吳小華,馬淵博,寧旭丹,王 鵬,張振濤
西洋參分段式熱風(fēng)干燥動(dòng)力學(xué)模型構(gòu)建
吳小華1,馬淵博1,寧旭丹1,王 鵬1,張振濤2
(1. 北京石油化工學(xué)院,深水油氣管線關(guān)鍵技術(shù)與裝備北京市重點(diǎn)實(shí)驗(yàn)室, 北京 102617;2. 中國(guó)科學(xué)院理化技術(shù)研究所,北京 100080)
針對(duì)直接將干燥時(shí)間帶入干燥動(dòng)力學(xué)模型無(wú)法準(zhǔn)確得到分段式干燥各干燥階段水分比的問(wèn)題,提出了一種適用于分段式干燥的干燥動(dòng)力學(xué)模型計(jì)算方法,可用于分析分段式干燥過(guò)程中水分比變化規(guī)律。對(duì)西洋參進(jìn)行了干燥試驗(yàn)研究并對(duì)試驗(yàn)結(jié)果進(jìn)行了非線性擬合,表明Modified Page模型適用于西洋參熱風(fēng)干燥的干燥動(dòng)力學(xué);通過(guò)對(duì)干燥條件和干燥常數(shù)的線性回歸分析得到了偏回歸系數(shù),基于該偏回歸系數(shù)對(duì)西洋參分段式干燥過(guò)程進(jìn)行分析,得到了西洋參分段式熱風(fēng)干燥中各段的干燥動(dòng)力學(xué)模型。利用所提出的計(jì)算方法對(duì)西洋參分段式干燥過(guò)程中水分比變化情況進(jìn)行了計(jì)算,并將計(jì)算結(jié)果與西洋參分段式熱風(fēng)干燥試驗(yàn)結(jié)果進(jìn)行了對(duì)比分析,發(fā)現(xiàn)計(jì)算結(jié)果與試驗(yàn)結(jié)果最大相對(duì)誤差為7.44%,平均相對(duì)誤差僅為1.78%。表明所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法可用于分析西洋參干燥過(guò)程中的水分比變化。
干燥;動(dòng)力學(xué);模型;分段式干燥;水分比;西洋參
熱風(fēng)干燥是應(yīng)用最廣泛的農(nóng)產(chǎn)品加工方法之一[1]。常用熱風(fēng)干燥包括干燥條件不變的一段式干燥和干燥條件變化的分段式干燥[2]。一段式干燥是在干燥過(guò)程中干燥條件(溫度、相對(duì)濕度等)始終不變的干燥方法;分段式干燥是指基于物料的干燥特性,將干燥過(guò)程分為不同的階段,每一階段依據(jù)工藝要求干燥條件發(fā)生相應(yīng)變化的干燥方法[3]。分段式干燥過(guò)程的條件設(shè)定充分考慮了物料的干燥特性,有利于提高干燥產(chǎn)品品質(zhì),縮短干燥時(shí)長(zhǎng),降低干燥能耗[4],是一種廣泛應(yīng)用于實(shí)際干燥生產(chǎn)的方法。
干燥動(dòng)力學(xué)模型可用于分析干燥過(guò)程中物料水分變化規(guī)律[5],闡明物料的干燥規(guī)律,為干燥工藝的制定提供依據(jù)。最常用的理論模型是基于Fick第二定律的擴(kuò)散模型,該模型可用來(lái)描述降速干燥過(guò)程[6]。但擴(kuò)散模型的方程形式復(fù)雜,應(yīng)用不方便。研究人員在擴(kuò)散模型的基礎(chǔ)上,結(jié)合干燥動(dòng)力學(xué)試驗(yàn)提出了多種半經(jīng)驗(yàn)?zāi)P?,主要包括Henderson and Pabis模型,Lewis模型,Page模型,以及Modified Page模型等[6-7]。這些半經(jīng)驗(yàn)?zāi)P褪抢碚撃P偷暮?jiǎn)化式,方程形式較為簡(jiǎn)單,同時(shí)可較為準(zhǔn)確的分析干燥物料水分蒸發(fā)規(guī)律,因而得到了廣泛的應(yīng)用[8]?,F(xiàn)階段國(guó)內(nèi)外眾多學(xué)者已針對(duì)干燥動(dòng)力學(xué)模型展開(kāi)廣泛研究。