• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure evolution of AZ91 alloy processed by a combination method of equal channel angular pressing and rolling

    2020-04-29 07:28:08QiongXuAibinYuhuLiJipengSunYuchunYunJinghuJingChoyingNi
    Journal of Magnesium and Alloys 2020年1期

    Qiong Xu, Aibin M, Yuhu Li, Jipeng Sun, Yuchun Yun, Jinghu Jing,Choying Ni

    aCollege of Mechanics and Materials, Hohai University, Nanjing 211100, China

    b Department of Materials Science & Engineering, University of Delaware, DE 19716, USA c Suqian Institute of Hohai University, Suqian 223800, China

    Abstract In the present work, AZ91 alloy was successfully processed by equal channel angular pressing (ECAP) for up to 16 passes and rolling(R) for multiple passes with a total reduction of 75% in addition to a combination method with ECAP plus rolling (ECAP+R). The effects of various processes (ECAP, R and ECAP+R) on microstructure evolution were analyzed and the influence of ECAP process on the rolling performance was examined. The result shows that ECAP contributed to a homogenous grain structure and formed a texture with higher Schmidt factors that was easy for rolling. A plate with smoother surface and reduced edge cracks was observed in the ECAP+R process than in the single R process. Although the microstructure of the alloy was similar after ECAP+R and R process, the sample of ECAP+R was more refined and had stronger second phase precipitation than the sample of R, which resulted in better rolling characteristics, along with the external surfaces.

    Keywords: AZ91 alloy; ECAP and rolling; “ECAP-modified” structure; Second phase precipitation; Texture.

    1. Introduction

    Most engineering applications, such as the automotive and aerospace industries, have tended to reduce weight in recent years in order to decrease energy consumption. Consequently,magnesium alloys are of large interest to researchers due to its low density [1–4]. In the past few years, Mg–9Al–Zn(AZ91) alloy, with higher strength, good corrosion resistance and good castability, has received increasing attention [5–7].However, the plastic forming is poor due to the HCP structure with a poor slip system. As a typical cast magnesium alloy, AZ91 alloy is mostly provided as casting or die-casting product which is largely restricted in advanced applications[8,9].

    Recent studies have revealed that AZ91 alloy can be used as a deformed alloy through some hot processing, such as hot extrusion, after which the extruded rods can be further rolled[10–12]. However, a strong texture is usually formed after extrusion, which is detrimental to the deformation capacity.Subsequent rolling is difficult with a high cracking tendency,therefore, special technology or treatment is needed [13,14].Some researchers have developed new post-rolling methods such as hard-plate rolling (HPR) [10,15] and high-ratio differential speed rolling (HRDSR) [12,16] to get AZ91 alloy rolled plates. However, these methods do not emphasize on optimizing the original materials before rolling, as to the fact that the original texture of AZ91 is a major factor for rolling process.

    Fig. 1. The external appearance of the AZ91 rolled plates processed by: (a)ECAP plus rolling and (b) rolling.

    Currently, severe plastic deformation (SPD) methods have been increasingly used to refine the grains in pure magnesium and Mg alloys, with the cooperation of grain refinement, second phase precipitation and texture modification [17–24]. Among the many SPD methods, ECAP has been mainly focused by material researchers as it can effectively achieve smaller grain size and larger sample dimension which is potential for practical application [23–33]. Studies have found that, a specific texture with high Schmidt factors after ECAP leads to the yield strength loss, although it contributes to the ductility improvement [34–36]. Nevertheless, this offers a way for further work strengthening on the “ECAP-modified” structure. Some researchers in our research group [35,37] have successfully applied post-ECAP cold rolling on ZK60 and Mg–Gd–Zn–Zr alloys and achieved a good combination of higher strength and good ductility.This means that the structure and texture of magnesium alloys can be controlled by ECAP process and magnesium rolled sheets can be obtained by the combined method with ECAP.

