• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the alloying effect on deformation behavior in Mg by Visco-Plastic Self-Consistent modeling

    2020-04-29 07:28:12AlirezMldrLeyunWngGomingZhuXioqinZeng
    Journal of Magnesium and Alloys 2020年1期

    Alirez Mldr, Leyun Wng,?, Goming Zhu, Xioqin Zeng,b,?

    aNational Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    b The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

    Abstract Alloying elements can drastically alter the deformation behavior of Mg. In the present work, Visco-Plastic Self-Consistent (VPSC)modeling was employed to investigate the effect of alloying elements on Mg’s tensile behavior, in particular the relative activity of different slip and twinning modes. Mg-0.47wt.% Ca, Mg-2wt.% Nd, and AZ31 extruded alloys were deformed by micro-tensile tests in a scanning electron microscope (SEM). Texture and grain size measured by electron backscatter diffraction (EBSD) were used as the input for VPSC.After parameter optimization, the VPSC model successfully reproduced the stress-strain curve of each alloy. Simulation results indicate that the slip/twinning activity in the three alloys are different. Mg-0.47wt.% Ca shows strong extrusion texture, and prismatic slip was quite active during its tensile deformation. In contrast, Mg-2wt.% Nd shows weak extrusion texture, and basal slip was dominant. This alloy also developed more twinning activity than the other two alloys. AZ31 shows strong extrusion texture similar as Mg-0.47wt.% Ca, but prismatic slip was less active in it. The slip/twinning activity revealed by the VPSC model can explain the difference in the tensile behavior of the three alloys.

    Keywords: Mg alloys; Crystal plasticity; Slip; EBSD; Tensile test.

    1. Introduction

    Mg and its alloys are characterized by high specific strength, good castability, and recyclability, making them promising structural material in a wide range of industries[1–3]. Yet, the formability of Mg still needs improvement.Theoretically, Mg can deform by basal slip, prismatic slip,pyramidal 〈a〉slip, and pyramidal 〈c+a〉slip. However, because the critical resolved shear stress (CRSS) of non-basal slips are much higher than that of basal slip, it is difficult to activate non-basal slips at room temperature, which limits Mg’s ductility [4].

    Adding rare earth alloying elements can significantly enhance the ductility of Mg[5–7].Nd is frequently used for this purpose. While the ductility improvement has been traditionally attributed to the grain refinement and texture weakening effect by Nd [8–10], some studies also pointed out that Nd may promote non-basal slip in Mg [11,12]. Yet, the latter effect has not been quantitatively evaluated so far.

    The high price of rare earth elements is a realistic obstacle for their usage. In recent years, Ca has received close attention as an alternative alloying element to improve Mg’s ductility [13–18]. Sandl?bes et al. [17] fabricated a Mg-1Al-0.1Ca (wt.%) alloy with ~20% tensile elongation, and they attributed this phenomenon to the activation of 〈c+a〉slip by Ca solutes. Zhu et al. [18] conducted in situ tensile test for a Mg-0.47wt.% Ca specimen and studied the slip activity in hundreds of grains via slip trace analysis in a scanning electron microscope(SEM).While the majority of grains developed basal slip lines, prismatic and pyramidal 〈a〉slip lines were frequently identified in late deformation.The above two experimental works suggested that Ca is able to promote non-basal slip in Mg.

    Fig. 1. Inverse pole figure maps and pole figures of the extruded (a) Mg-0.47wt.% Ca, (b) Mg-2wt.% Nd, and (c) AZ31 alloys. In each specimen, the tensile direction was parallel to the extrusion direction (ED).

    Fig. 2. Experimental stress-strain curves of the three alloys.

    Table 1 Mechanical properties of the three alloys.

    While SEM-based slip trace analysis [19–21] allows us to statistically study the activity of each slip mode, this method only examines slip activity in surface grains, which may not fully represent the bulk material behavior. Crystal plasticity simulation under the Visco-Plastic Self-Consistent (VPSC)framework can complement our understanding of the deformation details in bulk materials [22,23]. VPSC has been successfully applied to simulate the deformation behavior of various Mg alloys [24–26].

