• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Investigation of Alkaline-Earth Phosphosilicate Glasses Containing Six-Coordinated Silicon by Solid-State NMR

    2020-04-24 05:42:16FengShiLiliHuJinjunRenQiuhongYangSchoolofMaterialsScienceandEngineeringShanghaiUniversityShanghai00444China
    物理化學(xué)學(xué)報 2020年4期

    Feng Shi , Lili Hu , Jinjun Ren ,*, Qiuhong Yang School of Materials Science and Engineering, Shanghai University, Shanghai 00444, P. R. China.

    2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.

    Abstract:Phosphate glass is widely used in optical applications; however,its generally low chemical stability and poor thermal mechanical properties hinder the application of phosphate glass to the rapidly evolving laser industry. The addition of a small amount of silicon can form a six-coordinate Si (Si(6)) network and improve the above-mentioned poor properties of phosphate glass. Therefore, it is important to characterize and understand the structural details of phosphosilicate glasses. It is difficult to investigate the glass structure because of its complicated and disordered characteristics.However, solid-state nuclear magnetic resonance (NMR) spectroscopy can provide detailed local structural information, regardless of the presence of its long-range order. To study the effect of alkaline earth metals on Si(6) species formation, we prepared phosphosilicate glasses (2MO-3P2O5)(1?x)·(SiO2)x(M = Ca, Sr, Ba) by conventional melt-quenching, and the glass structure was investigated by solid-state NMR and Raman spectroscopy. The 31P and 29Si NMR spectra indicated that the glass networks consisted of P(2) and P(3) tetrahedrons linked via four- and six-fold coordinated silicon units (Si(4) and Si(6)). The fraction of six-coordinated silicon Si(6) decreased with increasing SiO2 content. Similarly, the Raman spectra showed that the vibration band of the P=O stretching mode in P(3)linked with Si(6) neighbors reduced as the silica content increased. The connectivities between various phosphorus species were probed by 31P one- and two-dimensional refocused INADEQUATE experiments. This experimental technique is based on homonuclear J-coupling and yields correlation peaks between nuclei engaged in P―O―P linkages (P(2) and P(3) units).The signals from isolated 31P nuclei are suppressed because of the absence of J-coupling, which precludes the formation of double quantum coherences. The results indicated the segregation of P(2) and P(3) units in the prepared glass, which were also compared with those in the previously reported Na2O-P2O5-SiO2 glasses. They differed from alkali phosphosilicate glasses, where each P(3) unit exhibited a maximum average of one Si(6)―O―P(3) linkage, and in the alkaline earth phosphosilicate glasses, the average was approximately 0.4–0.7. When the content of Si(6) units reached its maximum, further increase in the SiO2 content did not increase the Si(6) content, and the surplus Si were present as Si(4).Alkaline earth metal ions exhibit weaker stabilizing effects for Si(6) species. Based on the results presented herein, we constructed sketches to illustrate the local structural organization of the glass. The relationships between the compositions and structures are important for glass composition and property design. It is important to improve the performance of phosphate glass by changing its composition, particularly for large laser device applications.

    Key Words:Solid state NMR;Glass structure;Six-coordination silica;Akaline-earth;Phosphosilicate glasses