    In this study, a high-pass ECAP and multi-step rolling was applied on a commercial AZ91 alloy. Investigations focused on the microstructure evolution during the processing of ECAP and rolling, referring to grain refinement, second phase precipitation and texture transformation. The effect of ECAP on the structure of the two rolled plates with or without ECAP process was especially concentrated. The current work is of great significance for the further application of rolled magnesium alloys and provides reference for the study of deformation behavior of highly deformed magnesium alloys.

    2. Experimental details

    2.1. Samples characterization

    In the current work, a commercial AZ91 alloy was used.Bulk samples with a dimension of 50mmx50mmx100mm were cut from the as-received material and processed at 250°C for 16 passes through 90 ° rotary ECAP die (RDECAP), the operation principle of which can be found in our early work [38–41]. Sample slices with thickness of 4.5mm were cut from the inner part of the ECAP sample along the longitudinal direction and from the as-received sample for rolling to a thickness of 1.1mm at 300°C with a total thickness reduction of 75%. Before rolling, samples were preheated to 300°C and each route consisted of annealing for 5 min followed by rolling with 10% thickness reduction. The rolling direction (RD) remained the same during the whole rolling process. Finally, we obtained four samples for analysis, with the original casting material marked as as-cast,the as-cast sample processed by ECAP processing marked as ECAP, the as-cast sample by ECAP processing plus hot rolling marked as ECAP+R,and the as-cast sample by rolling marked as R.

    2.2. Microstructural characterization

    Microstructure observations were carried on the as-cast,ECAP, ECAP+R and R samples. An Olympus BX51 M optical microscopy was used for the metallographic analysis.TEM analysis was conducted with a JEOL JEM-2010 field emissions transmission electron microscope with an accelerating voltage of 200kV. Electron back-scattered diffraction(EBSD) studies were carried out in a Hitachi S-3400N SEM equipped with a HKL-EBSD system. EBSD characterization was performed with 20kV acceleration voltages,22mm working distance,70°tilt,and with 0.2–0.5μm scan steps depending on the magnifications.

    3. Results and discussion

    3.1. External appearance of the rolled plates

    Characterization shows remarkable difference with or without ECAP processing in the two rolled plates. The external appearance of the sample processed by ECAP plus rolling and the one singly by rolling is shown in Fig. 1. The sample after ECAP plus rolling as shown in Fig. 1a has a clean and smooth surface, and very few and little edge cracks are observed. While the entire sample shows a relatively rough surface for the one by rolling process alone, as shown in Fig. 1b, the edge cracking is evident and even cross cracks are found in some areas. This improvement in the previous sample could be because the potential sliding system had been activated in the ECAP+R sample, which indicated that the ECAP process was likely to change the microstructure before rolling and significantly improve the alloy deformation ability.

    3.2. Optical micrographs of the as-cast AZ91 alloy and the alloy after different processing

    Fig. 2. Optical micrographs of AZ91 alloys: (a, b) as-cast and (c, d) processed by ECAP in (a, c) low and (b, d) high magnification.

    Fig. 3. Optical micrographs of AZ91 alloys processed by: (a, b) ECAP plus rolling; (c, d) rolling in (a, c) low and (b, d) high magnification.

    Fig.2 shows the optical microstructures of the as-cast alloy and the alloy after ECAP process. Microstructure of the ascast material in Fig. 2a and b indicates a typical dendrite structure of primary α-Mg with an average size of 150μm separated by a network of β-Mg17Al12precipitates. Fig. 2b shows the β-Mg17Al12phases in the as-cast alloy are quite coarse,of which some part is as wide as ~20μm. Fig.2c and d shows the effect of ECAP process on the microstructure of the AZ91 alloy. ECAP process effectively refines the grains and second phases,with the refined second phases distributing along the extrusion direction. The β-Mg17Al12phases are of much smaller sizes compared to those in the as-cast alloy,and most of them are difficult to tell from the α-Mg matrix as shown in Fig. 2d.