王鳳賀等[9]研究了油茶籽熱風(fēng)干燥特性,比較了多種干燥模型在油茶籽干燥中的適用性,發(fā)現(xiàn)Lewis模型在油茶籽熱風(fēng)干燥中適用性最高。錢旺等[10]進(jìn)行了太陽(yáng)能牧草干燥動(dòng)力學(xué)研究,并借助干燥動(dòng)力學(xué)模型優(yōu)化了太陽(yáng)能牧草干燥工藝。于鎮(zhèn)偉等[11]研究了干燥溫度對(duì)有機(jī)污泥干燥速率及其他干燥特性參數(shù)的影響,并最終確定Logarithmic模型在有機(jī)污泥干燥中適用性較高。Dotto等[12]利用干燥動(dòng)力學(xué)模型,研究了木瓜種子干燥過(guò)程中的傳質(zhì)過(guò)程,分析了不同溫度和含水率對(duì)有效擴(kuò)散系數(shù)的影響。Nadi等[13]研究了蘋果真空干燥過(guò)程中的含水率變化規(guī)律并建立了干燥動(dòng)力學(xué)模型。Amer等[14]研究了黃春菊在太陽(yáng)能干燥下的水分變化規(guī)律并建立干燥動(dòng)力學(xué)模型。Andrade等[15]對(duì)芒果種子干燥進(jìn)行了干燥動(dòng)力學(xué)模型研究,發(fā)現(xiàn)芒果種子活化能與木質(zhì)纖維素相似。Xiao等[16]通過(guò)西洋參干燥動(dòng)力學(xué)模型研究了西洋參干燥過(guò)程顏色的變化規(guī)律。Jian等[17]針對(duì)紅蕓豆在不同溫度及相對(duì)濕度條件下干燥的水分變化規(guī)律擬合得出Modified Page模型是描述紅蕓豆干燥過(guò)程的最佳干燥動(dòng)力學(xué)模型,并研究了新的干燥動(dòng)力學(xué)模型評(píng)測(cè)方法。已有大量文章和研究都對(duì)干燥物料進(jìn)行了干燥動(dòng)力學(xué)模型分析并進(jìn)行干燥特性研究、工藝設(shè)計(jì)和設(shè)備應(yīng)用[5-19],但對(duì)如何準(zhǔn)確應(yīng)用干燥動(dòng)力學(xué)模型分析分段式干燥過(guò)程分析不夠深入,難以應(yīng)用干燥動(dòng)力學(xué)模型分析分段式干燥過(guò)程。
針對(duì)分段式干燥無(wú)法直接將干燥時(shí)間帶入干燥動(dòng)力學(xué)模型求得各干燥階段水分比的問(wèn)題,本文提出了一種適用于分段式干燥的干燥動(dòng)力學(xué)模型計(jì)算方法,并以西洋參為例進(jìn)行分段式干燥試驗(yàn),將試驗(yàn)結(jié)果與該方法計(jì)算結(jié)果進(jìn)行對(duì)比,驗(yàn)證該方法準(zhǔn)確性,以期為預(yù)測(cè)干燥過(guò)程中西洋參水分變化及設(shè)計(jì)西洋參干燥工藝提供參考。
物料干燥受介質(zhì)溫度、相對(duì)濕度[17]等干燥條件和物料尺寸、組織結(jié)構(gòu)[20],化學(xué)成分等物料本身特性的影響,是一個(gè)復(fù)雜的傳熱傳質(zhì)過(guò)程。研究干燥物料的干燥模型對(duì)分析干燥規(guī)律,改進(jìn)干燥工藝參數(shù)有重要意義。常用的干燥模型有Lewis、Page、Modified Page、Henderson and Pabis等[21],其模型表達(dá)式如表1所示。
表1 常用干燥動(dòng)力學(xué)模型
注:MR代表水分比;代表干燥時(shí)間,h;、、分別為干燥模型中干燥常數(shù)。
Note: MR stands for moisture ratio;stands for drying time, h;,andare the drying constants in the drying model.