    1 Introduction

    The properties of glass materials are strongly dependent on their compositions and concentrations involved. Usually, the performances of glasses are not simple superposition of corresponding constituents1–4, which has gathered much more attention of researchers to the interpretation of glasses structures.Mechanisms of property change can be explored effectively by clarifying glass structures. However, due to lack of any welldefined and repeating inter-connectivity patterns of the glass networks in the long range5, an exhaustive description of glasses structures is absent even for many simple glass systems.Researches on this issue are heavily focused on the local structures describing the short- and medium-range order of glass materials5–10. Recent years, various advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy technologies have been applied to characterize glass structures involving shortrange and medium-range features even for polybasic glasses11–16.Phosphate glasses with the addition of silicon is a major interest to the researchers for its six-coordinated Si (Si(6)) network former17,18. This is because a knowledge of the local structure of silicon in such glasses is profound to understand property changes in application environments. Such glasses are broadly used for the host material of optical devices, fiber communications and high-power/high-energy laser applications.Especially in the latter, the new generation of high-averagepower (HAP) laser glasses suffer a challenge for improving thermal shock resistance and assuring acceptable laser properties. The addition of silicon can well satisfy this requirement19–22. This is because Si(6)exist in these glasses. Si(6)can increase the network strength of glass structures much more significantly than Si(4). A small amount of Si(6)can greatly improve the thermo-mechanical properties and chemical stability of glasses25–31. Si(6)units have been observed in some phosphosilicate glasses and SiP2O7crystal23,24,27,30. Past studies suggest that Si(6)is dependent on the ratio of P/Si and modifying cations27–29. It was reported that the network modifiers, such as Na+ions, can stabilize Si(6)units via charge compensation in Na2O-P2O5-SiO2 glasses, and only low amounts of Si(6)units are being formed in binary SiO2-P2O5glasses18,30. Fleet et al.31,32reported that Si(6)is found to be largely independent on the details of the large cation sites in the glasses and the fraction of these sites occupied, based on the results from Si K-edge XANES. Recently, we have reported the detailed structural organization of29Si-rich sodium phosphosilicate glasses in the medium-range by comprehensive29Si and31P NMR techniques,and proposed a calculation model for quantitatively predicting the structural speciation based on glass compositions33. It makes sense for such a theoretical prediction route to be further extended to broader glass composition ranges.

    In this work, we attempted to explore the effect of alkaline earth on the formation of Si(6)and P(3)units in MO-P2O5-SiO2(M = Ca, Sr, Ba) glass systems. The structural information of these samples was obtained by31P and29Si MAS NMR and Raman spectroscopy. Distributions of the P(n)and the Si(n)units and formation of the Si(6)unit were discussed in terms of the modifying cations and concentration of SiO2, combined with previous research on sodium phosphosilicate glasses.

    2 Experimental

    2.1 Sample preparation and characterization

    The glass samples (2MO-3P2O5)(1?x)·(SiO2)x(M = Ca, Sr, Ba),with x = 0, 0.1, 0.15, 0.2, were prepared from mixtures of Ca(PO3)2(Taiyangkj, 99%), Ba(PO3)2(Taiyangkj, 99%),Sr(PO3)2(Taiyangkj, 99%), NH4H2PO4(Aladdin, 99%) and SiO2(Aladdin, 99.9%), and 0.1% (mole fraction) MnCO3(Aladdin,99%) were added in all batches to reduce the long T1relaxation time for both31P and29Si nuclei. The mixtures were pre-calcined at 500 °C in a platinum crucible for 1 h to remove NH3and H2O,and then melted for 20 min at 1100–1200 °C depending on the composition. The melts were subsequently cooled on a stainless steel plate to room temperature and stored in a drying cabinet.As-prepared samples are labeled as MPX, where M is C, S, and B for the CaO, SrO and BaO phosphosilicate glasses. X is corresponding to the mole fraction (%) of SiO2. The compositions were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), and results were summarized in Section 3.3. Raman spectra were collected from 400 to 1500 cm?1by a Renishaw inVia Raman microscope using a 488 nm argon-ion laser as an excitation source.