    Fig. 4. EBSD inverse pole figure mapping (a, c, e) and grain size statistics (b, d, f) of AZ91 alloy processed by (a, b) ECAP, (c, d) ECAP plus rolling and(e, f) rolling.

    Fig. 3 shows the optical microstructure of the two rolled plates processed by ECAP plus rolling and rolling. In addition to a significant difference of the overall structural textures from the as-cast and ECAP structures shown in Fig. 2,the secondary phase known as β-Mg17Al12are broken into smaller pieces after rolling. The proportion of β-Mg17Al12in the alloy after ECAP plus rolling (Fig. 3a and b) and rolling(Fig. 3c and d) alloys is lower than that in the EACP alloy (Fig. 2c and d) and as-cast alloy (Fig. 2a and b), respectively, which means solid solution occurred during the further rolling on the ECAP sample and the direct rolling on the as-cast sample. Although microstructures of the two rolled plates have similar structure in the optical micrographs,there is still a big difference to identify. From Fig. 3c and d, coarse β-Mg17Al12phases are obviously observed in the R sample, while in ECAP+R sample, only some fine ones are observed in Fig. 3a and b. This indicates that ECAP has a strong effect on the second phase transformation and redistribution in the samples that influences further rolling.Between the second phases, as shown in the high magnification micrographs in Fig. 3b and d, small grains are observed in the α-Mg matrix with finer grains in ECAP+R sample, suggesting that the ECAP process contributed to a more refined grain structure in the alloy after the further rolling processing.

    3.3. EBSD results of the AZ91 alloy after ECAP, ECAP+R and R processing

    Fig. 4 shows the EBSD mapping and grain size statistics of AZ91 alloy processed by ECAP, ECAP plus rolling and rolling, respectively. EBSD inverse pole figure in Fig. 4a shows that the sample after ECAP exhibits a uniform grain structure with small equiaxed grains. According to the grain size distribution in Fig. 4b, the grain size of the ECAP alloy ranges from ~0.5μm to ~10μm and the average value is ~4.3μm. While, after rolling, rather than a homogeneous grain structure, a heterogeneous grain structure was formed,mixing with small grains and larger elongated grains, as shown in Fig. 4c and e. According to the grain size statistics in Fig. 4d and f, nearly 60% grains are with a grain size under 10μm in both rolled sheets, and the grain size of the R sample has a wide range from ~0.5μm to ~22.5μm.

    Fig. 5. EBSD pole figures of AZ91 alloys processed by: (a) ECAP; (b) ECAP plus rolling; (c) rolling and (d) Schmidt factors of samples after different processing methods.

    Fig. 6. TEM photographs of AZ91 alloy processed by: (a, b) ECAP and (c, d) ECAP plus rolling.

    Fig. 5 shows the EBSD pole figures of AZ91 alloys processed by ECAP, ECAP plus rolling and rolling, and the Schmidt factors of samples after these different methods. The EBSD pole figures Fig.5a–c show that different textures were formed in the alloy by different processing methods. A relatively strong but tilted (0001) basal texture (Max = 30.88)was formed by ECAP, while the basal textures was centered after rolling process. The Schmidt factors of the samples after different processing are plotted in Fig. 5d. It shows that the Schmidt factors of the sample processed by ECAP are much higher, indicating more numbers of grains are initially found in the orientations where deformation is easier to occur[34]. The Schmidt factors in the sample processed by ECAP plus rolling is between those singly by ECAP or rolling, this fact implies that the “ECAP-modified” structure with higher Schmidt factors promoted deformation in further rolling [42].This contributes to better formability of rolling plates of AZ91 alloy, as in line with the external appearance shown in Fig. 1.

