躁| 成年版毛片免费区| 亚洲第一电影网av| 国产97色在线日韩免费| 亚洲欧美一区二区三区黑人| 午夜免费成人在线视频| 亚洲成人免费电影在线观看| 欧美乱码精品一区二区三区| 九色国产91popny在线| 在线看三级毛片| 亚洲七黄色美女视频| 美女黄网站色视频| 少妇被粗大的猛进出69影院| 999久久久精品免费观看国产| 亚洲精品在线观看二区| 久久久久久久久久黄片| 成人午夜高清在线视频| 国产真实乱freesex| 可以免费在线观看a视频的电影网站| 午夜福利成人在线免费观看| 亚洲国产中文字幕在线视频| 白带黄色成豆腐渣| 波多野结衣高清无吗| 哪里可以看免费的av片| 久久久久久久精品吃奶| 久99久视频精品免费| 老司机福利观看| 欧美性长视频在线观看| 91字幕亚洲| 亚洲精品一区av在线观看| 色综合站精品国产| 在线观看午夜福利视频| 日本一本二区三区精品| 搞女人的毛片| 国产高清视频在线播放一区| 欧美性猛交黑人性爽| 99riav亚洲国产免费| 好男人在线观看高清免费视频| 亚洲第一电影网av| 中文字幕高清在线视频| 老司机靠b影院| 一进一出好大好爽视频| 国产高清有码在线观看视频 | www.999成人在线观看| 熟女少妇亚洲综合色aaa.| 欧美在线黄色| 国产一区二区三区视频了| 国产精品一及| 他把我摸到了高潮在线观看| 亚洲欧美日韩无卡精品| 国产黄片美女视频| 国产精品99久久99久久久不卡| 999精品在线视频| 午夜福利高清视频| av中文乱码字幕在线| 999久久久国产精品视频| 色噜噜av男人的天堂激情| 国产精品综合久久久久久久免费| 黄色 视频免费看| 亚洲人成网站在线播放欧美日韩| 久久久久久人人人人人| 午夜影院日韩av| 少妇被粗大的猛进出69影院| 精品乱码久久久久久99久播| 国产又色又爽无遮挡免费看| 五月伊人婷婷丁香| 精品国产美女av久久久久小说| 亚洲 国产 在线| 欧美+亚洲+日韩+国产| 男女那种视频在线观看| 婷婷丁香在线五月| www.精华液| 成人三级做爰电影| 欧美大码av| 国产精品亚洲av一区麻豆| 97超级碰碰碰精品色视频在线观看| 最近最新免费中文字幕在线| 51午夜福利影视在线观看| 国产伦人伦偷精品视频| 十八禁网站免费在线| 国产精品久久久久久精品电影| 亚洲熟女毛片儿| 国产伦在线观看视频一区| 最新美女视频免费是黄的| 欧美色欧美亚洲另类二区| 中文字幕精品亚洲无线码一区| 18禁裸乳无遮挡免费网站照片| 久久精品91无色码中文字幕| 五月玫瑰六月丁香| 男人舔女人的私密视频| 国产亚洲精品一区二区www| 桃色一区二区三区在线观看| 两个人视频免费观看高清| 亚洲精品美女久久av网站| 男女午夜视频在线观看| 97碰自拍视频| 老司机靠b影院| 午夜视频精品福利| 91九色精品人成在线观看| 最新美女视频免费是黄的| 久久草成人影院| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区高清亚洲精品| 午夜精品久久久久久毛片777| 亚洲精华国产精华精| 19禁男女啪啪无遮挡网站| 亚洲精品国产精品久久久不卡| av中文乱码字幕在线| 亚洲美女黄片视频| or卡值多少钱| 欧美日韩亚洲综合一区二区三区_| 琪琪午夜伦伦电影理论片6080| videosex国产| 国产三级黄色录像| 叶爱在线成人免费视频播放| 免费搜索国产男女视频| 国产69精品久久久久777片 | 久久午夜亚洲精品久久| 青草久久国产| 久9热在线精品视频| 国产成人aa在线观看| 最近在线观看免费完整版| 啪啪无遮挡十八禁网站| 国内毛片毛片毛片毛片毛片| 日韩大码丰满熟妇| 国模一区二区三区四区视频 | 女生性感内裤真人,穿戴方法视频| www.999成人在线观看| 变态另类丝袜制服| 国产精品,欧美在线| 亚洲精品色激情综合| 88av欧美| 日韩av在线大香蕉| 97超级碰碰碰精品色视频在线观看| 啦啦啦观看免费观看视频高清| 在线观看66精品国产| 亚洲国产精品999在线| 岛国视频午夜一区免费看| 大型av网站在线播放| 欧美大码av| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影| www国产在线视频色| 99热这里只有是精品50| 少妇人妻一区二区三区视频| 久久性视频一级片| 91大片在线观看| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣高清无吗| 午夜影院日韩av| 一级片免费观看大全| 国产成人av教育| 丁香六月欧美| 久久久久亚洲av毛片大全| 成人午夜高清在线视频| www.