    2.2 Solid state NMR spectroscopy

    All of the NMR experiments were recorded at room temperature on a Bruker Avance III HD 500M spectrometer(11.7 T). Samples were ground to fine power in an agate mortar and packed into either 4 or 2.5 mm rotors. Spectrum deconvolutions were done with DMFIT software package34.31P MAS NMR were carried out at 202.5 MHz using a 4 mm MAS NMR probe operated at spinning rate of 12.0 kHz, with 90° pulse length of 4.5 μs and a recycle delay of 30 s. Chemical shifts are reported relative to 85% H3PO4.29Si MAS NMR experiments were acquired at a resonance frequency of 99.3 MHz, using a 4 mm MAS NMR probe operated at a spinning rate of 8 kHz. The 90° pulse length of 6 μs and a recycle delay of 300 s were used for up to 800–1600 scans depending on the compositions. The chemical shifts of the29Si were referenced to Tetrakis(tetramethyl) silicate silane. Different phosphorus units were further probed by31P MAS one-dimensional (1D) and twodimensional (2D) refocused INADEQUATE experiments.Those31P nucleus involved in the P―O―P connectivity can be selected by 1D-refocused INADEQUATE experiments35,36,whereas isolated P species were filtered out because of the absence of J-coupling in them precluding the formation of double quantum coherences. 1D-refocused INADEQUATE spectra were recorded at a spinning speed of 12.0 kHz with a 4 mm MAS probe, using 90° pulses of 4.3 μs length and a double quantum coherence buildup time of 2τ = 7.5 ms. The recycle delay is 30 s. All single-quantum coherences were suppressed by appropriate phase cycling. In 2D-refocused INADEQUATE experiments, the correlation peaks appear at the sum of the offset frequencies in F1 dimension, whereas the F2 dimension represents the regular double-quantum filtered one-pulse spectrum. Double quantum coherences involving two chemically equivalent P-atoms show autocorrelation signals on the diagonal. The pulse sequences and coherence transfer pathway are shown in Fig. 1. 2D INADEQUATE spectra were recorded on a 2.5 mm MAS NMR probe at a spinning speed of 25.0 kHz, using 90° pulses length of 2.2 μs and a recycle delay of 30 s. A double quantum coherence buildup time of 2τ = 9.14 ms was used.

    Fig. 1 Pulse sequence (top) and corresponding coherence transfer pathway (bottom) diagram of refocused INADEQUATE experiment.

    Fig. 2 Raman spectra of glass samples in(2MO-3P2O5)(1?x)·(SiO2)x system.

    3 Results and discussion

    3.1 Raman

    The Raman results of all glasses were shown in Fig. 2. The glasses without SiO2have four peaks which can be ascribed to symmetrical stretching modes of P―O―P at 640 cm?1, PO?2(P(2)) at 1160 cm?1, P=O (P(3)) at 1290 cm?1, and a weak peak at about 1330 cm?1, respectively. With the addition of SiO2,several changes were observed in the Raman spectra. A new shoulder peak at 1200 cm?1appears, which was attributed to the P=O symmetrical stretching modes of P(3)units with Si(6)in their next nearest coordinate shells37–40. The vibrational frequency of P=O stretching mode in P(3)linking with a Si(6)neighbors is lower than that in P(3)without Si(6)neighbors. This is because silicon is less electronegative than phosphorus39. The bands at about 1330 cm?1increase with the addition of SiO2.Similar peaks were observed in modifier-free phosphosilicate glasses39. They could be ascribed to the P=O stretching of Si(6)-related double single phosphorus center (O=P―O―P=O).

    3.2. 31P and 29Si MAS NMR

    Fig. 3 31P MAS NMR spectra.

    Table 1 31P and 29Si NMR spectral fitting parameters of glasses in the system (2MO-3P2O5)(1?x)·(SiO2)x shown in Fig. 3 and Fig. 5.

    Fig. 3 summarizes31P MAS NMR spectra of samples in(2MO-3P2O5)(1?x)·(SiO2)xsystem and the deconvolutions of the31P spectra of representative samples. The spectra show one main peak at around ?28 ppm and a shoulder at about ?38 ppm, which are assigned to P(2)and P(3)units, respectively. The fitting parameters of all the spectra are summarized in Table 1. These two signals in all spectra are generally analogous because of the constant ratio of P/M in original composition. However, some differences still can be observed as the addition of SiO2and the change of alkaline-earth oxides (MO). The fractions of P(3)units obviously increase when SiO2was added into the glasses. But when the content of SiO2increases from 10% to 20%, the fractions of P(3)units have no significant change. These can be interpreted to the presence of P(3)―O―Si(6)linkages. Our previous research on29Si-enriched sodium phosphosilicate glasses has proved that Si(6)connects exclusively with P(3)forming P(3)―O―Si(6)linkages33. During the formation of P(3)―O―Si(6)linkages, the glass modifiers are transferred from P(2)to the P(3)to stabilize the Si(6)units, resulting in the increase of P(3)units. When the content of Si(6)reaches a certain value,the increase of SiO2will not increase the content of Si(6)any more and the surplus silica will exist as Si(4). Subsequently, the P(3)units will not increase either33. Here, the P(3)fraction has almost no significant change when SiO2content changes from 10% to 20%, which indicates the content of Si(6)has reached the maximum value.