    3.4. TEM microstructure of the AZ91 alloy after ECAP and ECAP+R processing

    Fig. 6 shows TEM photographs of AZ91 alloy processed by ECAP and ECAP plus rolling.TEM photographs in Fig.6a and b show that, apart from the large basal grains, a certain amount of ultrafine grains with a size ranging from ~200 to~500nm is observed (arrows marked as A in Fig. 6a), these grains are identified as sub-grains without sharp grain boundaries(GBs)and no GB phase detected.It is detected that some tiny particles identified as β-Mg17Al12precipitate out in the matrix and randomly dispersed in grains (the arrow marked as B in Fig. 6b), of which the shape is primarily spherical, and the size is estimated to be less than 100nm (B), as ECAP greatly refine the grains complied with DRX. In conjunction with the results of optical micrographs and EBSD,the results from TEM show that the ECAP process contributes to homogenous refined grains and second phases dispersion,which is beneficial to the deformation ability. After ECAP plus rolling, as shown in Fig. 6c and d, a high density of second phase Mg17Al12particles precipitate into the matrix grains with diameters less than 100nm (the yellow square in Fig. 6c marked with C). Some nano-sized β-Mg17Al12particles are also observed around the grain boundaries (the arrow marked with D in Fig. 6d). High density of dislocations is observed in all visions, which is generated by the severe deformation during rolling. These dislocations hinder the precipitate particles and interact with them (as illustrated in the yellow circle marked with E in Fig. 6d). The dissolved particles in verse impede the recovery of dislocation during the processing, which increases the dislocation density in α-Mg phase. The high density of dislocations again can promote the nucleation of high density of precipitates during the processing.

    4. Conclusion

    The major conclusions drawn from the present study on experimental investigations on microstructure behavior of AZ91 alloy produced by ECAP and rolling are described in this section. In summary, improved AZ91 rolled plate with reduced edge cracks was successfully obtained by a combination method of ECAP and rolling. Through the investigation of the effects of the ECAP and rolling processing on the evolution of the microstructure of AZ91 alloy, the main conclusions can be draw as follows:

    (1) ECAP and rolling dramatically changed the microstructure of the AZ91 alloy and reformed the grain structure,accompanied by recrystallization, second phase precipitation and texture transformation.

    (2) The high-pass ECAP process refined grain effectively and formed a homogeneous grain structure with a second phase dissolution. After modification of the ECAP,the finer grain structure was achieved than the direct rolling, in the AZ91 alloy rolled plate.

    (3) ECAP process generated a texture with high Schmidt factors in the AZ91 alloy, which promoted the deformability for further rolling. The strong deformation of rolling contributed to strong second phase precipitation and high-density dislocations in the “ECAP-modified”structure of the alloy.

    (4) The deformed magnesium alloy AZ91 alloy can be successfully developed by rolling with large thickness reduction after pre-modified by ECAP process.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China (51774109 and 51501039), the Key Research and Development Project of Jiangsu Province(BE2017148), the Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (KYLX16_0701)and the Fundamental Research Funds for the Central Universities (HHU2016B45314 & 2018B48414). Q.X. is grateful for the support from the China Scholarship Council and the W. M. Keck Center for Advanced Microscopy and Micr1oanalysis at University of Delaware.

