錢建平,吳文斌,楊 鵬
·農(nóng)業(yè)信息與電氣技術(shù)·
新一代信息技術(shù)對農(nóng)產(chǎn)品追溯系統(tǒng)智能化影響的綜述
錢建平,吳文斌,楊 鵬※
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)遙感重點(diǎn)實(shí)驗室,北京 100081)
從為應(yīng)對瘋牛病問題至今,追溯系統(tǒng)作為農(nóng)產(chǎn)品及食品質(zhì)量安全保障的有效手段引入已有近30 a,如何降低追溯斷鏈化、增強(qiáng)追溯可信度、提升質(zhì)量預(yù)警力,已成為追溯系統(tǒng)研究的熱點(diǎn),也是應(yīng)用中亟待解決的問題。該文基于國內(nèi)外相關(guān)文獻(xiàn),瞄準(zhǔn)熱點(diǎn)問題,綜述了新一代信息技術(shù)對農(nóng)產(chǎn)品追溯系統(tǒng)智能化的影響。首先,提出了追溯系統(tǒng)從1.0到3.0的發(fā)展歷程,總結(jié)了追溯系統(tǒng)1.0以信息記錄為主、2.0以數(shù)據(jù)整合為主、3.0以智能決策為主的核心特征;其次,描述了以物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、人工智能、區(qū)塊鏈等為核心的新一代信息技術(shù)之間在信息感知、數(shù)據(jù)處理、高效計算、智能分析、加密防偽等方面各有側(cè)重又相互關(guān)聯(lián)的內(nèi)在關(guān)系,分析了大數(shù)據(jù)、人工智能及區(qū)塊鏈的發(fā)展趨勢;最后,從人工智能技術(shù)降低追溯過程斷鏈程度、大數(shù)據(jù)技術(shù)提升質(zhì)量安全預(yù)警能力、區(qū)塊鏈技術(shù)增強(qiáng)全程追溯可信度等3個方面,綜述了相關(guān)研究,結(jié)合發(fā)展趨勢提出了深入研究的方向,即人工智能從供應(yīng)鏈內(nèi)部及供應(yīng)鏈之間提升追溯粒度,大數(shù)據(jù)從微觀、中觀及宏觀層面實(shí)現(xiàn)預(yù)測與優(yōu)化,區(qū)塊鏈從追溯區(qū)塊結(jié)構(gòu)優(yōu)化、隱私保護(hù)及共識算法等方面增強(qiáng)追溯可信度。該文為把握農(nóng)產(chǎn)品追溯系統(tǒng)發(fā)展趨勢、研究熱點(diǎn)、應(yīng)用瓶頸提供有益參考。
農(nóng)產(chǎn)品;追溯;新一代信息技術(shù);人工智能;大數(shù)據(jù);區(qū)塊鏈;食品安全
食品安全問題已成為重要的全球性問題[1]。追溯系統(tǒng)作為食品質(zhì)量安全保障的有效手段,從為應(yīng)對瘋牛病問題被引入至今已有近30 a[2]。雖然對于可追溯性的定義,目前還沒有完全統(tǒng)一,但大部分定義均強(qiáng)調(diào):追溯不只是食品本身還應(yīng)包含其原料、組分等,追溯應(yīng)該是覆蓋生產(chǎn)、加工、流通的所有階段,追溯需具備跟蹤追尋痕跡的能力[3-4]。在技術(shù)體系上,集產(chǎn)品標(biāo)識、信息感知、數(shù)據(jù)交換等為基礎(chǔ)的追溯技術(shù)體系已基本形成[5];在系統(tǒng)應(yīng)用上,歐盟、美國、加拿大、澳大利亞等國家及地區(qū)相繼建立了針對牛肉、果品、水產(chǎn)品等的追溯系統(tǒng)[6-7]。中國追溯系統(tǒng)的研究和應(yīng)用雖起步較晚,但發(fā)展較快,基本形成了與國外主流研究保持同步的態(tài)勢[8-12];并形成了以政府為主導(dǎo)的外部追溯和以企業(yè)為主導(dǎo)的內(nèi)部追溯等應(yīng)用模式[13]。
從農(nóng)田到餐桌的追溯系統(tǒng)是以供應(yīng)鏈為基礎(chǔ)的,供應(yīng)鏈各組織間的物流形成了單向或多向的信息流,組成了一個共同參與、相互協(xié)同的網(wǎng)鏈[14]。由于網(wǎng)鏈中的批次轉(zhuǎn)換、信息傳遞使得物流與信息流無法有效銜接,導(dǎo)致追溯斷鏈[15];另一方面,已有的信息采集和錄入方式對供應(yīng)鏈各主體沒有有效的約束機(jī)制,使得數(shù)據(jù)的真實(shí)性不能得到保證,導(dǎo)致信任缺失[16];而且,目前的追溯系統(tǒng)以信息管理和追溯查詢?yōu)橹?,對于質(zhì)量安全的預(yù)測預(yù)警能力偏弱,導(dǎo)致質(zhì)量安全控制不足[17]。因此,迫切需要在已有追溯技術(shù)及系統(tǒng)的基礎(chǔ)上進(jìn)行智能化提升,以降低追溯斷鏈化、增強(qiáng)追溯可信度、提升質(zhì)量控制力。
作為七大戰(zhàn)略性新興產(chǎn)業(yè)之一,新一代信息技術(shù)產(chǎn)業(yè)不僅可以形成具有一定規(guī)模的新興增長點(diǎn),而且為傳統(tǒng)產(chǎn)業(yè)轉(zhuǎn)型構(gòu)建了關(guān)鍵基礎(chǔ)[18]。以大數(shù)據(jù)、人工智能、區(qū)塊鏈等為代表的新一代信息技術(shù)也為追溯技術(shù)和系統(tǒng)的智能化提升提供了有力的支撐。本文通過理清追溯系統(tǒng)發(fā)展的脈絡(luò);分析了新一代信息技術(shù)的內(nèi)在聯(lián)系及技術(shù)特征;從人工智能技術(shù)降低追溯過程斷鏈程度、大數(shù)據(jù)技術(shù)提升質(zhì)量安全預(yù)警能力、區(qū)塊鏈技術(shù)增強(qiáng)全程追溯可信度等3個方面綜述了追溯技術(shù)及系統(tǒng)的發(fā)展趨勢。通過綜述和分析,本文首次提出了追溯系統(tǒng)從1.0到3.0的發(fā)展歷程,分析了追溯系統(tǒng)的智能化提升趨勢,為把握追溯系統(tǒng)發(fā)展趨勢、研究熱點(diǎn)、應(yīng)用瓶頸提供有益參考。
對于追溯及追溯系統(tǒng)的研究,筆者整理了從2013年至今發(fā)表的有代表性的綜述文獻(xiàn),如表1所示。從表中可見,已有文獻(xiàn)大多從追溯系統(tǒng)的重要性、法律法規(guī)、標(biāo)準(zhǔn)規(guī)范、技術(shù)體系及應(yīng)用情況進(jìn)行總結(jié)和分析,同時結(jié)合區(qū)塊鏈技術(shù)探討追溯的可能應(yīng)用場景也成為熱點(diǎn)。
表1 2013年至今有代表性的追溯綜述文獻(xiàn)
追溯系統(tǒng)的基本要素是產(chǎn)品跟蹤與識別、供應(yīng)鏈信息采集與管理、數(shù)據(jù)集成與查詢分析;這些要素與信息技術(shù)有著密切關(guān)聯(lián),且目前已有的追溯系統(tǒng)都是以各類信息技術(shù)的綜合應(yīng)用為基礎(chǔ)的,因此本文以信息技術(shù)發(fā)展主線為依據(jù)總結(jié)了追溯系統(tǒng)1.0-3.0的發(fā)展歷程,結(jié)果如表2所示。