    In the present work, VPSC is employed to simulate the tensile deformation of Mg–Ca,Mg–Nd,and AZ31 alloys.The goal is to understand how Ca and Nd affect the slip activity in Mg, which will provide a useful guideline for future alloy design.

    2. Experimental and modeling procedures

    2.1. Material and tensile test

    Three different Mg alloys, Mg-0.47wt.% Ca, Mg-2wt.%Nd, and AZ31 were casted, homogenized, and hot extruded.In order to obtain similar grain sizes, the three alloys were extruded at 350 °C, 500 °C, and 350 °C, respectively, followed by annealing at 500 °C for 1h. The reduction ratio during extrusion was 18:1. Tensile specimens were fabricated from the as-extruded material by electron discharge machining into a flat dog-bone shape. The gage of each specimen is 11.0mm(L)×4.0mm(W)×1.4mm(T).The tensile direction is parallel to the extrusion direction. The top surface of each specimen was mechanically ground and electro-polished in an ethanol–10% perchloric acid electrolyte at 30V and ?30°C for 150s for EBSD characterization.

    Tensile tests were carried out by a MICROTEST 200N(Deben, UK) module placed in a Zeiss Gemini SEM with an EBSD system (Oxford Instrument, UK). Prior to the loading,an EBSD scan was conducted to record the initial microstructure of each alloy. The EBSD data was analyzed by OIMTMsoftware (EDAX Inc., USA). After that, tensile test was conducted at a constant crosshead speed of 0.1mm/min?1, which is equivalent to a nominal strain rate of 1.5×10?4/s.Each test was paused at 2% strain to capture texture evolution, then the test resumed until the specimen’s failure.

    Table 2 Material parameters used in VPSC for the three alloys.

    Fig. 3. IPF maps of the three specimens after 2% strain: (a) Mg-0.47wt.% Ca, (b) Mg-2wt.% Nd, and (c) AZ31.

    2.2. VPSC modeling

    VPSC was employed to simulate the tensile behavior of the three specimens. The VPSC framework was first developed by Lebensohn and Tomé [22,23,27,28], who used the self-consistent approach to describe the interaction between each grain and its local environment. In this framework, each grain is treated as an elastoplastic inclusion embedded within a Homogeneous Equivalent Medium (HEM). The grain has a specific orientation and volume fraction. More details about the VPSC homogenization scheme can be found in [29].

    Deformation and texture evolution in each grain depends on the shear rates on all slip and twinning systems. The shear rate on a deformation system is determined by a rate sensitive criterion [29]:

    An extended Voce law describes the hardening behavior of each slip or twinning system. The shear resistance on system s after strainis given by [29]:

    To address twin reorientation, the VPSC model adopts the Predominant Twin Reorientation (PTR) scheme [27]. PTR assumes that twinning is activated in a similar way as slip, but only along one direction. The code randomly picks a grain in each solving step to assess if the accumulated twin volume exceeds a threshold value. If so, the grain is reoriented to the twin orientation, and the volume of the reoriented grain is added to the “effective twinned volume”.

    Fig. 4. Simulated stress-strain curves and relative activity of different deformation modes for (a) Mg-0.47wt.% Ca, (b) Mg-2wt.% Nd, and (c) AZ31.

    Fig. 5. Measured and simulated pole figures after 2% strain for (a) Mg-0.47wt.% Ca, (b) Mg-2wt.% Nd, and (c) AZ31.

    Fig. 6. Simulated twin volume fraction evolution as a function of strain for the three alloys. The measured values at 2% strain are also shown for comparison.