精华液| ponron亚洲| 亚洲国产欧美人成| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 国产成人系列免费观看| av在线天堂中文字幕| 国产高清videossex| 国产乱人伦免费视频| 五月伊人婷婷丁香| cao死你这个sao货| 精品久久蜜臀av无| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 欧美成狂野欧美在线观看| 又粗又爽又猛毛片免费看| 他把我摸到了高潮在线观看| 午夜老司机福利片| 人人妻人人看人人澡| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 国产真实乱freesex| 中文在线观看免费www的网站 | 性色av乱码一区二区三区2| 久久久精品国产亚洲av高清涩受| 欧美最黄视频在线播放免费| 又粗又爽又猛毛片免费看| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 超碰成人久久| 一区福利在线观看| 亚洲九九香蕉| 伦理电影免费视频| 一区二区三区激情视频| 一个人免费在线观看电影 | 亚洲国产看品久久| 日韩精品中文字幕看吧| 精品日产1卡2卡| 中文字幕最新亚洲高清| 欧美性长视频在线观看| 欧美不卡视频在线免费观看 | 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕在线视频| 精品久久久久久,| 99国产极品粉嫩在线观看| 99re在线观看精品视频| 日韩欧美一区二区三区在线观看| 国产一区二区激情短视频| av国产免费在线观看| 99re在线观看精品视频| 深夜精品福利| 欧美黑人欧美精品刺激| 88av欧美| 亚洲精品久久成人aⅴ小说| 巨乳人妻的诱惑在线观看| 国产欧美日韩精品亚洲av| 国产一区二区三区在线臀色熟女| 日本 欧美在线| 欧美日韩乱码在线| 午夜免费观看网址| 亚洲精品美女久久av网站| 精品久久久久久久毛片微露脸| а√天堂www在线а√下载| 黄片大片在线免费观看| 在线观看免费午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 日本一本二区三区精品| 国内精品一区二区在线观看| 国产亚洲精品第一综合不卡| 日韩精品免费视频一区二区三区| 一区二区三区高清视频在线| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久电影 | 欧美精品亚洲一区二区| 18禁观看日本| 国产又色又爽无遮挡免费看| www.999成人在线观看| 18禁美女被吸乳视频| 一个人观看的视频www高清免费观看 | xxxwww97欧美| 校园春色视频在线观看| 精品第一国产精品| 好看av亚洲va欧美ⅴa在| 激情在线观看视频在线高清| 大型黄色视频在线免费观看| 99re在线观看精品视频| 天天添夜夜摸| 人成视频在线观看免费观看| 午夜老司机福利片| 人妻久久中文字幕网| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 国产一区在线观看成人免费| 亚洲无线在线观看| 这个男人来自地球电影免费观看| tocl精华| 久久精品91无色码中文字幕| 亚洲欧美精品综合久久99| 亚洲av成人精品一区久久| 怎么达到女性高潮| 老司机在亚洲福利影院| 我的老师免费观看完整版| 一级a爱片免费观看的视频| 黄色视频不卡| 一边摸一边抽搐一进一小说| www.www免费av| 色av中文字幕| 窝窝影院91人妻| 久久国产精品影院| 日韩成人在线观看一区二区三区| 亚洲男人天堂网一区| 免费在线观看黄色视频的| 级片在线观看| 亚洲自偷自拍图片 自拍| 亚洲国产高清在线一区二区三| 欧美av亚洲av综合av国产av| 一个人免费在线观看电影 | 欧美性猛交╳xxx乱大交人| 香蕉国产在线看| 真人做人爱边吃奶动态| 欧美不卡视频在线免费观看 | 亚洲成人国产一区在线观看| 精品久久久久久久毛片微露脸| 久久性视频一级片| 亚洲免费av在线视频| www国产在线视频色| 国产激情欧美一区二区| 在线国产一区二区在线| 人人妻人人澡欧美一区二区| 免费电影在线观看免费观看| 叶爱在线成人免费视频播放| 国产精品永久免费网站| 午夜日韩欧美国产| 三级男女做爰猛烈吃奶摸视频| 人人妻,人人澡人人爽秒播| 88av欧美| 成人手机av| 亚洲国产日韩欧美精品在线观看 | 亚洲成人国产一区在线观看| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 亚洲国产精品久久男人天堂| 高潮久久久久久久久久久不卡| 97碰自拍视频| 国产精品爽爽va在线观看网站| 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 少妇被粗大的猛进出69影院| 亚洲一码二码三码区别大吗| 午夜激情福利司机影院| 九色国产91popny在线| 