表2 追溯系統(tǒng)1.0-3.0發(fā)展歷程及其特征
20世紀(jì)80年代,受可持續(xù)發(fā)展思想的影響,可持續(xù)農(nóng)業(yè)的概念得以確立,并在全世界范圍內(nèi)傳播,農(nóng)業(yè)的可持續(xù)發(fā)展要求之一就是要保障農(nóng)產(chǎn)品的質(zhì)量安全,農(nóng)產(chǎn)品及食品的質(zhì)量安全問題逐漸引起了人們的重視[25]。1996年,以瘋牛病為代表的食品安全危機(jī)爆發(fā),從歐盟到美國、日本再到中國,一系列食品安全事件使食品安全問題受到高度關(guān)注[26]。農(nóng)產(chǎn)品及食品追溯系統(tǒng)最初由歐盟為應(yīng)對瘋牛病問題開始被引入并逐步建立[27],形成了以《第178/2002號法案》為核心的食品質(zhì)量安全管理法律體系[28]。同時,歐盟從2002年開始推動了基于30多個子追溯計劃的系統(tǒng),致力于促進(jìn)歐盟食品追溯的研究與實(shí)施[27]。美國食品藥品監(jiān)督管理局(food and drug administration, FDA)提出了從業(yè)者登記制度,以便進(jìn)行食品安全跟蹤與追溯,并要求于2003年12月12日前必須向FDA登記;《食品安全跟蹤條例》也于2004年5月公布,要求相關(guān)企業(yè)建立并保全食品流通的全過程記錄[23]。日本的追溯制度最先從牛肉建立,2003年12月1日開始實(shí)施《牛只個體識別情報管理特別措施法》;2004年12月開始立法實(shí)施牛肉以外食品的追溯制度[29]。
中國自2003年原國家質(zhì)量監(jiān)督檢驗檢疫總局啟動“中國條碼推進(jìn)工程”,推動采用EAN.UCC系統(tǒng)以來,各部委及地方政府積極開展追溯系統(tǒng)的應(yīng)用。農(nóng)業(yè)農(nóng)村部自2004年實(shí)施“城市農(nóng)產(chǎn)品質(zhì)量安全監(jiān)管系統(tǒng)試點(diǎn)工作”,探索建立種植業(yè)、農(nóng)墾、動物標(biāo)識及疫病、水產(chǎn)品4個專業(yè)追溯體系[30];南京市以優(yōu)質(zhì)農(nóng)產(chǎn)品標(biāo)志為質(zhì)量溯源的重要載體,啟動農(nóng)產(chǎn)品質(zhì)量IC卡管理體系[31];天津市以“放心菜”工程為依托,開展了蔬菜追溯系統(tǒng)的示范應(yīng)用[32]。
縱觀這一時期的追溯系統(tǒng),可以看出:1)追溯系統(tǒng)是作為質(zhì)量安全保障的有效措施被引入食品工業(yè)的,這一時期更多是從法律法規(guī)層面對食品追溯進(jìn)行明確和約定;2)根據(jù)追溯系統(tǒng)是加強(qiáng)食品安全信息傳遞、控制食源性疾病危害和保障消費(fèi)者利益的信息記錄體系的初衷,此時的追溯系統(tǒng)不管是紙質(zhì)記錄還是電子記錄,更多是一種簡單的、單環(huán)節(jié)的信息記錄系統(tǒng);3)中國的農(nóng)產(chǎn)品和食品追溯系統(tǒng)雖然起步較晚,但總體推進(jìn)較快。
物聯(lián)網(wǎng)技術(shù)的發(fā)展及其在追溯系統(tǒng)中的應(yīng)用可以作為追溯系統(tǒng)1.0和2.0階段的分水嶺。物聯(lián)網(wǎng)概念自1999年由美國麻省理工學(xué)院提出[33];以2008年底IBM向美國政府提出“智慧地球”戰(zhàn)略為標(biāo)志,物聯(lián)網(wǎng)迅速在世界范圍得到高度關(guān)注[34],如歐盟的“物聯(lián)網(wǎng)行動計劃”,日本的“i-Japan戰(zhàn)略2015”[35]。中國提出了“感知中國”的物聯(lián)網(wǎng)發(fā)展戰(zhàn)略;2013年,國務(wù)院發(fā)布了《關(guān)于推進(jìn)物聯(lián)網(wǎng)有序健康發(fā)展的指導(dǎo)意見》,并啟動實(shí)施物聯(lián)網(wǎng)發(fā)展專項行動計劃[36]。
物聯(lián)網(wǎng)技術(shù)可劃分為4個層次,即感知層、傳輸層、處理層和應(yīng)用層[37]。物聯(lián)網(wǎng)技術(shù)的發(fā)展為構(gòu)建集全面感知、實(shí)時傳輸、智能決策為一體的全供應(yīng)鏈追溯系統(tǒng)奠定了基礎(chǔ)。楊信廷等基于物聯(lián)網(wǎng)構(gòu)建了“一核、雙軸、三鏈”的追溯體系框架:即以實(shí)現(xiàn)農(nóng)產(chǎn)品質(zhì)量安全溯源的核心目標(biāo),以農(nóng)產(chǎn)品從農(nóng)田到餐桌的供應(yīng)鏈為橫軸、以物聯(lián)網(wǎng)技術(shù)層次為縱軸,面向供應(yīng)生命周期的產(chǎn)品鏈、面向供應(yīng)鏈主體的服務(wù)鏈和面向物聯(lián)網(wǎng)架構(gòu)的技術(shù)鏈[22]。
縱觀這一時期的追溯系統(tǒng),可以看出:1)以條碼、RFID為代表的自動識別技術(shù)為追溯個體或群體的標(biāo)識起到了重要作用,以無線傳感器網(wǎng)絡(luò)(wireless sensor network,WSN)技術(shù)為代表的信息感知技術(shù)為供應(yīng)鏈各環(huán)節(jié)信息的快速采集和實(shí)時監(jiān)測提供了有力支撐,從而促進(jìn)了數(shù)字化、電子化追溯系統(tǒng)的深入應(yīng)用;2)物聯(lián)網(wǎng)的應(yīng)用為信息的有效傳遞提供了基礎(chǔ),通過整合生產(chǎn)、加工、物流、倉儲、交易等各環(huán)節(jié)數(shù)據(jù),實(shí)現(xiàn)全供應(yīng)鏈追溯的需求越來越迫切;3)追溯系統(tǒng)的建設(shè)需要付出額外的成本,基于成本收益的核算構(gòu)建適合粒度的追溯系統(tǒng)已成為追溯系統(tǒng)可支持應(yīng)用中面臨的重要問題。
追溯系統(tǒng)的深入應(yīng)用面臨著各種問題,如各部門標(biāo)準(zhǔn)不能統(tǒng)一、內(nèi)容無法銜接,數(shù)據(jù)共享困難;系統(tǒng)只提供單一的信息記錄功能,無法真正為企業(yè)提高質(zhì)量安全水平服務(wù),應(yīng)用積極性不高;產(chǎn)品供應(yīng)鏈長,不確定因素多,監(jiān)管成本高;供應(yīng)鏈各主體的追溯信息采集和錄入沒有有效的約束機(jī)制,使得數(shù)據(jù)的真實(shí)性不能得到保證,信息真實(shí)性存疑。