    Fig. 4 31P refocused INADEQUATE spectra of sample BPS10.

    Fig. 5 29Si MAS NMR spectra of samples in(2MO-3P2O5)(1?x)·(SiO2)x system.

    The information of connectivity between various phosphorus species can be provided by 2D refocused INADEQUATE spectrum. Fig. 4b shows the 2D refocused INADEQUATE spectrum of sample BPS10 as a representative. Note that autocorrelations of P(2)and P(3)dominate in the 2D spectra. Both the single pulse and 1D refocused INADEQUATE spectra (see Fig.4a) indicate that there is comparable P(2)and P(3)content.However, no significant cross-correlation between P(2)and P(3)species was observed, which indicates the segregation of P(2)and P(3)in the glasses.

    Fig. 5 shows29Si MAS NMR spectra of samples. Two signals are observed near ?115 and ?213 ppm, which should be ascribed to Si(4)and Si(6)units, respectively. There is a very weak signal at around ?166 ppm, which indicates there might be some Si(5)units in these glasses41–44. The fitting parameters of29Si NMR spectra are listed in Table 1. The Si(5)signals are too weak to fit.In all the three glass systems, the fraction of Si(6)decreases with increasing the content of SiO2,. Similar results were observed in the Na2O-SiO2-P2O5glass systems33,38. In the Na2O-SiO2-P2O5glass system, the Si(6)content increases up to the maximum value when SiO2reaches a certain value and, with furthermore increment of SiO2content, the surplus silica will exist as Si(4).Subsequently, the fraction of Si(6)decreases with the increase of SiO2content after Si(6)content reaches the maximum value.Please note that although the fraction of Si(6)decreases obviously, the content of Si(6), which equals to the fraction of Si(6)multiplying the content of SiO2, has not changed such much.This is because Si(6)content will be kept to the maximum value.The significant Si(4)signals here indicate that in these glasses Si(6)have reached their maximum values.

    3.3. Distributions of local structures

    Table 2 lists the fractions of P(3)and Si(6)units and related ratios in glasses from this work and relevant literatures. Previous studies on sodium phosphosilicate glasses have proved that one P(3)unit can have an average of one P(3)―O―Si(6)linkages at most and per Si(6)connects with six P(3)units through six P(3)―O―Si(6)linkages. Na+ions are necessary for the formation of Si(6)33. In order to study the effect of glass modifiers on the formation of Si(6)units, the [6Si(6)/P(3)] values are calculated and listed in Table 2. It could be found that in Na2O-P2O5-SiO2glass systems, when Si(6)content has reached the maximum value,which is indicated by the exist of Si(4)units in the glasses, the maximum [6Si(6)/P(3)] values are close to 1. This indicates that per P(3)unit can have maximum one P(3)―O―Si(6)linkages.However, here in the alkaline earth phosphosilicate glasses, the maximum values are close to 0.4–0.7, which is significantly smaller than that in Na2O-P2O5-SiO2glass systems. This indicates alkaline earth ions have much weaker stabilizing effect on the formation of Si(6)than Na+ions.The sketches of Si(6)and Si(4)are shown in Fig. 6 to illustrate glass structural organization.

    Table 2 Compositions, fractions of P(3) (±0.05) and Si(6) (±0.05) units, the content ratio of silicon and phosphorus, and the fraction ratio (±0.1) of Si(6) and P(3) in glass samples from this work and literature a.

    Fig. 6 The sketch of Si(4) (a) and Si(6) (b) in (2MO-3P2O5)(1?x)?(SiO2)x glass system.