伊人久久大香线蕉亚洲五| 久久久国产欧美日韩av| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 成人永久免费在线观看视频| 神马国产精品三级电影在线观看 | 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 波多野结衣高清无吗| 亚洲精品色激情综合| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 欧美 亚洲 国产 日韩一| 国产一级毛片七仙女欲春2| 国产精品免费一区二区三区在线| 午夜亚洲福利在线播放| 老司机午夜十八禁免费视频| 国产人伦9x9x在线观看| 免费无遮挡裸体视频| 国产又色又爽无遮挡免费看| 五月玫瑰六月丁香| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 少妇裸体淫交视频免费看高清 | 国产精品一区二区三区四区久久| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 男男h啪啪无遮挡| 欧美性长视频在线观看| 国产男靠女视频免费网站| 国产一区二区在线观看日韩 | 999久久久精品免费观看国产| 国产野战对白在线观看| 亚洲精品国产精品久久久不卡| 国产精品,欧美在线| 午夜免费观看网址| 桃红色精品国产亚洲av| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| 成年免费大片在线观看| 免费在线观看日本一区| 身体一侧抽搐| 一级a爱片免费观看的视频| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看 | 国产视频一区二区在线看| 亚洲欧美日韩无卡精品| 亚洲精品美女久久av网站| 人成视频在线观看免费观看| 国产av麻豆久久久久久久| 黄色 视频免费看| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 欧美大码av| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 亚洲人成77777在线视频| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片 | 男女视频在线观看网站免费 | 亚洲国产中文字幕在线视频| 亚洲精品中文字幕一二三四区| 久久精品91无色码中文字幕| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 亚洲成人中文字幕在线播放| 高清毛片免费观看视频网站| 97超级碰碰碰精品色视频在线观看| 一级毛片高清免费大全| 日韩精品青青久久久久久| 一级片免费观看大全| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级| 午夜两性在线视频| 亚洲av熟女| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级| 婷婷精品国产亚洲av在线| 99在线人妻在线中文字幕| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产成人免费| 中文字幕熟女人妻在线| 香蕉国产在线看| 蜜桃久久精品国产亚洲av| 国产伦在线观看视频一区| 日韩免费av在线播放| 最好的美女福利视频网| 草草在线视频免费看| а√天堂www在线а√下载| 一级作爱视频免费观看| 观看免费一级毛片| 免费一级毛片在线播放高清视频| 成人国产一区最新在线观看| 91国产中文字幕| 精品福利观看| 丝袜美腿诱惑在线| 首页视频小说图片口味搜索| 久久精品91蜜桃| 一个人免费在线观看的高清视频| aaaaa片日本免费| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 亚洲av成人精品一区久久| 熟女电影av网| 在线观看一区二区三区| 精品一区二区三区四区五区乱码| 手机成人av网站| 久久久久久大精品| 久久久久久久久免费视频了| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 热99re8久久精品国产| 精品国产亚洲在线| 久久亚洲真实| 国产精品国产高清国产av| 中国美女看黄片| 婷婷亚洲欧美| 宅男免费午夜| 欧美人与性动交α欧美精品济南到| 怎么达到女性高潮| 成人国产一区最新在线观看| 最近视频中文字幕2019在线8| 性欧美人与动物交配| 超碰成人久久| 中文字幕人成人乱码亚洲影| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 久热爱精品视频在线9| 