    亚洲国产日韩一区二区| 亚洲国产精品国产精品| 亚洲成人一二三区av| 成人午夜精彩视频在线观看| 高清午夜精品一区二区三区| 亚洲精品成人久久久久久| 99久久中文字幕三级久久日本| 嫩草影院新地址| 黄色视频在线播放观看不卡| 日韩一区二区视频免费看| 欧美区成人在线视频| 美女主播在线视频| 日本爱情动作片www.在线观看| 精品久久久久久久久av| 毛片女人毛片| 欧美成人精品欧美一级黄| 亚洲不卡免费看| 日日啪夜夜爽| 日本欧美国产在线视频| 日本av手机在线免费观看| 亚洲精品色激情综合| 久久久成人免费电影| 亚洲av中文av极速乱| 肉色欧美久久久久久久蜜桃 | 熟女电影av网| 国产精品.久久久| 天天一区二区日本电影三级| 国产成人freesex在线| 91狼人影院| 日韩欧美一区视频在线观看 | 国产精品秋霞免费鲁丝片| 成人黄色视频免费在线看| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区黑人 | 亚洲最大成人中文| 国产精品国产av在线观看| 赤兔流量卡办理| 波多野结衣巨乳人妻| 联通29元200g的流量卡| 极品少妇高潮喷水抽搐| 欧美丝袜亚洲另类| 51国产日韩欧美| 久久精品国产亚洲网站| 亚洲av免费高清在线观看| 日本一二三区视频观看| 国内精品宾馆在线| 亚洲最大成人手机在线| 国产黄片视频在线免费观看| 国精品久久久久久国模美| 久久99热这里只频精品6学生| 久久影院123| a级毛片免费高清观看在线播放| 九色成人免费人妻av| 欧美少妇被猛烈插入视频| 中文精品一卡2卡3卡4更新| 日韩中字成人| 日本色播在线视频| 国产精品福利在线免费观看| 久久国产乱子免费精品| 国产精品无大码| 日本色播在线视频| 日韩伦理黄色片| 亚洲精品成人久久久久久| 亚洲成人中文字幕在线播放| 欧美3d第一页| 精品久久久久久久末码| 久久久久久久精品精品| 一级毛片久久久久久久久女| 综合色丁香网| 亚洲色图综合在线观看| 精品久久久久久久末码| 丰满少妇做爰视频| 插阴视频在线观看视频| 王馨瑶露胸无遮挡在线观看| 久久精品久久精品一区二区三区| 一二三四中文在线观看免费高清| 97热精品久久久久久| 成人无遮挡网站| 日本一二三区视频观看| 久久久久精品性色| 午夜爱爱视频在线播放| 少妇熟女欧美另类| 热99国产精品久久久久久7| 欧美性感艳星| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产av在线观看| 午夜爱爱视频在线播放| 中文字幕亚洲精品专区| av专区在线播放| 不卡视频在线观看欧美| 99久久精品一区二区三区| 欧美 日韩 精品 国产| 国产在线男女| 在线亚洲精品国产二区图片欧美 | 少妇的逼水好多| 一个人看的www免费观看视频| 欧美精品人与动牲交sv欧美| 精品久久久久久电影网| 青春草亚洲视频在线观看| 午夜老司机福利剧场| 天堂俺去俺来也www色官网| 国产成人精品一,二区| 伦理电影大哥的女人| 亚洲精品视频女| 国产亚洲最大av| 三级国产精品片| 人妻一区二区av| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 成年av动漫网址| av天堂中文字幕网| 日本猛色少妇xxxxx猛交久久| 亚洲成人久久爱视频| 国产精品不卡视频一区二区| 又大又黄又爽视频免费| 亚洲不卡免费看| 白带黄色成豆腐渣| 少妇丰满av| 国产免费一区二区三区四区乱码| 高清毛片免费看| 国产老妇女一区| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 天天一区二区日本电影三级| 国产精品一及| 国产中年淑女户外野战色| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| av卡一久久| 97在线人人人人妻| 国内精品美女久久久久久| a级毛片免费高清观看在线播放| 欧美丝袜亚洲另类| 在线a可以看的网站| 中国三级夫妇交换| 国产视频内射| 国产有黄有色有爽视频| 激情 狠狠 欧美| 亚洲精品456在线播放app| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 五月天丁香电影| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 日韩欧美精品免费久久| 在线播放无遮挡| 日本午夜av视频| videossex国产| 国产淫语在线视频| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 精品一区二区三卡| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 