    In this study, five deformation systems — basal, prismatic,pyramidal 〈a〉, pyramidal I 〈c+a〉and {10ˉ12}〈ˉ1011〉twinning— were taken into consideration. The VPSC model has the boundary condition of uni-axial tension along the load direction. Affine linearization scheme was selected to compute the relationship between the stress and average strain-rate in each grain. In addition, the model includes the Hall-Petch relationship that is available in the latest VPSC code. For each slip/twinning system, the Hall-Petch coefficient (k) follows the value in [30]. The texture of each specimen was calculated using the MTEX Matlab code based on the EBSD data,which serves as the input for VPSC [31].

    3. Results

    3.1. Experimental results

    The initial microstructures of three different alloys are shown in Fig. 1 as inverse pole figure (IPF) maps and pole figures (PF). In all three alloys, the microstructure consisted of equiaxed, twin-free grains. The average grain diameter is about 35μm for Mg–Ca, and about 45μm for Mg–Nd and AZ31. Mg–Ca and AZ31 alloys exhibit typical extrusion texture, in which basal poles are nearly perpendicular to the extrusion direction. The Mg–Nd alloy shows more random distribution of the basal poles. This observation agrees with the literature [8,9] in that Nd can effectively randomize the wrought texture of Mg alloys.

    The experimental stress-strain curves of the three alloys from the micro-tensile tests are illustrated in Fig. 2. Mechanical properties obtained from these stress-strain curves are summarized in Table 1. Tensile curves of Mg–Ca and Mg–Nd are similar, with Mg–Nd having slightly lower yield strength but higher elongation than Mg–Ca. In contrast, the tensile curve of AZ31 is significantly different:it shows much higher yield strength but much lower elongation.

    IPF maps of the three specimens after 2% tensile strain were measured by EBSD again and shown in Fig. 3. Twin volume fraction in the Mg–Nd specimen with weak texture is apparently higher than the other two specimens with stronger texture.

    3.2. Modeling results

    The material parameters used in VPSC for the three alloys are shown in Table 2, including τ0, τ1, θ0, θ1, and k (Hall-Petch coefficient). The simulated stress-strain curves using these parameters closely match the experimental stressstrain curves, as illustrated in Fig. 4. It should be noted that the VPSC model does not consider elastic deformation, so the elastic strain was separately computed using the elastic modulus of Mg (45GPa).

    Deformation often leads to texture changes. The experimentally measured and VPSC predicted textures after 2% deformation are compared to each other in Fig. 5 for the three alloys. For all three alloys, the pole figures from simulation generally match the experimental results.

    Fig. 6 displays the simulated twin volume fraction evolution as a function of strain. The twin volume fraction at 2%strain is compared with the EBSD measurement. For Mg–Nd,the predicted twin volume fraction nearly equals the measured value (~5%). For Mg–Ca and AZ31, the model underestimated the twin volume fraction. In VPSC, the criterion for twin nucleation is similar as the activation of dislocation slip: when the resolved shear stress on the twinning system exceeds a threshold value, the twin will nucleate. However,this criterion neglects the effect of local stress concentration and/or strain transfer across grain boundaries that can lead to twin nucleation even when the parent grain has an unfavorable orientation [32,33]. Mg–Ca and AZ31 have typical extrusion texture that is unfavorable for twinning; the observed twins were likely caused by stress concentration and strain transfer.This is probably why the VPSC model underestimated the twin volume fraction in these two alloys.

    4. Discussion

    The tensile stress-strain curves of Mg–Ca and Mg–Nd are nearly identical, despite the fact that they exhibit very different initial textures. AZ31, on the other hand, shows much higher yield strength but much lower elongation. This can be understood from the relative activity of different deformation modes in Fig 4. According to the VPSC simulation result, in Mg–Ca, prismatic slip was quite active during its deformation (Fig 4(a)). After 5% strain, pyramidal 〈a〉slip increased rapidly.Therefore,the high ductility in Mg–Ca is attributed to the active non-basal 〈a〉slip. Tensile twinning and pyramidal〈c+a〉made little contribution for the plastic deformation.These findings from VPSC are consistent with experimental observations of surface slip traces in this alloy [18]. In Mg–Nd, because of the weak texture, basal slip was the dominate slip mode and twinning was also active (Fig 4(b)). The high ductility in Mg–Nd is mainly attributed to the texture effect.In AZ31, neither basal slip nor non-basal 〈a〉slip could be easily activated. Pyramidal 〈c+a〉slip was notably active.The high strain hardening in AZ31 could be caused by the interaction between 〈a〉and 〈c+a〉dislocations.