干燥動(dòng)力學(xué)模型描述物料含水率的主要參數(shù)包括水分比(MR)和干基含水率(M)。物料的水分比(MR)的計(jì)算方法如式(1)所示[22]
式中MR為水分比;M為任意時(shí)刻的干基含水率,g/g;M為干燥到平衡時(shí)的干基含水率,g/g;M為初始干基含水率,g/g。
干基含水率M的計(jì)算公式如式(2)所示
式中W為任意時(shí)刻總質(zhì)量,g;為干物質(zhì)質(zhì)量,g。
干燥動(dòng)力學(xué)模型方程是描述干燥時(shí)間與物料水分比之間關(guān)系的連續(xù)方程。在分析過(guò)程中,對(duì)采取的干燥物料的水分比變化規(guī)律與常用干燥模型擬合得出一種最為符合的干燥動(dòng)力學(xué)模型。在干燥過(guò)程中,干燥條件(溫度、相對(duì)濕度等)不同,干燥動(dòng)力學(xué)模型的干燥常數(shù)也不相同。
在一段式干燥過(guò)程中,將干燥條件對(duì)應(yīng)的干燥常數(shù)和干燥時(shí)間直接代入干燥動(dòng)力學(xué)模型方程即可求得該干燥過(guò)程中任意時(shí)刻對(duì)應(yīng)的水分比。但在分段式干燥過(guò)程中,由于各階段干燥條件不同,干燥動(dòng)力學(xué)模型中的干燥常數(shù)也不相同。將階段交替時(shí)間分別代入先后兩階段干燥常數(shù)不同的干燥動(dòng)力學(xué)模型會(huì)發(fā)現(xiàn),對(duì)于同一時(shí)間,在階段交替前后水分比不同,這與實(shí)際干燥水分比連續(xù)變化的情況不符。如圖1所示,圖中縱軸表示水分比,橫軸表示干燥時(shí)間,曲線是分段式干燥第一階段干燥條件下干燥動(dòng)力學(xué)模型曲線,段為第一階段實(shí)際干燥過(guò)程,用時(shí)Δt,曲線是分段式干燥第二干燥階段干燥條件下干燥動(dòng)力學(xué)模型曲線。當(dāng)?shù)谝浑A段干燥結(jié)束向第二階段干燥過(guò)程轉(zhuǎn)變時(shí),處于同一時(shí)刻的點(diǎn)與點(diǎn)水分比不同,與實(shí)際干燥過(guò)程不符。
注:曲線A為分段式干燥第一階段干燥條件下干燥動(dòng)力學(xué)模型曲線;曲線B為分段式干燥第二干燥階段干燥條件下干燥動(dòng)力學(xué)模型曲線;點(diǎn)o為干燥過(guò)程起始點(diǎn);點(diǎn)p為第一階段干燥結(jié)束時(shí)的水分比狀態(tài)點(diǎn);點(diǎn)q是與p點(diǎn)干燥時(shí)間相同但采用第二階段干燥條件干燥的水分狀態(tài)點(diǎn)。
針對(duì)上述問(wèn)題,提出了一種分段式干燥動(dòng)力學(xué)模型計(jì)算方法,將分段式干燥過(guò)程中水分比相同的兩點(diǎn)視為連續(xù)的兩點(diǎn),即將干燥條件參數(shù)代入干燥動(dòng)力學(xué)模型計(jì)算時(shí),前后兩階段交替點(diǎn)變?yōu)槟P退直认嗤膬牲c(diǎn),而非不同干燥常數(shù)的干燥動(dòng)力學(xué)模型中同一時(shí)刻的兩點(diǎn)?;谝陨侠斫?,現(xiàn)認(rèn)為在分段式干燥工藝中,不同階段模型中物料同一水分對(duì)應(yīng)的干燥時(shí)間不同。因此,以Page模型為例進(jìn)行分段式干燥不同階段間時(shí)間關(guān)系換算,如式(3)、(4)、(5)所示,求得同一水分比在不同干燥條件對(duì)應(yīng)干燥模型中與時(shí)間的對(duì)應(yīng)關(guān)系。式中下標(biāo)1、2代表所處干燥階段。其余干燥模型階段間時(shí)間換算關(guān)系如表2所示,其中1、2代表分段式干燥中階段交替點(diǎn)分別在前后兩階段的干燥動(dòng)力學(xué)模型中對(duì)應(yīng)的時(shí)間。干燥前一階段干燥至1時(shí)結(jié)束,需要將1換算至2再帶入下一段干燥動(dòng)力學(xué)模型。
式中1,1為第一階段干燥條件對(duì)應(yīng)的干燥常數(shù);2,2為第二階段干燥條件對(duì)應(yīng)的干燥常數(shù);1為階段交替點(diǎn)在第一階段干燥模型中對(duì)應(yīng)干燥時(shí)間,h;2為階段交替點(diǎn)在第二階段干燥模型中對(duì)應(yīng)干燥時(shí)間,h。
根據(jù)上述公式原理,將分段式干燥常用干燥動(dòng)力學(xué)模型時(shí)間換算如表2所示。
表2 分段式干燥常用模型時(shí)間換算關(guān)系
注:1為階段交替點(diǎn)在前一階段干燥模型中對(duì)應(yīng)的干燥時(shí)間,h;2為階段交替點(diǎn)在后一階段干燥模型中對(duì)應(yīng)的干燥時(shí)間,h;1、1、1分別為前一階段干燥模型中干燥常數(shù);2、2、2分別為后一階段干燥模型中干燥常數(shù)。
Note:1is the drying time corresponding to the phase change point in the previous drying model, h;2is the drying time corresponding to the phase change point in the latter drying model;1,1and1are the drying constants in the previous drying stage;2,2and2are the drying constants in the latter drying stage.