人工智能的概念從正式提出到現(xiàn)在已有60多年,其間經(jīng)歷了3次浪潮:第一次浪潮發(fā)生在20世紀(jì)60年代,人工智能剛起步,處于科研探索階段;第二次浪潮發(fā)生在20世紀(jì)80年代,主要表現(xiàn)是通過專家系統(tǒng)的思想來實(shí)現(xiàn)語音識別;第三次浪潮發(fā)生在21世紀(jì),也是目前正在經(jīng)歷的。2016年,以AlphaGo為標(biāo)志,人工智能開始逐步升溫;計算能力提升、數(shù)據(jù)爆發(fā)增長、機(jī)器學(xué)習(xí)算法進(jìn)步、投資力度加大推動了人工智能的快速發(fā)展[38]。以人工智能為代表的新一代信息技術(shù)的發(fā)展為解決追溯系統(tǒng)面臨的問題提供了技術(shù)支撐,追溯系統(tǒng)也迎來了以智能決策為主的3.0階段。
以物聯(lián)網(wǎng)、云計算、大數(shù)據(jù)、人工智能、區(qū)塊鏈為代表的新一代信息技術(shù),既是單項技術(shù)的縱向提升,也是融合技術(shù)的橫向滲透。作為當(dāng)今世界創(chuàng)新最活躍、滲透性最強(qiáng)、影響力最廣的領(lǐng)域,新一代信息技術(shù)正在全球范圍內(nèi)引發(fā)新一輪的科技革命,并正在轉(zhuǎn)化為現(xiàn)實(shí)生產(chǎn)力,引領(lǐng)科技、經(jīng)濟(jì)和社會創(chuàng)新發(fā)展[39]。據(jù)預(yù)測,新一代信息技術(shù)將支撐2020年全球信息產(chǎn)業(yè)收入的40%和增長份額的98%[40]。
新一代信息技術(shù)之間雖各有側(cè)重,但也相互關(guān)聯(lián),其邏輯關(guān)系如圖1所示。物聯(lián)網(wǎng)的主要功能是負(fù)責(zé)各類數(shù)據(jù)的自動采集,以智能手機(jī)為核心的移動互聯(lián)網(wǎng)的發(fā)展讓每個人都成為了數(shù)據(jù)產(chǎn)生器;海量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),形成了大數(shù)據(jù);數(shù)據(jù)量的增大、結(jié)構(gòu)的復(fù)雜需要云端服務(wù)器來進(jìn)行記憶和存儲,反過來云計算的并行計算能力也促進(jìn)了大數(shù)據(jù)的高效智能化處理;而基于大數(shù)據(jù)深度學(xué)習(xí)的人工智能的目標(biāo)是獲得價值規(guī)律、認(rèn)知經(jīng)驗和知識智慧;人工智能模型的訓(xùn)練也需要大規(guī)模云計算資源的支持,構(gòu)建的智能模型也能反作用于物聯(lián)網(wǎng),進(jìn)行更優(yōu)化更智能地控制各種物聯(lián)網(wǎng)前端設(shè)備;區(qū)塊鏈解決了信息被泄露、篡改的安全性問題,對物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算等提供基礎(chǔ)支撐及重塑信任機(jī)制。
圖1 新一代信息技術(shù)之間的相互關(guān)系
大數(shù)據(jù)技術(shù)的發(fā)展促進(jìn)了大數(shù)據(jù)的價值挖掘,其技術(shù)是統(tǒng)計學(xué)方法、計算機(jī)技術(shù)、人工智能技術(shù)的延伸與發(fā)展;當(dāng)前的熱點(diǎn)方向包括:互操作技術(shù)、存算一體化存儲與管理技術(shù)、大數(shù)據(jù)編程語言與執(zhí)行環(huán)境、大數(shù)據(jù)基礎(chǔ)與核心算法、大數(shù)據(jù)機(jī)器學(xué)習(xí)技術(shù)、大數(shù)據(jù)智能技術(shù)、可視化與人機(jī)交互分析技術(shù)、真?zhèn)闻卸ㄅc安全技術(shù)等[41]。
為了實(shí)現(xiàn)從邏輯到計算的不斷提升,人工智能注重從感知到認(rèn)知的過程。當(dāng)前的人工智能是從閉環(huán)到開環(huán)、從確定到不確定的系統(tǒng),是由弱到強(qiáng)的智能;未來的人工智能將實(shí)現(xiàn)從有限到無限、從理性到感性、從專門到綜合的發(fā)展。利用腦科學(xué)與認(rèn)知科學(xué)揭示有關(guān)腦結(jié)構(gòu)與功能機(jī)制,利用計算和控制的數(shù)學(xué)物理進(jìn)行形式化、模型化分析與優(yōu)化,為提升人工智能發(fā)展提供重要支撐[42]。
區(qū)塊鏈框架中最核心且最基本的技術(shù)是密碼學(xué)、共識機(jī)制和區(qū)塊鏈網(wǎng)絡(luò)。目前區(qū)塊鏈已經(jīng)發(fā)展到3.0時代,從金融領(lǐng)域擴(kuò)展到數(shù)字金融、物聯(lián)網(wǎng)、智能制造、供應(yīng)鏈管理、數(shù)字資產(chǎn)交易等多個領(lǐng)域。隨著區(qū)塊將被廣泛關(guān)注和應(yīng)用,關(guān)于其隱私性、安全性和性能等方面存在的問題和優(yōu)化方案越來越受到關(guān)注[43]。
農(nóng)產(chǎn)品及食品供應(yīng)鏈涉及多個環(huán)節(jié)、需要多方協(xié)作、具有多維特征。追溯單元拆分重組是供應(yīng)鏈中的普遍現(xiàn)象,也是導(dǎo)致追溯斷鏈的核心問題。錢建平等根據(jù)追溯單元的重組情況不同,概括為:“一對多”的批次拆分、“多對一”的批次聚合及“多對多”的批次融合[44];并嘗試?yán)脴?biāo)識對應(yīng)的方法解決拆分和聚合等簡單批次重組下的追溯問題,但存在著成本高、操作復(fù)雜等問題[45]。
追溯粒度由Bertolini等提出,表示追溯單元的尺度,細(xì)粒度的優(yōu)勢是能附加更多信息到追溯單元[46]。進(jìn)一步,Qian等以寬度、深度和精確度為核心,構(gòu)建了一個包含2層結(jié)構(gòu)、7個因子的可量化的多因素追溯粒度評價模型[47]。供應(yīng)鏈之間及供應(yīng)鏈內(nèi)部的追溯單元拆分重組易引起追溯粒度的變化,因此,以全供應(yīng)鏈為基礎(chǔ),建立追溯優(yōu)化模型,提高追溯粒度,降低追溯斷鏈化,是實(shí)現(xiàn)全供應(yīng)鏈追溯的有效途徑。以批次分散模型(batch dispersion model)為基礎(chǔ),構(gòu)建智能化的追溯優(yōu)化模型,已成為研究熱點(diǎn)[48-50]。批次分散模型最初由Dupuy等提出的,通過采用Gozinto圖方法將產(chǎn)品加工流程分為原料、部件和成品3個層次,并以香腸加工業(yè)的產(chǎn)品召回為例進(jìn)行了驗證[51]。批次清單(bill of lots,BOL)可加載更多加工過程信息,通過構(gòu)建基于BOL-Petri的小麥粉加工過程追溯模型,可更好描述追溯單元的變遷過程[52]。由于糧食加工中不同流通載體對包裝大小要求不同,Thakur和Hurbrugh在集成定義建模(integrated definition modeling, IDEF0)基礎(chǔ)上詳細(xì)設(shè)計了不同情況下的批次數(shù)據(jù)結(jié)構(gòu),豐富了批次分散模型的內(nèi)涵[53]。