    From the material parameters in Table 2, we can also infer how different alloying elements influence the CRSS values of different slip modes in Mg.The CRSS ratio between prismatic and basal slip (CRSSprism/CRSSbasal) in Mg-0.47wt.% Ca and Mg-2wt.% Nd are 3.7 and 3.3 respectively. These values are lower than that in pure Mg (5–50) [34,35] and AZ31 (4.5–30)[36,37]. When the CRSSprism/CRSSbasalratio is low, prismatic slip is easy to be activated, which enhances the ductility of the material.This explains why Mg–Ca and Mg–Nd are much more ductile than AZ31. Future alloy design should take the CRSSprism/CRSSbasalratio into account.

    5. Conclusions

    VPSC modeling was conducted to study the tensile deformation behavior in three extruded Mg alloys: Mg-0.47wt.%Ca, Mg-2wt.% Nd, and AZ31. The main conclusions are as follows:

    (1) Mg–Ca and Mg–Nd show similar tensile stress-strain curve; AZ31 has higher yield strength but less elongation to failure. The macroscopic stress-strain curves of the three alloys are successfully reproduced by the VPSC model using different material parameters.

    (2) In Mg–Ca, prismatic slip is the most active slip mode.Pyramidal 〈a〉slip increased rapidly in late deformation.Ca reduces the CRSSprism/CRSSbasalratio. Activity of non-basal 〈a〉slip is the main reason for the enhanced ductility in Mg–Ca.

    (3) In Mg–Nd, the extrusion texture is much weaker than the other two alloys, so that basal slip is the dominant slip mode and twinning is also active. The enhanced ductility in Mg–Nd is mainly attributed to the weak texture. Nd also reduces the CRSSprism/CRSSbasalratio.

    (4) In AZ31, the extrusion texture is strong and the CRSSprism/CRSSbasalratio is high. As a result, it has a relatively low tensile ductility compared to Mg–Ca and Mg–Nd.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial support of the projects from the National Natural Science Foundation of China (Nos. 51631006, 51671127, 51825101). We also thank Dr. Carlos Tomé for the help in using the VPSC code.