分段式干燥雖然在各階段干燥條件發(fā)生了變化,但干燥過(guò)程中水分比的變化依然是一個(gè)連續(xù)的過(guò)程,即階段交替時(shí)前一階段結(jié)束點(diǎn)與下一階段起始點(diǎn)時(shí)間連續(xù),水分比相同,因此當(dāng)水分比變化圖中橫軸代表時(shí)間段、縱軸代表水分比時(shí),階段交替點(diǎn)兩條曲線會(huì)交叉重合。如圖2所示,橫軸代表干燥所耗時(shí)間,縱軸代表水分比,曲線是分段式干燥第一干燥階段干燥條件下干燥動(dòng)力學(xué)模型水分比變化曲線,段為第一階段實(shí)際干燥過(guò)程,用時(shí)Δop;曲線是分段式干燥第二干燥階段干燥條件下干燥動(dòng)力學(xué)模型水分比變化曲線,第二階段干燥起始點(diǎn)為,其與點(diǎn)的水分比相同,第二階段干燥過(guò)程用時(shí)Δrs。全部干燥用時(shí)為第一階段干燥用時(shí)Δop與第二階段干燥用時(shí)Δrs之和。
注:點(diǎn)r是與p點(diǎn)水分比相同但干燥的水分狀態(tài)點(diǎn);點(diǎn)s是以r為階段起點(diǎn)進(jìn)行第二階段干燥后的干燥終點(diǎn)。
為應(yīng)用干燥動(dòng)力學(xué)模型分析分段式干燥,需要在干燥階段交替時(shí)根據(jù)前一干燥階段結(jié)束時(shí)的水分比換算出后一階段在干燥動(dòng)力學(xué)模行中的起始時(shí)間,各階段的干燥時(shí)間之和即為總干燥時(shí)長(zhǎng)。
西洋參是一種較為名貴的中藥,目前常用熱風(fēng)干燥技術(shù)干燥西洋參[23]。由于西洋參干燥品質(zhì)要求較高,常采用分段式干燥加工工藝[24]。為驗(yàn)證所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法,現(xiàn)以西洋參為例,需先進(jìn)行多組干燥條件不同的一段式干燥試驗(yàn)[25],建立干燥動(dòng)力學(xué)模型;之后再進(jìn)行西洋參分段式驗(yàn)證干燥試驗(yàn),利用建立的干燥動(dòng)力學(xué)模型和本文提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法計(jì)算分段式干燥過(guò)程中的水分比變化。對(duì)計(jì)算結(jié)果與試驗(yàn)結(jié)果間進(jìn)行對(duì)比分析,驗(yàn)證計(jì)算方法準(zhǔn)確性。本研究的試驗(yàn)條件包括溫度、相對(duì)濕度和西洋參直徑[26-27]。
KK/HWS-系列恒溫恒濕試驗(yàn)箱,系統(tǒng)通過(guò)內(nèi)部熱泵蒸發(fā)器冷凝除濕,控制精度為溫度±0.5 ℃、相對(duì)濕度±3%、風(fēng)速2 m/s,南京貝登醫(yī)療股份有限公司;JA203H型電子天平,精度±0.001 g、XY-100MW鹵素水分測(cè)定儀,精度±0.001 g,常州幸運(yùn)電子設(shè)備股份有限公司。
試驗(yàn)采用吉林省長(zhǎng)白山的西洋參,于2018年9月采購(gòu),選擇大小均勻、色澤一致,新鮮且無(wú)蟲(chóng)蛀、發(fā)霉等損壞現(xiàn)象的新鮮4年生西洋參,西洋參初始含水率約為68%。
為建立西洋參干燥動(dòng)力學(xué)模型,驗(yàn)證本文提出計(jì)算方法,分別設(shè)計(jì)了8組一段式西洋參干燥試驗(yàn)和一組多段式驗(yàn)證試驗(yàn)。一段式試驗(yàn)影響因素主要包括氣流溫度,氣流相對(duì)濕度及西洋參直徑等,試驗(yàn)過(guò)程中風(fēng)速為2 m/s,可滿足驗(yàn)證本文所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法準(zhǔn)確性的需求。風(fēng)速作為熱風(fēng)干燥的重要參數(shù)之一,將作為我們進(jìn)一步深入開(kāi)展研究的內(nèi)容。各組試驗(yàn)對(duì)應(yīng)的干燥條件如表3所示。
表3 西洋參一段式干燥試驗(yàn)條件
西洋參生產(chǎn)中常用干燥溫度范圍為32~42 ℃,本試驗(yàn)設(shè)置溫度范圍為32~45 ℃,相對(duì)濕度范圍為20%~40%,直徑范圍包括10、15、20、25 mm共4種規(guī)格,共進(jìn)行了8組西洋參干燥特性試驗(yàn),試驗(yàn)過(guò)程中每3 h記錄一次物料含水率,當(dāng)3 h內(nèi)水分比變化值小于0.005時(shí),認(rèn)為干燥過(guò)程結(jié)束。干燥過(guò)程中各組西洋參水分比隨時(shí)間變化如圖3所示。
圖3 西洋參干燥試驗(yàn)水分比變化曲線
分別用Lewis、Page、Modified Page、Henderson and Pabis干燥動(dòng)力學(xué)模型,對(duì)西洋參一段式試驗(yàn)中8組試驗(yàn)數(shù)據(jù)進(jìn)行擬合分析,求得各干燥條件下西洋參干燥常數(shù),并將擬合優(yōu)度最高的干燥動(dòng)力學(xué)模型作為西洋參干燥動(dòng)力學(xué)模型。