    4 Conclusions

    In summary, we have studied the structure of (2MO-3P2O5)(1?x)·(SiO2)x(M = Ca, Sr, Ba) glasses by solid state NMR techniques. P(2), P(3), Si(6)and Si(4)structure units exist in these glasses. Segregations of P(2)and P(3)was observed. Si(6)units connect with P(3)units. In these alkaline earth phosphosilicate glass systems, average P(3)units can have at most 0.4–0.7 P(3)―O―Si(6)linkage. When the content of Si(6)units reaches the maximum value, the further increment of SiO2content will not continue to increase the content of Si(6). The surplus Si atoms will exist as Si(4). In Na2O-P2O5-SiO2glasses, per P(3)unit has a maximum of one Si(6)―O―P(3)linkage, which indicates that the alkaline earth metal ions have weaker effects on stabilizing Si(6).This work has developed the relationship between the glass compositions and structures of alkaline earth phosphosilicate glass systems. The results here could be used for the designs of glass compositions and properties.

    Acknowledgment:We thank Yongchun Xu for the ICPAES measurement and Sasa Yan for assistance with Roman spectroscopy.

    国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 国产高潮美女av| 26uuu在线亚洲综合色| 免费观看性生交大片5| 亚洲最大成人中文| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 久久久久精品性色| 夜夜爽夜夜爽视频| 国产永久视频网站| 综合色av麻豆| 在线 av 中文字幕| xxx大片免费视频| 精品国产三级普通话版| 亚洲婷婷狠狠爱综合网| 香蕉精品网在线| 人人妻人人爽人人添夜夜欢视频 | 性插视频无遮挡在线免费观看| 又爽又黄无遮挡网站| 免费av观看视频| 欧美精品人与动牲交sv欧美| 色哟哟·www| 亚洲av免费高清在线观看| 伊人久久国产一区二区| 在线天堂最新版资源| 久久久久精品久久久久真实原创| 国产精品福利在线免费观看| 国产精品国产三级国产av玫瑰| 深爱激情五月婷婷| 麻豆精品久久久久久蜜桃| 日韩欧美一区视频在线观看 | 亚洲经典国产精华液单| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 亚洲精品中文字幕在线视频 | 国产69精品久久久久777片| 国产又色又爽无遮挡免| 亚洲欧美精品专区久久| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 午夜免费观看性视频| 亚洲av欧美aⅴ国产| 欧美精品国产亚洲| 五月天丁香电影| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花 | 亚洲av中文字字幕乱码综合| 国产极品天堂在线| 久久99热这里只频精品6学生| 欧美3d第一页| 少妇高潮的动态图| 色吧在线观看| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 纵有疾风起免费观看全集完整版| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 搞女人的毛片| 亚洲伊人久久精品综合| 国产精品嫩草影院av在线观看| av在线老鸭窝| 国产高潮美女av| 一级a做视频免费观看| 麻豆成人午夜福利视频| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 极品教师在线视频| 国产白丝娇喘喷水9色精品| 视频区图区小说| 午夜福利视频精品| 国产一区有黄有色的免费视频| 国产精品久久久久久久电影| 有码 亚洲区| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 免费观看无遮挡的男女| 国产69精品久久久久777片| 免费看不卡的av| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 国产一级毛片在线| 国产老妇女一区| 