    久久人人97超碰香蕉20202| 人人妻,人人澡人人爽秒播| 国产精品1区2区在线观看.| 精品人妻1区二区| 亚洲精品美女久久久久99蜜臀| 国产有黄有色有爽视频| 长腿黑丝高跟| 亚洲欧美激情在线| 欧美大码av| 成熟少妇高潮喷水视频| 亚洲欧美精品综合久久99| 欧美中文日本在线观看视频| 男人的好看免费观看在线视频 | 亚洲三区欧美一区| 国产亚洲精品久久久久久毛片| 一本综合久久免费| 很黄的视频免费| 国产色视频综合| 欧美色视频一区免费| 99香蕉大伊视频| 法律面前人人平等表现在哪些方面| 国产伦一二天堂av在线观看| 色在线成人网| 国产成人精品在线电影| 性少妇av在线| 欧美精品啪啪一区二区三区| 一区二区日韩欧美中文字幕| 国产精品 国内视频| 精品日产1卡2卡| 中文字幕精品免费在线观看视频| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 日本撒尿小便嘘嘘汇集6| 黄色毛片三级朝国网站| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 在线十欧美十亚洲十日本专区| 乱人伦中国视频| av有码第一页| 两人在一起打扑克的视频| 中文字幕高清在线视频| av中文乱码字幕在线| 久久久久久久午夜电影 | 91成人精品电影| 精品久久久久久久毛片微露脸| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆一二三区av精品| 一区二区三区激情视频| 老汉色av国产亚洲站长工具| 国产精品美女特级片免费视频播放器 | 啦啦啦 在线观看视频| 欧美乱妇无乱码| av天堂久久9| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| 国产精品久久视频播放| 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 91麻豆精品激情在线观看国产 | 色哟哟哟哟哟哟| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 中文亚洲av片在线观看爽| 国产一卡二卡三卡精品| 久9热在线精品视频| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 久久精品国产清高在天天线| 91国产中文字幕| 欧美久久黑人一区二区| ponron亚洲| 欧美激情极品国产一区二区三区| 欧美丝袜亚洲另类 | 999久久久精品免费观看国产| 国产一卡二卡三卡精品| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| av视频免费观看在线观看| 精品福利永久在线观看| 久久久久久久久免费视频了| 欧美一区二区精品小视频在线| 成年人免费黄色播放视频| 精品熟女少妇八av免费久了| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线| 亚洲狠狠婷婷综合久久图片| 日本wwww免费看| 午夜91福利影院| 亚洲成人免费av在线播放| 18禁美女被吸乳视频| 一级片'在线观看视频| 美女国产高潮福利片在线看| 亚洲激情在线av| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 亚洲熟妇中文字幕五十中出 | 国产在线观看jvid| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区 | 黄片大片在线免费观看| 天堂俺去俺来也www色官网| 两个人免费观看高清视频| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 黄色a级毛片大全视频| 精品电影一区二区在线| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 亚洲精品在线美女| 久久中文字幕一级| 成人18禁在线播放| 欧美+亚洲+日韩+国产| 中文字幕人妻丝袜制服| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 麻豆av在线久日| 欧美久久黑人一区二区| 亚洲成人免费av在线播放| 亚洲黑人精品在线| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 日日夜夜操网爽| 国产深夜福利视频在线观看| 少妇裸体淫交视频免费看高清 | 午夜a级毛片| 午夜福利一区二区在线看| av欧美777| av视频免费观看在线观看| 免费少妇av软件| 电影成人av| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 在线免费观看的www视频| tocl精华| 精品久久久精品久久久| www.