從表4~表6中可以看出,總體上在各干燥條件下Modified Page模型決定系數(shù)2的值最高,殘差平方和值更小,擬合優(yōu)度最高,因此選定Modified Page模型為西洋參干燥動(dòng)力學(xué)模型。
表4 溫度38 ℃、相對(duì)濕度30%情況下不同直徑的干燥模型對(duì)應(yīng)常數(shù)項(xiàng)和回歸系數(shù)
表5 直徑15 mm、相對(duì)濕度30%情況下不同溫度的干燥模型對(duì)應(yīng)常數(shù)項(xiàng)和回歸系數(shù)
表6 直徑15 mm、溫度38 ℃情況下不同相對(duì)濕度的干燥模型對(duì)應(yīng)常數(shù)項(xiàng)和回歸系數(shù)
為確定干燥動(dòng)力學(xué)模型中干燥常數(shù)與干燥條件之間的關(guān)系,現(xiàn)利用SPSS軟件對(duì)干燥條件與干燥常數(shù)進(jìn)行線性分析,關(guān)系可表示為
式中為溫度,℃,為相對(duì)濕度,%,為西洋參直徑,mm,1、2、3、4及1、2、3、4為偏回歸系數(shù)。利用SPSS軟件分析發(fā)現(xiàn),干燥條件與干燥常數(shù)之間的顯著性參數(shù)小于0.05,兩者之間線性關(guān)系顯著。
根據(jù)式(8)、(9)分析結(jié)果,即可得到在溫度32~45 ℃、相對(duì)濕度20%~40%、直徑10~25 mm時(shí),西洋參熱風(fēng)干燥動(dòng)力學(xué)模型干燥常數(shù)。當(dāng)干燥條件超出這一范圍時(shí),式(8)和式(9)將不再適用。上述范圍是經(jīng)充分調(diào)研吉林省撫松地區(qū)西洋參加工企業(yè)工程技術(shù)人員后確定的,已盡可能包含道地高品質(zhì)西洋參干燥加工適用的溫濕度范圍。
在廣泛調(diào)研撫松地區(qū)高品質(zhì)西洋參加工工藝后發(fā)現(xiàn),在西洋參實(shí)際干燥加工工程中,為保證加工后西洋參的切片品質(zhì),一般采用從低溫向高溫逐步升溫的分段式干燥工藝。本文試驗(yàn)設(shè)計(jì)參照了這一加工過(guò)程。
分段式試驗(yàn)中干燥條件隨時(shí)間變化,試驗(yàn)條件如表7所示。試驗(yàn)過(guò)程中記錄西洋參的初始質(zhì)量,并每隔3 h測(cè)量西洋參實(shí)時(shí)質(zhì)量,將測(cè)量結(jié)果按式(1)和式(2)進(jìn)行干基含水率及水分比的換算,得出水分比變化規(guī)律,如圖4所示。
表7 分段式西洋參干燥試驗(yàn)條件
圖4 西洋參分段式干燥試驗(yàn)水分比變化曲線
本文研究重點(diǎn)是提出了一種適用于分段式干燥的干燥動(dòng)力學(xué)模型構(gòu)建和計(jì)算方法研究,并對(duì)該方法進(jìn)行驗(yàn)證。最佳干燥工藝不是本文研究的重點(diǎn),但本文提出的適用于分段式干燥的干燥動(dòng)力學(xué)模型構(gòu)建和計(jì)算方法研究可為最佳工藝設(shè)計(jì)過(guò)程中的水分比預(yù)測(cè)提供借鑒。
為驗(yàn)證所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法的準(zhǔn)確性,依據(jù)表7所列試驗(yàn)條件,用所提出的分段式干燥動(dòng)力學(xué)模型對(duì)西洋參水分比進(jìn)行計(jì)算,并將分段式干燥水分比變化情況計(jì)算結(jié)果與試驗(yàn)結(jié)果進(jìn)行了對(duì)比研究,如表8所示。
實(shí)際干燥時(shí)間指在干燥過(guò)程中的實(shí)際用時(shí);模型換算時(shí)間是指根據(jù)該點(diǎn)水分比換算出的對(duì)應(yīng)階段的恒定條件干燥模型中的時(shí)間,供分段式干燥模型計(jì)算使用。
表8 計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比
由表8可以看出,計(jì)算結(jié)果與試驗(yàn)結(jié)果最大相對(duì)誤差為7.44%,平均相對(duì)誤差僅為1.78%,其平均相對(duì)誤差較小且僅出現(xiàn)一次較大相對(duì)誤差。分析結(jié)果表明本文所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法可用于預(yù)測(cè)分段式干燥物料水分比變化,且由于西洋參分段式干燥驗(yàn)證試驗(yàn)結(jié)果與所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法計(jì)算所得的結(jié)果吻合較好,未進(jìn)行重復(fù)性試驗(yàn)。
1)為解決將干燥時(shí)間直接代入分段式干燥各段干燥動(dòng)力學(xué)模型時(shí)會(huì)出現(xiàn)的同一時(shí)刻計(jì)算得到的水分比不同問(wèn)題,提出了一種分段式干燥動(dòng)力學(xué)模型計(jì)算方法,適用于分段式干燥過(guò)程中水分比變化規(guī)律分析。