以降低原料混合程度為目標(biāo)構(gòu)建批次分散模型,能有效提升追溯效果、降低召回規(guī)模。邢斌等提出了一種面向鮮切蔬菜加工過程追溯的原料批次混合模型,并采用遺傳算法對訂單的加工次序和原料批次的選取次序進(jìn)行優(yōu)化,優(yōu)化后的批次召回規(guī)模減少了16.7%[54]。加工流程的復(fù)雜化使3層批次分散模型不能滿足實(shí)際需求,Lobna和Mounir在部件和成品兩層之間加入了半成品,建立了4 層的批次分散模型[55]。隨著批次數(shù)量的變大和結(jié)構(gòu)的增加,模型求解時間也呈幾何級增長,而采用遺傳算法[56]、改進(jìn)粒子群[57]等進(jìn)行優(yōu)化,在獲得次優(yōu)解的基礎(chǔ)上,降低了運(yùn)算復(fù)雜度。
人工智能技術(shù)的快速發(fā)展將在2個方面為解決追溯斷鏈問題提供技術(shù)支撐。一方面,在供應(yīng)鏈內(nèi)部尤其是加工環(huán)節(jié),根據(jù)批次混合程度分析供應(yīng)鏈內(nèi)部的批次混合特征,建立供應(yīng)鏈內(nèi)部批次轉(zhuǎn)換仿真模型,明確批次混合下追溯單元變化規(guī)律,構(gòu)建多重約束下的智能柔性追溯模型,采用遺傳算法、支持向量機(jī)、粒子群算法等方法優(yōu)化模型,提升追溯粒度;另一方面,在供應(yīng)鏈之間,預(yù)測追溯單元流動路徑,研究基于深度學(xué)習(xí)的追溯屬性數(shù)據(jù)自學(xué)習(xí)機(jī)制,提高數(shù)據(jù)缺失下的追溯信息補(bǔ)償方法,建立追溯信息分級傳遞模型,構(gòu)建智慧供應(yīng)鏈背景下的追溯耦合模型,降低追溯斷鏈程度。
查詢和召回是質(zhì)量安全控制體系不可或缺的組成部分,也是發(fā)生質(zhì)量安全問題時縮小影響范圍、降低損失的重要措施;與這種“事后治理”相比,以質(zhì)量安全預(yù)警與分析決策為核心的“事前預(yù)防”,對于農(nóng)產(chǎn)品及食品質(zhì)量安全控制體系更為重要[58-59]。預(yù)警與分析決策的關(guān)鍵是預(yù)測,傳統(tǒng)預(yù)測是基于隨機(jī)抽樣數(shù)據(jù)和邏輯推理相關(guān)性[60]。
生產(chǎn)過程的病蟲害預(yù)測預(yù)警、物流過程的貨架期預(yù)測等是保障農(nóng)產(chǎn)品和食品質(zhì)量安全的有效手段。以積累的環(huán)境氣象資料為自變量,以作物病蟲害發(fā)生或流行的程度為因變量,通過回歸分析構(gòu)建回歸模型是病蟲害預(yù)警常見的方法[61]。Moh等利用多元回歸分析構(gòu)建了溫度、濕度、接種菌量與馬鈴薯塊莖軟腐病征的關(guān)系模型,結(jié)果表明模型對馬鈴薯軟腐病有良好的響應(yīng)和預(yù)測能力[62]。李明等以黃瓜霜霉病為例,構(gòu)建了病情指數(shù),采用逐步回歸分析方法進(jìn)行擬合,通過參數(shù)調(diào)整得到優(yōu)化模型,為溫室黃瓜霜霉病初侵染預(yù)警提供決策支持[63]。通過物聯(lián)網(wǎng)進(jìn)行環(huán)境信息實(shí)時感知、通過遙感技術(shù)提取作物多光譜特征,能有效提高病蟲害預(yù)測預(yù)警精度[64-65]。貨架期預(yù)測研究主要集中于以溫度為主要影響因素的化學(xué)品質(zhì)衰變分析、感官品質(zhì)的Weibull生存分析與微生物生長分析[66-67]。García等測定了去內(nèi)臟和未去內(nèi)臟的鱈魚特定腐敗菌的生長情況,從而建立了冷鏈物流過程波動溫度下特定腐敗菌生長的動力學(xué)模型和置信區(qū)間,能夠較好的判別鱈魚的品質(zhì)等級[68]。劉壽春等分析了物流過程豬肉的感官特征,采用敏感性和回歸分析獲得感官評價的關(guān)鍵指標(biāo),進(jìn)而設(shè)計質(zhì)量控制圖展示感官特征的波動性,為豬肉感官品質(zhì)控制提供了科學(xué)的管理方法[69]。
從宏觀尺度入手,進(jìn)行質(zhì)量安全預(yù)測預(yù)警對于全面掌控質(zhì)量安全狀況進(jìn)而進(jìn)行決策分析具有重要作用。高翔等設(shè)計了基于季節(jié)、時間分析方法與零膨脹負(fù)二項式(zero-inflated negative binomial,ZINB)模型的禽霍亂風(fēng)險分析方法,對中國禽霍亂的分布特征進(jìn)行描述,利用模型分析結(jié)果與網(wǎng)絡(luò)地理信息(WebGIS)技術(shù)建立禽霍亂監(jiān)測預(yù)警系統(tǒng)[70]。章德賓等以中國實(shí)際食品安全監(jiān)測數(shù)據(jù)為樣本,研究基于BP神經(jīng)網(wǎng)絡(luò)的食品安全預(yù)警方法,結(jié)果表明該方法能有效識別、記憶食品危險特征,能夠?qū)斎霕颖具M(jìn)行有效的預(yù)測[71]。
大數(shù)據(jù)預(yù)測具有“全樣非抽樣、效率非精確、相關(guān)非因果”的特征,其在追溯方面的應(yīng)用可以從3個層面展開。從微觀層面,針對病蟲害預(yù)測預(yù)警、貨架期預(yù)測等核心環(huán)節(jié),構(gòu)建集病蟲害特征、視頻信息、專家知識為一體的數(shù)據(jù)平臺,挖掘病蟲害發(fā)生規(guī)律和微生物生長規(guī)律,構(gòu)建環(huán)境變化下的預(yù)測模型,變事后處置為提前預(yù)警,實(shí)現(xiàn)質(zhì)量安全預(yù)測;從中觀層面,面向庫存分析、市場供求分析等關(guān)鍵過程,構(gòu)建集庫存數(shù)據(jù)、產(chǎn)品周期數(shù)據(jù)、消費(fèi)數(shù)據(jù)等多源數(shù)據(jù)融合的數(shù)據(jù)倉庫,采用聚類分析、決策樹分析、關(guān)聯(lián)分析等方法,建立消費(fèi)數(shù)據(jù)為導(dǎo)向的供應(yīng)鏈分析系統(tǒng),實(shí)現(xiàn)供應(yīng)鏈優(yōu)化與調(diào)控;從宏觀層面,構(gòu)建“環(huán)節(jié)銜接、品類整合”的農(nóng)產(chǎn)品及食品安全大數(shù)據(jù)中心,全面掌控監(jiān)管態(tài)勢,深入分析農(nóng)產(chǎn)品及食品風(fēng)險,構(gòu)筑起立體化、精準(zhǔn)化、信息化監(jiān)管網(wǎng)絡(luò),變被動發(fā)現(xiàn)為提前研判,增強(qiáng)決策分析能力。
農(nóng)產(chǎn)品及食品供應(yīng)鏈時空跨度大、參與主體眾多且分散、中心化方式管理與運(yùn)作困難,加之?dāng)?shù)據(jù)采集時缺乏約束機(jī)制,易造成信息不透明,導(dǎo)致追溯信息可信度不高。提高追溯可信度已成為追溯系統(tǒng)可持續(xù)應(yīng)用中面臨的重要問題。