自偷自拍.com| 国产成+人综合+亚洲专区| 一个人免费在线观看的高清视频| 一级,二级,三级黄色视频| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 在线观看一区二区三区激情| 999精品在线视频| 欧美黑人精品巨大| 一个人观看的视频www高清免费观看 | 一进一出抽搐动态| 欧美久久黑人一区二区| 窝窝影院91人妻| a级毛片黄视频| 午夜两性在线视频| 在线观看免费视频网站a站| 波多野结衣高清无吗| av在线播放免费不卡| 99热只有精品国产| 精品免费久久久久久久清纯| 女警被强在线播放| 精品国产乱子伦一区二区三区| www日本在线高清视频| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 99热只有精品国产| 大香蕉久久成人网| √禁漫天堂资源中文www| 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美精品济南到| 大码成人一级视频| 99国产精品一区二区三区| 免费在线观看影片大全网站| 99re在线观看精品视频| 极品教师在线免费播放| 大香蕉久久成人网| 国产精品成人在线| 99热国产这里只有精品6| 91麻豆av在线| 亚洲午夜理论影院| 国产乱人伦免费视频| 亚洲成人久久性| 宅男免费午夜| 国产免费av片在线观看野外av| 国产成人精品在线电影| 热99re8久久精品国产| 级片在线观看| 校园春色视频在线观看| 美国免费a级毛片| 亚洲欧美日韩另类电影网站| 国产精品久久久人人做人人爽| av超薄肉色丝袜交足视频| 成人亚洲精品av一区二区 | 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 午夜91福利影院| 亚洲美女黄片视频| 婷婷六月久久综合丁香| 成在线人永久免费视频| 一级作爱视频免费观看| 我的亚洲天堂| 757午夜福利合集在线观看| 亚洲午夜精品一区,二区,三区| 国产无遮挡羞羞视频在线观看| 国产亚洲av高清不卡| 欧美日韩av久久| 亚洲少妇的诱惑av| 国产真人三级小视频在线观看| 欧美黑人精品巨大| 另类亚洲欧美激情| 在线观看免费视频网站a站| 亚洲国产精品一区二区三区在线| 国产97色在线日韩免费| 在线观看日韩欧美| 热99re8久久精品国产| 国产高清videossex| 亚洲国产精品999在线| 一进一出抽搐gif免费好疼 | 亚洲人成电影观看| x7x7x7水蜜桃| 夜夜夜夜夜久久久久| 免费久久久久久久精品成人欧美视频| 在线观看免费高清a一片| 国产精品综合久久久久久久免费 | www.自偷自拍.com| 午夜免费观看网址| 人成视频在线观看免费观看| 精品一区二区三区四区五区乱码| 多毛熟女@视频| 日日摸夜夜添夜夜添小说| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 亚洲精品美女久久av网站| 露出奶头的视频| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 亚洲av成人一区二区三| 色哟哟哟哟哟哟| avwww免费| 91av网站免费观看| 色尼玛亚洲综合影院| 日韩免费高清中文字幕av| 国产激情欧美一区二区| 精品一区二区三区av网在线观看| 色播在线永久视频| 超碰97精品在线观看| 日本黄色日本黄色录像| 99精品久久久久人妻精品| 成人亚洲精品av一区二区 | 日韩欧美一区视频在线观看| 国产一区二区在线av高清观看| 久久亚洲真实| 老司机福利观看| 国产乱人伦免费视频| 国产欧美日韩一区二区三| 91国产中文字幕| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼 | 国产成人免费无遮挡视频| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影 | 最好的美女福利视频网| 在线看a的网站| 人妻久久中文字幕网| 在线观看免费视频日本深夜| 免费av毛片视频| 制服诱惑二区| 看片在线看免费视频| 亚洲成人久久性| 国产一区二区三区在线臀色熟女 | 国产午夜精品久久久久久| 夫妻午夜视频| 国产男靠女视频免费网站| 欧美色视频一区免费| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 午夜91福利影院| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久| 午夜影院日韩av| 欧美人与性动交α欧美精品济南到| 久热爱精品视频在线9| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 久热这里只有精品99| www国产在线视频色| 亚洲 国产 在线| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 国产av精品麻豆| 中文字幕av电影在线播放| 国产一卡二卡三卡精品| 伦理电影免费视频| 国产又爽黄色视频| 首页视频小说图片口味搜索| 日本五十路高清| 后天国语完整版免费观看| 国产精品免费视频内射| 人成视频在线观看免费观看| 老司机亚洲免费影院| 露出奶头的视频| 精品国内亚洲2022精品成人| 