2)以西洋參為例,開(kāi)展了西洋參干燥特性試驗(yàn),建立了西洋參干燥動(dòng)力學(xué)模型。以干燥溫度、相對(duì)濕度和西洋參直徑為變量,進(jìn)行了多組一段式西洋參干燥試驗(yàn)研究,對(duì)試驗(yàn)數(shù)據(jù)的擬合發(fā)現(xiàn)Modified Page模型是最適用于西洋參熱風(fēng)干燥的干燥動(dòng)力學(xué)模型;通過(guò)對(duì)干燥條件和干燥常數(shù)進(jìn)行線性回歸分析,得到了偏回歸系數(shù);基于該偏回歸系數(shù)對(duì)西洋參分段式干燥過(guò)程進(jìn)行分析,得到了西洋參分段式熱風(fēng)干燥中各段的干燥動(dòng)力學(xué)模型,并結(jié)合本文提出的計(jì)算方法進(jìn)行了分段式干燥過(guò)程中水分比計(jì)算。
3)開(kāi)展了西洋參分段式熱風(fēng)干燥驗(yàn)證試驗(yàn),試驗(yàn)結(jié)果與采用本文所提出的計(jì)算方法得到的計(jì)算結(jié)果對(duì)比發(fā)現(xiàn),平均相對(duì)誤差僅為1.78%,表明所提出的分段式干燥動(dòng)力學(xué)模型計(jì)算方法可用于分析西洋參干燥過(guò)程中的水分比變化,對(duì)分析分段式干燥過(guò)程水分變化,優(yōu)化西洋參干燥工藝具有指導(dǎo)意義。
由于干燥能耗與品質(zhì)指標(biāo)不是本文研究關(guān)注的重點(diǎn),沒(méi)有專門針對(duì)干燥能耗與品質(zhì)指標(biāo)開(kāi)展研究。
[1] 朱文學(xué). 食品干燥原理與技術(shù)[M]. 北京:科學(xué)出版社,2009.
[2] 吳中華,李文麗,趙麗娟,等. 枸杞分段式變溫?zé)犸L(fēng)干燥特性及干燥品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):287-293.
Wu Zhonghua, Li Wenli, Zhao Lijuan, et al. Drying characteristics and product quality of Lycium barbarum under stages-varying temperatures drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 287-293. (in Chinese with English abstract)
[3] 王慶惠,李忠新,楊勁松,等. 圣女果分段式變溫變濕熱風(fēng)干燥特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):271-276.
Wang Qinghui, Li Zhongxin, Yang Jinsong, et al. Dried characteristics of cherry tomatoes using temperature and humidity by stages changed hot-air drying method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 271-276. (in Chinese with English abstract)
[4] 朱德泉,馬錦,蔣銳,等. 山核桃堅(jiān)果分段變功率微波干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):268-274.
Zhu Dequan, Ma Jin, Jiang Rui, et al. Parameter optimization of hickory nut drying by phased varying power microwave[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 268-274. (in Chinese with English abstract)
[5] 唐小閑. 馬蹄淀粉微波間歇干燥特性及工藝優(yōu)化研究[D].大連:大連工業(yè)大學(xué),2017.
Tang Xiaoxian. Research on Intermittent Microwave Drying Properties and the Process Optimization of Water Chestnut Starch[D]. Dalian: Dalian Polytechnic University, 2017. (in Chinese with English abstract)
[6] Giraudo A, Valentini N, Venturello A, et al. Kinetic modeling of hazelnut drying: Effects of different cultivars and drying parameters[J]. Journal of Food Process Engineering, 2018, 41(1): 1-9.
[7] 王漢羊,劉丹,于海明. 山藥微波熱風(fēng)耦合干燥特性及動(dòng)力學(xué)模型[J]. 食品科學(xué),2018,39(15):115-121.