亚洲性久久影院| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 久久综合国产亚洲精品| 日韩一区二区三区影片| 免费av不卡在线播放| 国产av不卡久久| 最近2019中文字幕mv第一页| 久久女婷五月综合色啪小说 | 国产精品久久久久久久久免| 身体一侧抽搐| 嫩草影院新地址| 极品少妇高潮喷水抽搐| 国产精品成人在线| 亚洲欧美清纯卡通| 特级一级黄色大片| 国产男人的电影天堂91| 91精品国产九色| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 亚洲图色成人| 我的老师免费观看完整版| 欧美性感艳星| 日韩视频在线欧美| 少妇丰满av| 久久久久网色| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 国产视频内射| 亚洲av日韩在线播放| 久久影院123| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 嫩草影院新地址| 免费黄频网站在线观看国产| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| av天堂中文字幕网| 观看美女的网站| 中文在线观看免费www的网站| 日韩人妻高清精品专区| 好男人视频免费观看在线| 久久这里有精品视频免费| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 久久久久久久久大av| 少妇 在线观看| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 成人二区视频| 国产爱豆传媒在线观看| 日日摸夜夜添夜夜爱| 中文字幕久久专区| av免费观看日本| 国产精品熟女久久久久浪| 国产精品99久久久久久久久| 国产男女内射视频| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 亚洲av免费高清在线观看| 搞女人的毛片| 一级毛片电影观看| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 六月丁香七月| 国产精品99久久久久久久久| 夫妻午夜视频| 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 亚洲精品久久午夜乱码| 午夜视频国产福利| 国产成年人精品一区二区| 久久久久性生活片| 国内精品美女久久久久久| av在线播放精品| 精品一区二区三卡| 免费电影在线观看免费观看| 久久久久久久大尺度免费视频| 身体一侧抽搐| 一区二区三区乱码不卡18| 尾随美女入室| 色哟哟·www| 丝瓜视频免费看黄片| 久久精品人妻少妇| 亚洲精品日本国产第一区| 黄色一级大片看看| 深爱激情五月婷婷| av专区在线播放| 草草在线视频免费看| 少妇熟女欧美另类| 中文天堂在线官网| 99久国产av精品国产电影| 黄色配什么色好看| 亚洲精品国产色婷婷电影| 国产亚洲av片在线观看秒播厂| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 黄色一级大片看看| 少妇裸体淫交视频免费看高清| 国产成人a区在线观看| 欧美bdsm另类| 热re99久久精品国产66热6| 免费观看在线日韩| 嫩草影院入口| 真实男女啪啪啪动态图| 国产一区二区三区综合在线观看 | 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 三级国产精品欧美在线观看| 亚洲国产欧美在线一区| 97精品久久久久久久久久精品| 特级一级黄色大片| www.色视频.com| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 国内揄拍国产精品人妻在线| 高清欧美精品videossex| 国产又色又爽无遮挡免| 日韩中字成人| 国内精品宾馆在线| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 成人黄色视频免费在线看| 国模一区二区三区四区视频| 亚洲丝袜综合中文字幕| 日本色播在线视频| 亚洲欧美清纯卡通| 免费av观看视频| 国内揄拍国产精品人妻在线| 一本一本综合久久| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品中文字幕在线视频 | 成人漫画全彩无遮挡| 精品人妻偷拍中文字幕| 综合色av麻豆| 成人鲁丝片一二三区免费| 亚洲精华国产精华液的使用体验| 国产真实伦视频高清在线观看| 国产综合精华液| 久久久久国产精品人妻一区二区| 午夜精品一区二区三区免费看| 午夜福利在线观看免费完整高清在| 久久久久久久午夜电影| 麻豆精品久久久久久蜜桃| 