區(qū)塊鏈技術(shù)具有分布式臺賬、去中心化、集體維護(hù)、共識信任等特點(diǎn)[72],被證明在解決目前追溯系統(tǒng)可信度問題方面具有先天技術(shù)優(yōu)勢[73-74]。Kamble等選取了農(nóng)產(chǎn)品供應(yīng)鏈采用區(qū)塊鏈技術(shù)的13個因素,并采用解釋結(jié)構(gòu)模型(interpretive structural modelling, ISM)和決策試驗與評價實(shí)驗室方法(decision-making trial and evaluation laboratory,DEMATEL)分析了這些驅(qū)動因素,結(jié)果表明,可追溯性是采用區(qū)塊鏈技術(shù)的最重要原因[75];Leng等提出了基于雙鏈架構(gòu)的農(nóng)業(yè)供應(yīng)鏈系統(tǒng)公共區(qū)塊鏈,研究了鏈結(jié)構(gòu)及其存儲模式、資源尋租與匹配機(jī)制和共識算法,結(jié)果表明,以農(nóng)業(yè)供應(yīng)鏈為基礎(chǔ)的產(chǎn)業(yè)鏈在雙鏈結(jié)構(gòu)上可以考慮到交易信息的開放性和安全性以及企業(yè)信息的隱私,可以自適應(yīng)地完成尋租和匹配資源,大大提高了公共服務(wù)平臺的公信力和整體效率[76]。錢建平等提出了由供應(yīng)鏈層、數(shù)據(jù)層、網(wǎng)絡(luò)層、共識層、激勵層和應(yīng)用層組成的農(nóng)產(chǎn)品可信追溯系統(tǒng)[77]。
隨著區(qū)塊鏈技術(shù)的不斷成熟及應(yīng)用場景的日益豐富,區(qū)塊鏈追溯的商業(yè)化應(yīng)用也不斷推進(jìn)[78]。如表3所示,研究者、公司等根據(jù)不同農(nóng)產(chǎn)品及食品的特點(diǎn)和供應(yīng)鏈特征,建立了面向產(chǎn)品的供應(yīng)鏈管理與追溯系統(tǒng)。沃爾瑪(Walmart)和克羅格(Kroger)公司是最早將區(qū)塊鏈引入到供應(yīng)鏈中的,最初的應(yīng)用案例是中國豬肉和墨西哥芒果[79];應(yīng)用結(jié)果表明在使用區(qū)塊鏈技術(shù)以后,確定芒果從超市到農(nóng)場的來源和路徑只需要幾秒鐘就可以完成,而未使用前則需6.5 d[80]。家樂福(Carrefour)正在使用區(qū)塊鏈進(jìn)行產(chǎn)品標(biāo)準(zhǔn)的驗證和肉、魚、水果、蔬菜和乳制品的追溯[81]。另一個例子是,電子商務(wù)平臺京東(JD.com)監(jiān)控在內(nèi)蒙古生產(chǎn)的牛肉,這些牛肉被銷售到中國不同的省份,通過掃描QR碼,可以看到有關(guān)動物的詳細(xì)信息,包括營養(yǎng)、屠宰和肉類包裝日期,以及食品安全檢測的結(jié)果[82]。
表3 區(qū)塊鏈追溯商業(yè)化應(yīng)用
目前,對于區(qū)塊鏈打造透明供應(yīng)鏈、提升追溯可信度中的作用已經(jīng)達(dá)成共識,相關(guān)的技術(shù)框架也被提出,原型的系統(tǒng)也被試點(diǎn)應(yīng)用。后期的研究重點(diǎn)從追溯區(qū)塊結(jié)構(gòu)優(yōu)化、隱私保護(hù)、區(qū)塊鏈共識算法等方面開展。傳統(tǒng)的區(qū)塊之間是由鏈表來組織,用樹和圖來組織區(qū)塊的方案已經(jīng)被提出[87];根據(jù)供應(yīng)鏈特征及追溯系統(tǒng)要求,選擇合適的區(qū)塊結(jié)構(gòu)需要被深入研究。供應(yīng)鏈上下游涉及一定的商業(yè)機(jī)密,引入零知識證明、同態(tài)加密等隱私保護(hù)方案,是基于區(qū)塊鏈追溯亟待解決的問題。共識機(jī)制已成為區(qū)塊鏈系統(tǒng)性能的關(guān)鍵瓶頸,融合PoW與PBFT優(yōu)勢的共識算法應(yīng)用于追溯系統(tǒng)是值得關(guān)注的問題。
追溯過程斷鏈、質(zhì)量安全預(yù)警能力弱、全程追溯可信度低,已成為農(nóng)產(chǎn)品及食品追溯系統(tǒng)研究與應(yīng)用近30 a來面臨的重要問題。本文基于上述問題,從新一代信息技術(shù)的應(yīng)用和發(fā)展提升追溯系統(tǒng)智能化方面入手,通過文獻(xiàn)分析和綜合研究,得到如下結(jié)論:
1)首次提出了追溯系統(tǒng)從1.0-3.0的發(fā)展歷程,追溯1.0階段以信息記錄為主、追溯2.0階段以數(shù)據(jù)整合為主、追溯3.0階段以智能決策為主。
2)在分析文獻(xiàn)的基礎(chǔ)上,描述了以物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、人工智能、區(qū)塊鏈等為核心的新一代信息技術(shù)之間在信息感知、數(shù)據(jù)處理、高效計算、智能分析、加密防偽等方面各有側(cè)重又相互關(guān)聯(lián)的內(nèi)在關(guān)系。
3)重點(diǎn)歸納總結(jié)了人工智能技術(shù)在降低追溯過程斷鏈程度、大數(shù)據(jù)技術(shù)在提升質(zhì)量安全預(yù)警能力、區(qū)塊鏈技術(shù)在增強(qiáng)全程追溯可信度等方面的影響及作用。
新一代信息技術(shù)的發(fā)展既是單項技術(shù)的縱向提升,也是融合技術(shù)的橫向滲透,其在追溯方面的深入研究方向展望如下:
1)人工智能技術(shù)的快速發(fā)展將為供應(yīng)鏈內(nèi)部尤其是加工環(huán)節(jié)智能柔性追溯模型構(gòu)建提供有利支撐,從而提升追溯粒度;在供應(yīng)鏈之間,通過構(gòu)建智慧供應(yīng)鏈背景下的追溯耦合模型,進(jìn)一步降低追溯斷鏈程度。
2)大數(shù)據(jù)在微觀層面,針對病蟲害預(yù)測預(yù)警、貨架期預(yù)測等核心環(huán)節(jié),構(gòu)建融合數(shù)據(jù)挖掘和作用機(jī)理的預(yù)測模型,變事后處置為提前預(yù)警;在中觀層面,面向庫存分析、市場供求分析等關(guān)鍵過程,實(shí)現(xiàn)供應(yīng)鏈優(yōu)化與調(diào)控;在宏觀層面,通過構(gòu)建農(nóng)產(chǎn)品及食品安全大數(shù)據(jù)中心,變被動發(fā)現(xiàn)為提前研判。
3)區(qū)塊鏈在追溯中的應(yīng)用還處于原型系統(tǒng)階段,后期的研究和應(yīng)用重點(diǎn)更多應(yīng)根據(jù)供應(yīng)鏈的不同場景及質(zhì)量安全管理的需求特征,從追溯區(qū)塊結(jié)構(gòu)優(yōu)化、隱私保護(hù)、共識算法等方面開展。
4)人工智能、大數(shù)據(jù)、區(qū)塊鏈等技術(shù)都有不同特點(diǎn),在解決特定問題是具有一定優(yōu)勢,但技術(shù)的深入融合能更好的取長補(bǔ)短;在解決追溯系統(tǒng)面臨的深度問題時,也更應(yīng)注重不同技術(shù)的融合。
[1] Kennedy S. Why can't we test our way to absolute food safety?[J]. Science, 2009, 322(5908): 1641-1643.