Wang Hanyang, Liu Dan, Yu Haiming. Drying characteristics and kinetic model of chinese yam using microwave coupled with hot air[J]. Journal of Food Science, 2018, 39(15): 115-121. (in Chinese with English abstract)
[8] 楊瀟瀟,叢堃林,張衍國(guó),等. 木薯高/低溫二段式干燥工藝參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):272-277.
Yang Xiaoxiao, Cong Kunlin, Zhang Yanguo, et al. Optimization experiment on two-stage drying process of high and low temperatures for cassavas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 272-277. (in Chinese with English abstract)
[9] 王鳳賀,丁冶春,陳鵬梟,等. 油茶籽熱風(fēng)干燥動(dòng)力學(xué)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(S1):433-439.
Wang Fenghe, Ding Yechun, Chen Pengxiao, et al. Investigation on hot-air drying of camellia oleifera seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 433-439. (in Chinese with English abstract)
[10] 錢旺,楊世昆,劉貴林,等. 太陽(yáng)能牧草干燥成套設(shè)備干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):110-118.
Qian Wang, Yang Shikun, Liu Guilin, et al. Optimization of drying process parameters of solar herbage dry equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 110-118. (in Chinese with English abstract)
[11] 于鎮(zhèn)偉,陳坤杰,高崎,等. 有機(jī)污泥干燥特性與干燥模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017, 48(10):291-296.
Yu Zhenwei, Chen Kunjie, Gao Qi, et al. Drying characteristics and mathematical modeling of organic sludge[J]. Transactions of the Chinese society for Agricultural Machinery, 2017, 48(10): 291-296. (in Chinese with English abstract)
[12] Dotto G L, Meili L, Tanabe E H, et al. Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models[J]. Heat and Mass Transfer, 2018, 54(2): 463-471.
[13] Nadi F, Tzempelikos D. Vacuum drying of apples (cv. Golden Delicious): Drying characteristics, thermodynamic properties, and mass transfer parameters[J]. Heat & Mass Transfer, 2018(4): 1-14.
[14] Amer B M A, Gottschalk K , Hossain M A . Integrated hybrid solar drying system and its drying kinetics of chamomile[J]. Renewable Energy, 2018, 121: 539-547.
[15] Andrade L A , Barrozo M A S , Vieira L G M . Pyrolysis of mango residues: a statistic analysis on nonlinear models used to describe the drying stage[J]. Waste & Biomass Valorization, 2018(7): 1-8.
[16] Xiao H W, Law C L, Sun D W, et al. Color change kinetics of American ginseng () slices during air impingement drying[J]. Drying Technology, 2014, 32(4): 418-427.
[17] Jian F, Jayas D S. Characterization of isotherms and thin-layer drying of red kidney beans, Part I: Choosing appropriate empirical and semitheoretical models[J]. Drying Technology, 2018, 36(14): 1-11.
[18] Lakshmi D V N , Muthukumar P, Layek A, et al. Drying kinetics and quality analysis of black turmeric () drying in a mixed mode forced convection solar dryer integrated with thermal energy storage[J]. Renewable Energy, 2018, 120: 23-34.
[19] Behera G, Sutar P P. A comprehensive review of mathematical modeling of paddy parboiling and drying: Effects of modern techniques on process kinetics and rice quality[J]. Trends in Food Science & Technology, 2018, 75: 206-230.
[20] 孫傳祝,石東岳,王相友,等. 單片物料厚度對(duì)胡蘿卜紅外薄層干燥水分遷移的影響[J]. 食品科學(xué),2017, 38(13):53-59.
Sun Chuanzhu, Shi Dongyue, Wang Xiangyou, et al. Effect of single material thickness on moisture transfer during infrared thin-layer drying of carrot[J]. Journal of Food Science, 2017, 38(13): 53-59. (in Chinese with English abstract)
[21] 張緒坤,劉勝平,吳青榮,等. 污泥低溫干燥動(dòng)力學(xué)特性及干燥參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):216-223.
Zhang Xukun, Liu Shengping, Wu Qingrong, et al. Drying kinetics and parameters optimization of sludge drying at lowtemperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 216-223. (in Chinese with English abstract)
[22] 馬怡童,朱文學(xué),白喜婷,等. 超聲強(qiáng)化真空干燥全蛋液的干燥特性與動(dòng)力學(xué)模型[J]. 食品科學(xué),2018,39(3):142-149.
Ma Yitong, Zhu Wenxue, Bai Xiting, et al. Drying characteristics and kinetic model of liquid whole egg during ultrasound-reinforced vacuum drying[J]. Journal of Food Science, 2018, 39(3): 142-149. (in Chinese with English abstract)
[23] Wilhelm L R. Ginseng drying-the effect of drying air temperature and humidity upon quality[J]. Applied Engineering in Agriculture, 1990, 6(5): 635-639.
[24] Xiong Hui, Zhang Aihua, Zhao Qiqi, et al. Discovery of quality-marker ingredients of Panax quinquefolius driven by high-throughput chinmedomics approach[JOL]. Phytomedicine, [2019-10-18]. http://doi.org/10.1016/j.phymed.2019.152928.