女人久久www免费人成看片| 99久久中文字幕三级久久日本| 国产淫片久久久久久久久| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| 国产片特级美女逼逼视频| 欧美+日韩+精品| 久久99热这里只有精品18| 在线免费十八禁| 亚洲,欧美,日韩| 免费电影在线观看免费观看| 少妇熟女欧美另类| 国产高潮美女av| 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | av免费观看日本| 国产精品嫩草影院av在线观看| 国产精品麻豆人妻色哟哟久久| 国产一级毛片在线| 特级一级黄色大片| 久久久久久久久大av| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 少妇人妻久久综合中文| 性色av一级| av天堂中文字幕网| 九色成人免费人妻av| 51国产日韩欧美| 日韩国内少妇激情av| 各种免费的搞黄视频| 麻豆乱淫一区二区| 国产有黄有色有爽视频| 久久6这里有精品| 看黄色毛片网站| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 免费av毛片视频| 免费在线观看成人毛片| 看十八女毛片水多多多| 一边亲一边摸免费视频| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 在线观看国产h片| 久久久a久久爽久久v久久| 高清日韩中文字幕在线| 一级爰片在线观看| 2018国产大陆天天弄谢| 国产欧美日韩精品一区二区| 高清av免费在线| 日韩电影二区| 久久久精品94久久精品| 久久久精品免费免费高清| 久久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 99久久精品一区二区三区| 一级a做视频免费观看| 成人欧美大片| 久久久精品欧美日韩精品| 少妇的逼水好多| 国产视频首页在线观看| 国产成人一区二区在线| 少妇裸体淫交视频免费看高清| av在线亚洲专区| 成人漫画全彩无遮挡| av在线亚洲专区| 视频中文字幕在线观看| 少妇高潮的动态图| 久久午夜福利片| 亚洲成色77777| videossex国产| 美女脱内裤让男人舔精品视频| 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区| 两个人的视频大全免费| 亚洲人与动物交配视频| 亚洲欧美精品专区久久| 久久久久久久国产电影| 久久久久久伊人网av| 丝袜喷水一区| 国产黄a三级三级三级人| 国产色婷婷99| 国国产精品蜜臀av免费| 亚洲欧美成人精品一区二区| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 亚洲国产最新在线播放| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 国产乱人视频| 啦啦啦啦在线视频资源| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 一本色道久久久久久精品综合| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 男女无遮挡免费网站观看| 色哟哟·www| 免费av观看视频| 综合色丁香网| 亚洲av二区三区四区| 王馨瑶露胸无遮挡在线观看| 国内精品美女久久久久久| 乱系列少妇在线播放| 男人舔奶头视频| 青春草国产在线视频| 亚洲熟女精品中文字幕| av线在线观看网站| 国产男人的电影天堂91| 亚洲精品一二三| 免费大片18禁| 国产白丝娇喘喷水9色精品| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站| 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 午夜免费观看性视频| 嫩草影院精品99| 天天一区二区日本电影三级| 午夜老司机福利剧场| 国产精品一区二区性色av| 少妇人妻精品综合一区二区| 亚洲精品日韩av片在线观看| 高清在线视频一区二区三区| 中文精品一卡2卡3卡4更新| 精品久久久久久久人妻蜜臀av| 成人漫画全彩无遮挡| www.av在线官网国产| 欧美日韩国产mv在线观看视频 | 久久久午夜欧美精品| 嘟嘟电影网在线观看| 国产伦精品一区二区三区视频9| tube8黄色片| 久久人人爽人人爽人人片va| 亚洲无线观看免费| 男男h啪啪无遮挡| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 日产精品乱码卡一卡2卡三| 欧美 日韩 精品 国产| 久久久久久伊人网av| 男女无遮挡免费网站观看| 舔av片在线| 岛国毛片在线播放| 