国产精品一及| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 国产高潮美女av| 男女国产视频网站| 亚洲久久久久久中文字幕| 成人亚洲精品一区在线观看 | 中文精品一卡2卡3卡4更新| 一本一本综合久久| 大又大粗又爽又黄少妇毛片口| 成人毛片a级毛片在线播放| 亚洲欧洲日产国产| 免费看日本二区| 亚洲国产日韩一区二区| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 成人无遮挡网站| 国产精品麻豆人妻色哟哟久久| 亚洲第一区二区三区不卡| 一级片'在线观看视频| 水蜜桃什么品种好| 欧美+日韩+精品| 少妇被粗大猛烈的视频| 大香蕉97超碰在线| 91狼人影院| 亚洲成人中文字幕在线播放| 亚洲四区av| av专区在线播放| 免费高清在线观看视频在线观看| av卡一久久| 国产综合懂色| 永久免费av网站大全| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 人妻一区二区av| 3wmmmm亚洲av在线观看| 一本一本综合久久| 91狼人影院| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 亚洲在线观看片| 国产永久视频网站| av卡一久久| 天堂网av新在线| 亚洲av国产av综合av卡| 精品久久久久久久末码| 欧美97在线视频| 亚洲精品视频女| 69人妻影院| 91久久精品国产一区二区成人| 香蕉精品网在线| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 一级二级三级毛片免费看| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 爱豆传媒免费全集在线观看| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 五月伊人婷婷丁香| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 国产精品成人在线| 男插女下体视频免费在线播放| 国产探花在线观看一区二区| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 黄色欧美视频在线观看| 神马国产精品三级电影在线观看| videossex国产| 成人欧美大片| 亚洲伊人久久精品综合| 男人爽女人下面视频在线观看| 欧美高清成人免费视频www| 在线观看一区二区三区| 亚洲欧美日韩另类电影网站 | 你懂的网址亚洲精品在线观看| 精品久久久久久久久av| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃 | 白带黄色成豆腐渣| 国产一区亚洲一区在线观看| 久久久久久久大尺度免费视频| 国产熟女欧美一区二区| 欧美性感艳星| 国产色婷婷99| 成人国产麻豆网| 五月天丁香电影| 搞女人的毛片| 国产精品三级大全| 极品少妇高潮喷水抽搐| 免费看a级黄色片| 精品久久久久久久末码| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 性色av一级| 亚洲成人av在线免费| 亚洲av免费在线观看| 久久精品国产亚洲网站| 精品熟女少妇av免费看| 一区二区三区四区激情视频| 国产伦精品一区二区三区四那| 美女主播在线视频| 在现免费观看毛片| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 国产一区亚洲一区在线观看| 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| 国内少妇人妻偷人精品xxx网站| 夫妻午夜视频| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 热99国产精品久久久久久7| 色5月婷婷丁香| 一级毛片 在线播放| 久久久久性生活片| 日本黄大片高清| av国产精品久久久久影院| 在线观看一区二区三区激情| 免费播放大片免费观看视频在线观看| 国产片特级美女逼逼视频| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 久久久久久国产a免费观看| 在线免费十八禁| 白带黄色成豆腐渣| 久久综合国产亚洲精品| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件| 熟女人妻精品中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 乱系列少妇在线播放| 精品酒店卫生间| 精品久久国产蜜桃| 国产成人精品一,二区| 亚洲精品成人久久久久久| 中文乱码字字幕精品一区二区三区| 免费看光身美女| 亚洲av福利一区| 久久久久久久大尺度免费视频| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品| 国产精品99久久久久久久久| 欧美另类一区| 国产日韩欧美在线精品| 亚洲av男天堂| 狠狠精品人妻久久久久久综合| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 久久久久性生活片| 国产乱人视频| 亚洲最大成人手机在线| 九九在线视频观看精品| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 