[25] 李絢陽(yáng),李保明,鄭煒超,等. 雞糞中低溫干燥動(dòng)力學(xué)特性與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):194-199.
Li Xuanyang, Li Baoming, Zheng Weichao, et al. Middle-low temperature drying dynamic characteristics for poultry manure and its parameter optimization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 194-199. (in Chinese with English abstract)
[26] Xiao Hongwei, Bai Junwen, Xie Long et al. Thin-layer air impingement drying enhances drying rate of American ginseng () slices with quality attributes considered[J]. Food and Bioproducts Processing, 2015, 94: 581-591.
[27] 楚文靖,盛丹梅,張楠,等. 紅心火龍果熱風(fēng)干燥動(dòng)力學(xué)模型及品質(zhì)變化[J]. 食品科學(xué),2019,40(17):150-155.
Chu Wenjing, Sheng Danmei, Zhang Nan, et al. Hot-air drying of red-fleshed pitaya: kinetic modelling and quality changes[J]. Journal of Food Science, 2019, 40(17): 150-155. (in Chinese with English abstract)
Construction of staged hot-air drying dynamic model for American ginseng
Wu Xiaohua1, Ma Yuanbo1, Ning Xudan1, Wang Peng1, Zhang Zhentao2
(1.&,,102617,; 2.,,100080,)
American ginseng is a perennial herb of the genus ginseng. Its rhizome can be used as medicine, and it is a traditional and precious Chinese medicinal material. In addition, it has also been favored as a health product. Research indicates that the rhizomes, leaves, flowers and fruits of American ginseng are rich in biologically active constituents, including ginsenoside, polysaccharide, various amino acids, vitamins, volatile oil, minerals and other chemical components, which are conducive to anti-aging and enhance human immunity. Hot air drying is a key step for the processing of American ginseng, which is divided into two categories: constant condition drying and stages-varied drying. Among the two methods, the stages-varied drying process is widely used in drying production, which contains multiple drying stages and different drying conditions at each stage. The drying characteristics of the materials are fully considered in the condition setting of stages-varied drying, which is conducive to improve the drying quality and save energy in the drying process. The drying kinetic model can reveal the change rule of moisture ratio of materials and provide scientific basis for the development of drying processes. Under the condition of constant temperature drying, the accurate moisture content of materials can be obtained by directly considering the drying parameters in the existing dynamic model of hot air drying. However, since the drying conditions are different at each stage of stages-varied drying, the drying constants are different at each stage in the drying model. In traditional studies, the moisture ratio at each drying stage cannot be accurately obtained if the drying timeof stages-varied drying is directly taken into account in the drying kinetics model. To solve this problem, a calculation method of drying kinetics model for the stage-varied drying was proposed, which can accurately analyze the variation of moisture ratio during the stages-varied drying process. In order to establish the method, the drying experiment of American ginseng was carried out and the experimental results were fitted. The results showed that the Modified Page model was the best drying kinetic model for the hot-air drying of American ginseng. The partial regression coefficient was obtained by linear regression analysis of drying conditions and drying constants. Based on the partial regression results, the stage-varied drying process of American ginseng was analyzed and the drying kinetics model for each stage of American ginseng stages-varied drying was obtained. By using the proposed calculation method, the change of moisture ratio in the stages-varied drying process of American ginseng was calculated and compared with the results of the American ginseng stages-varied hot-air drying experiment. It was found that the maximum relative error between the calculation results and the experimental results was 7.44%, the average relative error was only 1.78%. The results indicate that the proposed stages-varied drying kinetic model calculation method can be used to analyze the change of the moisture ratio in the drying process of agricultural products.
drying; kinetic; models; stages-varied drying; moisture ratio; American ginseng
2019-11-01
2020-02-20
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2018YFD0700200);北京市高水平創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃項(xiàng)目(IDHT20170507);長(zhǎng)城學(xué)者培養(yǎng)計(jì)劃(CIT&TCD20180313)
吳小華,副教授,博士,主要從事能源高效利用及熱泵技術(shù)開(kāi)發(fā)研究。Email:wuxiaohua@bipt.edu.cn
10.11975/j.issn.1002-6819.2020.05.037
S37
A
1002-6819(2020)-05-0318-07
吳小華,馬淵博,寧旭丹,王 鵬,張振濤. 西洋參分段式熱風(fēng)干燥動(dòng)力學(xué)模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):318-324. doi:10.11975/j.issn.1002-6819.2020.05.037 http://www.tcsae.org
Wu Xiaohua, Ma Yuanbo, Ning Xudan, Wang Peng, Zhang Zhentao. Construction of staged hot-air drying dynamic model for American ginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 318-324. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.05.037 http://www.tcsae.org