亚洲最大成人手机在线| av在线观看视频网站免费| 久久久久久久大尺度免费视频| 别揉我奶头 嗯啊视频| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 777米奇影视久久| 免费av观看视频| 女人十人毛片免费观看3o分钟| 插逼视频在线观看| 亚洲欧美日韩另类电影网站 | 日韩欧美精品免费久久| 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 噜噜噜噜噜久久久久久91| 色综合色国产| 久久久久网色| 少妇人妻一区二区三区视频| 国产大屁股一区二区在线视频| 国产一区二区亚洲精品在线观看| 国产一区二区三区综合在线观看 | 久久久久久久久久久丰满| 在线观看三级黄色| 中国美白少妇内射xxxbb| 男男h啪啪无遮挡| 我的老师免费观看完整版| 日本黄色片子视频| 国产成人免费观看mmmm| 欧美高清成人免费视频www| 91久久精品国产一区二区成人| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 午夜日本视频在线| 丝瓜视频免费看黄片| 一边亲一边摸免费视频| 天天一区二区日本电影三级| 日本欧美国产在线视频| 欧美日韩在线观看h| 老师上课跳d突然被开到最大视频| 久久久久久久午夜电影| 女人久久www免费人成看片| 在线 av 中文字幕| 日本色播在线视频| 精品久久久噜噜| 国产精品精品国产色婷婷| 免费av不卡在线播放| 国产美女午夜福利| 少妇人妻 视频| 美女被艹到高潮喷水动态| av在线播放精品| 寂寞人妻少妇视频99o| 美女高潮的动态| 一级毛片 在线播放| 18+在线观看网站| av卡一久久| 天天躁夜夜躁狠狠久久av| 久久久久久久国产电影| 精品久久久久久久久av| 五月开心婷婷网| 国产精品久久久久久精品电影小说 | 免费观看a级毛片全部| 国产精品麻豆人妻色哟哟久久| 一级二级三级毛片免费看| 欧美日韩综合久久久久久| 国产中年淑女户外野战色| 亚洲怡红院男人天堂| 波多野结衣巨乳人妻| 男男h啪啪无遮挡| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 久久久久久国产a免费观看| 女人久久www免费人成看片| 国产人妻一区二区三区在| 看非洲黑人一级黄片| 男人添女人高潮全过程视频| 久久6这里有精品| 交换朋友夫妻互换小说| 欧美日韩亚洲高清精品| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 精品人妻熟女av久视频| 一区二区av电影网| 免费看不卡的av| 精品久久久精品久久久| 只有这里有精品99| 亚洲人成网站高清观看| 免费观看性生交大片5| 亚洲精品aⅴ在线观看| 亚洲av不卡在线观看| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看| 亚洲国产色片| 欧美bdsm另类| 赤兔流量卡办理| 亚洲国产最新在线播放| 国产精品福利在线免费观看| 在线观看一区二区三区激情| 日本av手机在线免费观看| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影 | 尤物成人国产欧美一区二区三区| 亚洲精品国产色婷婷电影| 最近中文字幕2019免费版| 日本黄色片子视频| 中文精品一卡2卡3卡4更新| 免费大片黄手机在线观看| 国产精品一区www在线观看| 亚洲欧美成人综合另类久久久| 午夜免费男女啪啪视频观看| 亚洲国产最新在线播放| 91aial.com中文字幕在线观看| 国产免费又黄又爽又色| 一级毛片久久久久久久久女| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 亚洲精品国产成人久久av| 国产有黄有色有爽视频| 嘟嘟电影网在线观看| 一级a做视频免费观看| 老司机影院毛片| 性色av一级| 久久人人爽人人爽人人片va| 看十八女毛片水多多多| 麻豆乱淫一区二区| 大码成人一级视频| 黄色一级大片看看| 亚洲欧美日韩另类电影网站 | 男女国产视频网站| 国产av码专区亚洲av| 91精品国产九色| 国产一区二区亚洲精品在线观看| 精品国产一区二区三区久久久樱花 | 国产免费一区二区三区四区乱码| 国产黄频视频在线观看| 午夜精品一区二区三区免费看| 少妇猛男粗大的猛烈进出视频 | 直男gayav资源| 欧美日韩视频高清一区二区三区二| 人妻夜夜爽99麻豆av| 直男gayav资源| 视频中文字幕在线观看| 国产爱豆传媒在线观看| 老师上课跳d突然被开到最大视频| 亚洲精品久久午夜乱码| 国产乱人视频| 国产色爽女视频免费观看| 丝袜美腿在线中文| 国产亚洲5aaaaa淫片| 男人添女人高潮全过程视频| 欧美xxxx黑人xx丫x性爽| 成人黄色视频免费在线看|