国产成年人精品一区二区 | 久久久水蜜桃国产精品网| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 纯流量卡能插随身wifi吗| 国产成人影院久久av| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 一级毛片高清免费大全| 成年人免费黄色播放视频| 两个人看的免费小视频| 久久精品国产清高在天天线| 国产高清国产精品国产三级| 他把我摸到了高潮在线观看| 天堂影院成人在线观看| 另类亚洲欧美激情| 国产高清国产精品国产三级| 久久中文看片网| 久久伊人香网站| 日本欧美视频一区| 成人亚洲精品av一区二区 | 搡老乐熟女国产| 久久亚洲精品不卡| 黑人猛操日本美女一级片| 在线观看一区二区三区| 成人三级做爰电影| 久久狼人影院| 日韩欧美在线二视频| 精品一区二区三卡| 久久久国产一区二区| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 亚洲少妇的诱惑av| 成人国语在线视频| 亚洲伊人色综图| 亚洲人成电影免费在线| 久久人人97超碰香蕉20202| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美 日韩 在线 免费| 亚洲五月婷婷丁香| 欧美日韩黄片免| 91国产中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲久久久国产精品| 国产激情久久老熟女| 亚洲三区欧美一区| 嫩草影院精品99| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 久久久久国内视频| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 精品国产一区二区久久| 国产精品1区2区在线观看.| 成在线人永久免费视频| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 不卡av一区二区三区| 18禁美女被吸乳视频| 日韩国内少妇激情av| av在线天堂中文字幕 | 最好的美女福利视频网| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 国产深夜福利视频在线观看| 国产区一区二久久| 美女大奶头视频| 亚洲第一欧美日韩一区二区三区| 巨乳人妻的诱惑在线观看| 欧美成人免费av一区二区三区| 一级a爱片免费观看的视频| 国产区一区二久久| 精品国产一区二区三区四区第35| 日本三级黄在线观看| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 巨乳人妻的诱惑在线观看| 老司机福利观看| 在线观看一区二区三区| 国产高清国产精品国产三级| 亚洲精品美女久久久久99蜜臀| 黑人欧美特级aaaaaa片| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看 | 日本三级黄在线观看| 国产蜜桃级精品一区二区三区| 国产成人啪精品午夜网站| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 午夜福利一区二区在线看| 天堂影院成人在线观看| 久久精品影院6| 脱女人内裤的视频| 嫩草影院精品99| 又黄又粗又硬又大视频| 男女下面插进去视频免费观看| 岛国在线观看网站| 日韩大码丰满熟妇| 不卡一级毛片| 久久这里只有精品19| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 午夜福利,免费看| 亚洲在线自拍视频| 琪琪午夜伦伦电影理论片6080| 国产成人精品久久二区二区免费| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 满18在线观看网站| 9热在线视频观看99| 丝袜人妻中文字幕| 激情视频va一区二区三区| 一级作爱视频免费观看| 新久久久久国产一级毛片| 国产精品亚洲av一区麻豆| 亚洲国产看品久久| 正在播放国产对白刺激| 黄色视频不卡| 国产亚洲精品一区二区www| 满18在线观看网站| 久久国产精品影院| 欧美人与性动交α欧美精品济南到| 欧美+亚洲+日韩+国产| 午夜老司机福利片| 亚洲国产精品999在线| 法律面前人人平等表现在哪些方面| 91麻豆精品激情在线观看国产 | 丝袜美腿诱惑在线| 水蜜桃什么品种好| 成人黄色视频免费在线看| 久久欧美精品欧美久久欧美| 久久久国产一区二区| 91麻豆精品激情在线观看国产 | 欧美日韩乱码在线| 久久国产精品影院| 99热国产这里只有精品6| 91成人精品电影| 午夜久久久在线观看| 免费在线观看完整版高清| 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 免费在线观看视频国产中文字幕亚洲| cao死你这个sao货| 亚洲精品国产区一区二| 精品卡一卡二卡四卡免费| 国产精品自产拍在线观看55亚洲| 