[2] McEntire J C, Arens S, Bernstein M, et al. Traceability (product tracing) in food systems: An IFT report submitted to the FDA, volume 1: Technical aspects and recommendations[J]. Comprehensive Reviews in Food Science & Food Safety, 2010, 9(1): 92-158.
[3] Tarjan L, Senk I, Tegeltija S, et al. A readability analysis for QR code application in a traceability system[J]. Computers and Electronics in Agriculture, 2014, 109(11): 1-11.
[4] Karlsen K M, Donnelly K A M, Olsen P. Granularity and its importance for traceability in a farmed salmon supply chain[J]. Journal of Food Engineering, 2011, 102(1): 1-8.
[5] 錢建平,宋英卓,王姍姍,等.風(fēng)險矩陣和流程分析法挖掘小麥粉加工中質(zhì)量安全追溯信息[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):302-308.
Qian Jianping, Song Yingzhuo, Wang Shanshan, et al. Quality and safety traceable information mining in wheat flour processing based on risk matrix and flow analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 302-308. (in Chinese with English abstract)
[6] Bosona T, Gerbresenbet G. Food traceability as an integral part of logistics management in food and agricultural supply chain[J]. Food Control, 2013, 33(1): 32-48.
[7] Smith G C, Tatum J D, Belk K E, et al. Traceability from a US perspective[J]. Meat Science, 2005,71(1): 174-193.
[8] Stewart W G. Food authentication and traceability: An Asian and Australian perspective[J]. Food Control, 2017, 72(2): 168-17.
[9] 謝菊芳,陸昌華,李保明,等. 基于.NET構(gòu)架的安全豬肉全程可追溯系統(tǒng)實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(6):218-220.
Xie Jufang, Lu Changhua, Li Baoming, et al. Implementation of pork traceability system based on .NET framework[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 218-220. (in Chinese with English abstract)
[10] 楊信廷,錢建平,孫傳恒,等. 蔬菜安全生產(chǎn)管理及質(zhì)量追溯系統(tǒng)設(shè)計與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(3):162-166.
Yang Xinting, Qian Jianping, Sun Chuanheng, et al. Design and application of safe production and quality traceability system for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 162-166. (in Chinese with English abstract)
[11] 任晰,傅澤田,穆維松,等. 基于Web的羅非魚養(yǎng)殖質(zhì)量安全信息可追溯系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(4):163-167.
Ren Xi, Fu Zetian, Mu Weisong, et al. Traceability system for tilapia breeding quality safety information based on Web[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 163-167. (in Chinese with English abstract)
[12] 熊本海,傅潤亭,林兆輝,等. 生豬及其產(chǎn)品從農(nóng)場到餐桌質(zhì)量溯源解決方案:以天津市為例[J]. 中國農(nóng)業(yè)科學(xué),2009,42(1):230-237.
Xiong Benhai, Fu Runting, Lin Zhaohui, et al. A Solution solution on pork quality safety production traceability from farm to dining table: Taking Tianjin city as an example[J]. Scientia Agricultura Sinica, 2009, 42(1): 230-237. (in Chinese with English abstract)
[13] Qian J, Yang X, Wang X, et al. Framework for an IT-based vegetable traceability system integrated two different operating mechanisms in China on comparison with two cities[J]. Journal of Food Agriculture & Environment, 2013. 11(3/4): 317-323.
[14] 吳林海,劉曉琳,謝林柏,等. 基于Logistic模型的食品可追溯系統(tǒng)決策方法[J]. 系統(tǒng)管理學(xué)報,2016,25(4):644-651.