国产又色又爽无遮挡免费看| 久久久久国内视频| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡| 国产精品免费一区二区三区在线| 两性夫妻黄色片| 午夜精品一区二区三区免费看| 最近最新中文字幕大全电影3| 精品不卡国产一区二区三区| av国产免费在线观看| 亚洲精华国产精华精| 午夜久久久久精精品| 熟女电影av网| 日韩欧美一区二区三区在线观看| 黄色视频不卡| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 丝袜人妻中文字幕| xxx96com| 视频区欧美日本亚洲| 一本精品99久久精品77| 亚洲自拍偷在线| 女警被强在线播放| 国产亚洲精品久久久久久毛片| 久久久久久国产a免费观看| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 在线免费观看的www视频| 9191精品国产免费久久| 国产成人精品无人区| 国产一区二区三区视频了| 最新在线观看一区二区三区| 亚洲成人国产一区在线观看| 亚洲国产日韩欧美精品在线观看 | 久久国产乱子伦精品免费另类| 级片在线观看| 天天添夜夜摸| 一边摸一边做爽爽视频免费| 国产日本99.免费观看| 国产蜜桃级精品一区二区三区| 两性夫妻黄色片| 午夜福利18| 级片在线观看| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟妇熟女久久| 一级毛片女人18水好多| 国产高清有码在线观看视频 | 精品久久久久久,| 亚洲av第一区精品v没综合| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 久99久视频精品免费| 巨乳人妻的诱惑在线观看| 99热这里只有精品一区 | 亚洲成人久久性| 老鸭窝网址在线观看| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 亚洲午夜精品一区,二区,三区| 久久香蕉激情| 亚洲 欧美 日韩 在线 免费| 一本久久中文字幕| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸| 女人被狂操c到高潮| 日本精品一区二区三区蜜桃| 一本精品99久久精品77| 精品国产乱码久久久久久男人| 国产探花在线观看一区二区| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 亚洲九九香蕉| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 国产熟女xx| 日本精品一区二区三区蜜桃| 欧美另类亚洲清纯唯美| 三级毛片av免费| 夜夜躁狠狠躁天天躁| 成人高潮视频无遮挡免费网站| 日韩三级视频一区二区三区| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全免费视频| 久久香蕉激情| 久久久久久久久中文| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久久毛片| 国产三级中文精品| 1024视频免费在线观看| 人妻丰满熟妇av一区二区三区| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 全区人妻精品视频| 国产亚洲精品久久久久5区| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 很黄的视频免费| 亚洲中文字幕日韩| 国产精品av久久久久免费| 中文字幕久久专区| 亚洲精品久久成人aⅴ小说| 麻豆成人午夜福利视频| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| www.精华液| 午夜福利在线在线| 桃红色精品国产亚洲av| 亚洲欧美日韩东京热| 久久亚洲真实| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 好男人电影高清在线观看| 国产成人aa在线观看| 午夜福利在线在线| 国产av又大| 婷婷六月久久综合丁香| 国产av一区在线观看免费| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 草草在线视频免费看| 国产aⅴ精品一区二区三区波| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| av视频在线观看入口| 色老头精品视频在线观看| 青草久久国产| ponron亚洲| aaaaa片日本免费| 国产av不卡久久| 亚洲国产日韩欧美精品在线观看 | 欧美中文综合在线视频| 一区福利在线观看| 日本一本二区三区精品|