老熟妇乱子伦视频在线观看| 国产精华一区二区三区| 大型黄色视频在线免费观看| 欧美一级毛片孕妇| 88av欧美| 看黄色毛片网站| 欧美日韩乱码在线| 亚洲欧美激情在线| 日本wwww免费看| 精品一区二区三卡| 50天的宝宝边吃奶边哭怎么回事| av在线天堂中文字幕 | 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 欧美精品一区二区免费开放| 国产男靠女视频免费网站| 自拍欧美九色日韩亚洲蝌蚪91| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 国产亚洲精品久久久久5区| 久久国产精品影院| 99久久国产精品久久久| 日本欧美视频一区| 国产成人av激情在线播放| 天天添夜夜摸| 精品福利观看| 久99久视频精品免费| 搡老岳熟女国产| 久久人妻av系列| 亚洲av电影在线进入| 老熟妇乱子伦视频在线观看| 久久香蕉激情| 欧美在线黄色| 人妻丰满熟妇av一区二区三区| av在线天堂中文字幕 | 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 久久午夜亚洲精品久久| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 亚洲精品国产精品久久久不卡| 一本综合久久免费| 桃红色精品国产亚洲av| 新久久久久国产一级毛片| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区在线av高清观看| 欧美性长视频在线观看| 欧美成狂野欧美在线观看| 久久欧美精品欧美久久欧美| 久久伊人香网站| 国产三级黄色录像| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久av美女十八| 两个人看的免费小视频| 国产有黄有色有爽视频| 成人特级黄色片久久久久久久| aaaaa片日本免费| 他把我摸到了高潮在线观看| 精品卡一卡二卡四卡免费| a级毛片在线看网站| 欧美一区二区精品小视频在线| 99久久综合精品五月天人人| 男女床上黄色一级片免费看| 又黄又粗又硬又大视频| 久久九九热精品免费| 无遮挡黄片免费观看| 正在播放国产对白刺激| 成在线人永久免费视频| 黄网站色视频无遮挡免费观看| 操美女的视频在线观看| 久久中文看片网| 国产亚洲精品一区二区www| 午夜免费激情av| 国产野战对白在线观看| 久久人人爽av亚洲精品天堂| 国内毛片毛片毛片毛片毛片| 精品国产超薄肉色丝袜足j| 性欧美人与动物交配| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| 这个男人来自地球电影免费观看| 久久久久亚洲av毛片大全| 亚洲欧洲精品一区二区精品久久久| 免费高清在线观看日韩| 日韩精品中文字幕看吧| 一进一出抽搐动态| 丰满的人妻完整版| 女人爽到高潮嗷嗷叫在线视频| 嫁个100分男人电影在线观看| 亚洲伊人色综图| 国产av一区在线观看免费| 久久久国产精品麻豆| 午夜激情av网站| 久久这里只有精品19| 欧美午夜高清在线| 亚洲一区二区三区不卡视频| 午夜免费激情av| 久久国产乱子伦精品免费另类| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 99久久久亚洲精品蜜臀av| 免费久久久久久久精品成人欧美视频| 亚洲av日韩精品久久久久久密| 久热爱精品视频在线9| 97超级碰碰碰精品色视频在线观看| 亚洲第一青青草原| 搡老熟女国产l中国老女人| 国产色视频综合| 99re在线观看精品视频| 真人做人爱边吃奶动态| 久久久久国内视频| 久久国产乱子伦精品免费另类| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 亚洲全国av大片| 级片在线观看| 黄频高清免费视频| 久久国产精品男人的天堂亚洲| 国产99久久九九免费精品| 一级片免费观看大全| 日本五十路高清| 国产成人av激情在线播放| 男女下面插进去视频免费观看| 欧美+亚洲+日韩+国产| av天堂久久9| 久久人妻福利社区极品人妻图片| 丝袜在线中文字幕| 夫妻午夜视频| 丝袜美腿诱惑在线| 12—13女人毛片做爰片一| 色尼玛亚洲综合影院| 亚洲九九香蕉| 在线观看www视频免费| 精品久久蜜臀av无| 琪琪午夜伦伦电影理论片6080| 欧美成人午夜精品| 女人被狂操c到高潮| 免费高清视频大片| 亚洲专区国产一区二区| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 亚洲欧美精品综合一区二区三区| 国产97色在线日韩免费| 久久久水蜜桃国产精品网| 久久国产精品影院| 中文字幕色久视频| 19禁男女啪啪无遮挡网站| 国产亚洲av高清不卡| 欧美一级毛片孕妇| 淫秽高清视频在线观看| 亚洲中文字幕日韩| 欧美日韩亚洲国产一区二区在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲精品中文字幕在线视频|