Wu Linhai, Liu Xiaolin, Xie Linbai, et al. Decision-making method for food traceability system based on logistic model[J]. Journal of Systems & Management, 2016, 25(4): 644-651. (in Chinese with English abstract)
[15] Badia-Melis R, Mishra P, Ruiz-García L. Food traceability: New trends and recent advances. A review[J]. Food control, 2015, 57(11): 393-401.
[16] 李明佳,汪登,曾小珊,等. 基于區(qū)塊鏈的食品安全溯源體系設(shè)計[J]. 食品科學(xué),2019,40(3):279-285.
Li Mingjia, Wang Deng, Zeng Xiaoshan, et al. Food safety tracing technology based on block chain[J]. Food Science, 2019, 40(3): 279-285. (in Chinese with English abstract)
[17] Qian J P, Shi C, Wang S S, et al. Cloud-based system for rational use of pesticide to guarantee the source safety of traceable vegetables[J]. Food Control, 2018, 87: 192-202
[18] 邵云飛,殷俊杰,杜欣. 新一代信息技術(shù)產(chǎn)業(yè)聯(lián)盟組合研究回顧與展望[J]. 電子科技大學(xué)學(xué)報:社科版,2018,20(3):22-30.
Shao Yunfei, Yin Junjie, Du Xin. Review of prospect of new generation of information technology industry alliance portfolio[J]. Journal of UESTC: Social Sciences Edition, 2018, 20(3): 22-30. (in Chinese with English abstract)
[19] Creydt M, Fischer M. Blockchain and more-Algorithm driven food traceability[J]. Food Control, 2019, 105: 45-51.
[20] Olsen P, Borit M. The components of a food traceability system[J]. Trends in Food Science & Technology, 2018, 77: 143-149.
[21] Bai H, Zhou G, Hu Y, et al. Traceability technologies for farm animals and their products in China[J]. Food Control, 2017, 79: 35-43.
[22] 楊信廷,錢建平,孫傳恒,等. 農(nóng)產(chǎn)品及食品質(zhì)量安全追溯系統(tǒng)關(guān)鍵技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(11):212-222.
Yang Xinting, Qian Jianping, Sun Chuanheng, et al. Key technologies for establishment agricultural products and food quality safety traceability systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 212-222. (in Chinese with English abstract)
[23] 王東亭,饒秀勤,應(yīng)義斌. 世界主要農(nóng)業(yè)發(fā)達(dá)地區(qū)農(nóng)產(chǎn)品追溯體系發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(8):236-250.
Wang Dongting, Rao Xiuqin, Ying Yibin. Development of agri-products traceability in main developed agriculture region of the world[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 236-250. (in Chinese with English abstract)
[24] 傅澤田,邢少華,張小栓. 食品質(zhì)量安全可追溯關(guān)鍵技術(shù)發(fā)展研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(7):144-153.
Fu Zetian, Xing Shaohua, Zhang Xiaoshuan. Development trend of food quality safety traceability technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 144-153. (in Chinese with English abstract)
[25] Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418: 671-677.
[26] Wales C, Harvey M, Warde A. Recuperating from BSE: The shifting UK institutional basis for trust in food[J]. Appetite, 2006, 47(2): 187-195.
[27] Bernard A, Broeckaert F, De P G, et al. The belgian PCB/dioxin incident: Analysis of the food chain contamination and health risk evaluation[J]. Environmental Research, 2002, 88(1): 1-18.
[28] 楊天和,褚保金.“從農(nóng)田到餐桌”食品安全全程控制技術(shù)體系研究[J]. 食品科學(xué),2005,26(3):264-268.
Yang Tianhe, Chu Baojin. Study on control system of food safety from farm to table[J]. Food Science, 2005, 26(3): 264-268. (in Chinese with English abstract)
[29] Jin S S, Zhou L, Consumer interest in information provided by food traceability systems in Japan[J]. Food Quality and Preference, 2014, 36: 144-152.
[30] 楊信廷,錢建平,孫傳恒. 現(xiàn)代食品安全控制與策略叢書農(nóng)產(chǎn)品質(zhì)量安全管理與溯源-理論、技術(shù)與實(shí)踐[M]. 北京:科學(xué)出版社,2016.
[31] 施澤平. 農(nóng)產(chǎn)品質(zhì)量安全實(shí)施IC卡監(jiān)管的實(shí)踐與思考[J]. 農(nóng)業(yè)質(zhì)量標(biāo)準(zhǔn),2005(6):24-26.
[32] 錢建平,張保巖,邢斌,等. 集成實(shí)時快速檢測信息的蔬菜追溯系統(tǒng)改進(jìn)與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(4):306-311.
Qian Jianping, Zhang Baoyan, Xing Bin, et al. Improvement and application of vegetable traceability system with integrated real-time rapid detection of information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 306-311. (in Chinese with English abstract)
[33] Biggs P, Srivastava L. ITU Internet Reports 2005: The Internet of Things[M]. Geverna: International Telecommunication Unio, 2005.
[34] Commission of the European Communities. Internet of things—an action plan for Europe[R]. Brussels: Commission of the European Communities, 2009-06-18.
[35] 葛文杰,趙春江. 農(nóng)業(yè)物聯(lián)網(wǎng)研究與應(yīng)用現(xiàn)狀及發(fā)展對策研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(7):222-230.
Ge Wenjie, Zhao Chunjiang. State-of-the-art and developing strategies of agricultural internet of things[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 222-230. (in Chinese with English abstract)
[36] 汪懋華. 物聯(lián)網(wǎng)農(nóng)業(yè)領(lǐng)域應(yīng)用發(fā)展對現(xiàn)代科學(xué)儀器的需求[J]. 現(xiàn)代科學(xué)儀器,2010(3):5-6.
[37] 何勇,聶鵬程,劉飛. 農(nóng)業(yè)物聯(lián)網(wǎng)與傳感儀器研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(10):216-226.
He Yong, Nie Pengcheng, Liu Fei. Advancement and trend of internet of things in agriculture and sensing instrument[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 216-226. (in Chinese with English abstract)
[38] 騰訊研究院,中國信通院互聯(lián)網(wǎng)法律研究中心,騰訊AI Lab,等. 人工智能[M]. 北京:中國人民大學(xué)出版社,2017.
[39] 梁智昊,許守任. “十三五”新一代信息技術(shù)產(chǎn)業(yè)發(fā)展策略研究[J]. 中國工程科學(xué),2016,18(4):32-37.
Liang Zhihao, Xu Shouren. Study on the development strategy for the new generation of information technology industry during the 13th Five-Year Plan[J]. Strategic Study of ACE, 2016, 18(4): 32-37. (in Chinese with English abstract)
[40] 鄔賀銓. 新一代信息技術(shù)的發(fā)展機(jī)遇與挑戰(zhàn)[J]. 中國發(fā)展觀察,2016(4):11-13.