久久久久久伊人网av| 亚洲精品中文字幕在线视频 | 国产伦精品一区二区三区四那| 免费av毛片视频| 韩国高清视频一区二区三区| 亚洲激情五月婷婷啪啪| 人妻少妇偷人精品九色| 大话2 男鬼变身卡| 一级毛片我不卡| 麻豆成人av视频| 日韩av免费高清视频| 亚洲不卡免费看| 国产精品成人在线| 人妻系列 视频| 我的老师免费观看完整版| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 久久影院123| 日韩电影二区| 国产男人的电影天堂91| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 国产v大片淫在线免费观看| 男女啪啪激烈高潮av片| 禁无遮挡网站| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 人人妻人人看人人澡| 777米奇影视久久| 直男gayav资源| 亚洲成人精品中文字幕电影| 少妇熟女欧美另类| 在线观看av片永久免费下载| 国产精品久久久久久精品电影小说 | 国产免费福利视频在线观看| 亚洲国产最新在线播放| 色综合色国产| 超碰av人人做人人爽久久| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 亚洲av成人精品一区久久| 日本wwww免费看| 女人被狂操c到高潮| 中文字幕av成人在线电影| 亚洲综合精品二区| 国产av码专区亚洲av| av在线播放精品| 免费av观看视频| 精品久久久久久久久av| 成人欧美大片| 男女边吃奶边做爰视频| 99久久精品一区二区三区| 国产成年人精品一区二区| 内地一区二区视频在线| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 黄色视频在线播放观看不卡| 国产高潮美女av| 大码成人一级视频| 日本一本二区三区精品| 中国三级夫妇交换| 日本一本二区三区精品| 国产成人91sexporn| 国产精品蜜桃在线观看| eeuss影院久久| 免费看av在线观看网站| 成人黄色视频免费在线看| 99热全是精品| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 搞女人的毛片| av在线播放精品| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 人妻系列 视频| 免费观看av网站的网址| 亚洲精品国产av成人精品| 国产精品一区二区三区四区免费观看| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 深夜a级毛片| 久久精品久久久久久久性| 国产极品天堂在线| 在线免费观看不下载黄p国产| 国产免费一级a男人的天堂| 大香蕉97超碰在线| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 久久精品人妻少妇| a级毛色黄片| 国产黄色免费在线视频| 久久久久性生活片| 国产精品无大码| a级毛色黄片| 2022亚洲国产成人精品| 成年免费大片在线观看| 亚洲自拍偷在线| 欧美3d第一页| 国产 一区精品| 啦啦啦啦在线视频资源| 精品人妻视频免费看| 免费看av在线观看网站| 国产精品无大码| 欧美丝袜亚洲另类| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 亚洲精品日韩在线中文字幕| 国产美女午夜福利| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影 | 人妻系列 视频| 只有这里有精品99| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 中文字幕免费在线视频6| 美女主播在线视频| 亚洲av在线观看美女高潮| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 99久久精品热视频| 国产亚洲av片在线观看秒播厂| 日日撸夜夜添| 国产一区有黄有色的免费视频| 国产一区亚洲一区在线观看| a级一级毛片免费在线观看| a级毛片免费高清观看在线播放| 国产在线男女| 听说在线观看完整版免费高清| 看黄色毛片网站| 欧美国产精品一级二级三级 | 国产乱人偷精品视频| 七月丁香在线播放| 最近最新中文字幕大全电影3| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 成人亚洲欧美一区二区av| 亚洲欧美清纯卡通| 国产爱豆传媒在线观看| 成年免费大片在线观看| 最新中文字幕久久久久| 新久久久久国产一级毛片| 亚洲av免费在线观看| 国产探花在线观看一区二区| 搡老乐熟女国产| 日韩成人伦理影院| 91在线精品国自产拍蜜月| 国产黄片美女视频| 大香蕉97超碰在线| 男人舔奶头视频| 99热这里只有是精品在线观看| 国产 一区精品| 亚洲久久久久久中文字幕| 久久久久久久久大av| 97在线人人人人妻| av又黄又爽大尺度在线免费看| 成人一区二区视频在线观看| 日韩强制内射视频| 黄色配什么色好看| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 一级黄片播放器| av播播在线观看一区| 欧美极品一区二区三区四区| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 欧美高清成人免费视频www| 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 亚洲综合精品二区| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 草草在线视频免费看| 国产成人精品一,二区| 久久精品综合一区二区三区| 欧美+日韩+精品| 在线观看免费高清a一片| 高清午夜精品一区二区三区| 久久久久精品性色| 国产一区二区三区av在线| 亚洲精品乱码久久久v下载方式| 久久久久久久久大av| 精品视频人人做人人爽| 欧美日韩视频高清一区二区三区二| 黄色配什么色好看| 婷婷色综合www| 成人毛片a级毛片在线播放| 国产亚洲一区二区精品| 日本wwww免费看| 真实男女啪啪啪动态图| 亚洲精品国产成人久久av| 日韩国内少妇激情av| videossex国产| 我的老师免费观看完整版| 日本黄大片高清| 精品一区二区三区视频在线| 只有这里有精品99| 日本三级黄在线观看| 欧美精品国产亚洲| 欧美+日韩+精品| 国产免费一区二区三区四区乱码| 国产爱豆传媒在线观看| 国产精品蜜桃在线观看| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 成人二区视频| 18禁裸乳无遮挡动漫免费视频 | 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 国产乱来视频区| 国产精品av视频在线免费观看| 国产成人a区在线观看| 激情五月婷婷亚洲| 白带黄色成豆腐渣| 久久久久精品性色| 美女主播在线视频| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂 | 久久久久久久久大av| 国产伦精品一区二区三区四那| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 卡戴珊不雅视频在线播放| 网址你懂的国产日韩在线| 精品久久久久久久末码| 精品国产一区二区三区久久久樱花 | 亚洲av中文av极速乱| 久久人人爽人人片av| 中文欧美无线码| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看| 美女国产视频在线观看| 国产成人a区在线观看| 国产男女内射视频| 麻豆成人av视频| 视频中文字幕在线观看| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 一区二区三区乱码不卡18| av.在线天堂| 秋霞在线观看毛片| 国产精品久久久久久精品电影| 国产在线男女| 美女内射精品一级片tv| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| a级毛片免费高清观看在线播放| 白带黄色成豆腐渣| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 国产av国产精品国产| 国内精品美女久久久久久| 一级av片app| 国产精品人妻久久久影院| 在线精品无人区一区二区三 | 精品久久久噜噜| 超碰av人人做人人爽久久| 日本免费在线观看一区| 热re99久久精品国产66热6| 免费不卡的大黄色大毛片视频在线观看| 中文资源天堂在线| 日韩欧美精品免费久久| 免费看a级黄色片| 老师上课跳d突然被开到最大视频| 在线观看国产h片| 在线a可以看的网站| 久久精品国产亚洲网站| 色吧在线观看| 国产精品99久久久久久久久| 久久久色成人| 26uuu在线亚洲综合色| 日韩一区二区视频免费看| 一二三四中文在线观看免费高清| 日韩人妻高清精品专区| 九九爱精品视频在线观看| 欧美少妇被猛烈插入视频| 看十八女毛片水多多多| 亚洲精品成人av观看孕妇| 亚洲国产av新网站| 午夜免费男女啪啪视频观看| 亚洲婷婷狠狠爱综合网| 欧美亚洲 丝袜 人妻 在线| 97在线人人人人妻| 欧美性感艳星| 在线看a的网站| 嘟嘟电影网在线观看| 大片电影免费在线观看免费| www.av在线官网国产| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 国产精品人妻久久久久久| 亚洲va在线va天堂va国产| 亚洲自拍偷在线| 国产免费又黄又爽又色| 国产高清有码在线观看视频| 国产高潮美女av| 别揉我奶头 嗯啊视频| 中国国产av一级| 亚洲第一区二区三区不卡| 国产一级毛片在线| 一级a做视频免费观看| 国产欧美日韩精品一区二区| 春色校园在线视频观看| 蜜臀久久99精品久久宅男| 日本一本二区三区精品| 久久6这里有精品| 国产乱人视频| 在线观看人妻少妇| 在线观看三级黄色| 午夜免费男女啪啪视频观看| 一级毛片久久久久久久久女| 1000部很黄的大片| 99久久人妻综合| 我要看日韩黄色一级片| 日本黄大片高清| 亚洲精品乱码久久久v下载方式| 舔av片在线| 人妻夜夜爽99麻豆av| 丝瓜视频免费看黄片| 欧美性感艳星| 交换朋友夫妻互换小说| 熟妇人妻不卡中文字幕| 久久ye,这里只有精品| 制服丝袜香蕉在线| 亚洲不卡免费看| 超碰av人人做人人爽久久| 成人毛片a级毛片在线播放| 尤物成人国产欧美一区二区三区| 综合色丁香网| 中文天堂在线官网| videos熟女内射| 最近中文字幕高清免费大全6| 日韩av在线免费看完整版不卡| 日本一本二区三区精品| 久久韩国三级中文字幕| 蜜臀久久99精品久久宅男| 青春草视频在线免费观看| 一区二区三区免费毛片| 国产精品无大码|