[41] 徐宗本. 把握新一代信息技術(shù),把核心技術(shù)掌握在自己手中[N]. 人民日報,2019-03-01(9).
[42] 蔣昌俊,王俊麗. 智能源于人、拓于工-人工智能發(fā)展的一點(diǎn)思考[J]. 中國工程科學(xué),2018,20(6):93-100.
Jiang Changjun, Wang Junli. Intelligence originating from human beings and expanding in industry: A view on the development of artificial intelligence[J]. Strategic Study of ACE, 2018, 20(6): 93-100. (in Chinese with English abstract)
[43] 蔡曉晴,鄧堯,張亮,等. 區(qū)塊鏈原理及其核心技術(shù)[J]. 計算機(jī)學(xué)報,2019,42(115):1-15.
Cai Xiaoqing, Deng Yao, Zhang Liang, et al. The principle and core technology of blockchain[J]. Chinese Journal of Computers, 2019, 42(115): 1-15. (in Chinese with English abstract)
[44] 錢建平,楊信廷,張保巖,等. 基于RFID的蔬菜產(chǎn)地追溯精確度提高方案及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(15):234-239.
Qian Jianping, Yang Xinting, Zhang Baoyan, et al. RFID-based solution for improving vegetable producing area traceability precision and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 234-239. (in Chinese with English abstract)
[45] 錢建平,吳曉明,范蓓蕾,等. 基于條碼-RFID關(guān)聯(lián)的蔬菜流通過程追溯精確度提高方法[J]. 中國農(nóng)業(yè)科學(xué),2013,46(18):3857-3863.
Qian Jianping, Wu Xiaoming, Fan Beilei, et al. A solution for improving vegetable circulation traceability precision based on barcode-RFID correspondence[J]. Scientia Agricultura Sinica, 2013, 46(18): 3857-3863. (in Chinese with English abstract)
[46] Bertolini M, Bevilacqua M, Massini R. FMECA approach to product traceability in the food industry[J]. Food Control, 2006, 17(2): 137-145.
[47] Qian J P, Fan B L, Wu X M, et al. Comprehensive and quantifiable granularity: A novel model to measure agro-food traceability[J]. Food Control, 2017, 74(4): 98-106.
[48] Donnelly K A M, Karlsen K M, Olsen P. The importance of transformations for traceability: A case study of lamb and lamb products[J]. Meat Science, 2009, 83(1): 68-73.
[49] Wang L X, Kwok S K, Ip W H. A radio frequency identification and sensor-based system for the transportation of food[J]. Journal of Food Engineering, 2010, 101(1): 120-129.
[50] Aung M M, Chang Y S. Traceability in food supply chain: Safety and quality perpectives[J]. Food Control, 2014, 39(1): 172-184.
[51] Dupuy C, Botta-Genoulaz V, Guinet A. Batch dispersion model to optimize traceability in food industry[J]. Journal of Food Engineering, 2005, 70(3): 333-339
[52] 王姍姍,趙春江,錢建平,等. 批次清單結(jié)合Petri網(wǎng)追溯模型提高小麥粉加工過程追溯精度[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):263-271.
Wang Shanshan, Zhao Chunjiang, Qian Jianping, et al. Bill of lots combined with Petri tracing model improving traceability of wheat flour processing[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 263-271. (in Chinese with English abstract)
[53] Thakur M, Hurburgh C R. Framework for implementing traceability system in the bulk grain supply chain[J]. Journal of Food Engineering, 2009, 95(4): 617-626.
[54] 邢斌,劉學(xué)馨,錢建平,等. 鮮切蔬菜加工過程追溯的原料批次混合優(yōu)化模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(10):309-314.
Xing Bin, Liu Xuexin, Qian Jianping, et al.Establishment of materials batch mixing optimization model for traceability of fresh-cuts fruits and vegetables processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 309-314. (in Chinese with English abstract)
[55] Lobna L, Mounir B. A production model to reduce batch dispersion and optimize traceability[C]//4th International Conference on Logistics,Hammamet, Tunisia, 2011: 144-149.
[56] Tamayo S, Monteiro T, Sauer N. Deliveries optimization by exploiting production traceability information[J]. Engineering Applications of Artificial Intelligence, 2009, 22(4/5): 557-568.
[57] 李鋒,吳華瑞,朱華吉,等. 基于改進(jìn)粒子群算法的農(nóng)產(chǎn)品召回優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(7):238-245.
Li Feng, Wu Huarui, Zhu Huaji, et al. Optimization of agricultural products recall based on modified particle swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 238-245. (in Chinese with English abstract)
[58] Cerf O, Donnat E. Application of hazard analysis-critical control point (HACCP) principles to primary production: What is feasible and desirable?[J]. Food Control, 2011, 22(12): 1839-1843.
[59] Shi C, Qian J, Han S, et al. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia () pupil and gill color during storage at 4°C[J]. Food Chemistry, 2018, 243: 134-140.
[60] 呂本富,陳健. 大數(shù)據(jù)預(yù)測研究及相關(guān)問題[J]. 科技促進(jìn)發(fā)展,2014,10(1):60-65.
Lü Benfu, Chen Jian. The predication based on big data and related issues[J]. Science & Technology for Development, 2014, 10(1): 60-65. (in Chinese with English abstract)
[61] 王翔宇,溫皓杰,李鑫星,等. 農(nóng)業(yè)主要病害檢測與預(yù)警技術(shù)研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(9):266-277.
Wang Xiangyu, Wen Haojie, Li Xinxing, et al.Research progress analysis of mainly agricultural diseases detection and early warning technologies[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 266-277. (in Chinese with English abstract)
[62] Moh A, Massart S, Jijakli M H, et al. Models to predict the combined effects of temperature and relative humidity on Pectobacteriumatrosepticum and Pectobacteriumcarotovorum subsp. Carotovorum population density and soft rot disease development at the surface of wounded potato tubers[J]. Journal of Plant Pathology, 2012, 94(1): 181-191
[63] 李明,趙春江,楊信廷,等. 溫室蔬菜病害預(yù)警體系初探:以黃瓜霜霉病為例[J]. 中國農(nóng)學(xué)通報,2010,26(6):324-331.
Li Ming, Zhao Chunjiang, Yang Xinting, et al. Towards an early warning framework of greenhouse vegetable diseases-A case of cucumber downy mildew[J]. Chinese Agricultural Science Bulletin, 2010, 26(6): 324-331. (in Chinese with English abstract)
[64] 張善文,張傳雷,丁軍. 基于改進(jìn)深度置信網(wǎng)絡(luò)的大棚冬棗病蟲害預(yù)測模型[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(19):202-208.
Zhang Shanwen, Zhang Chuanlei, Ding Jun. Disease and insect pest forecasting model of greenhouse winter jujube based on modified deep belief network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 202-208. (in Chinese with English abstract)
[65] Sankaran S, Ehsani R. Visible near infrared spectroscopy based citrus greening detection: evaluation of spectral feature extraction techniques[J]. Crop Protection, 2011, 30(11): 1508-1513.
[66] 史波林,趙鐳,支瑞聰. 基于品質(zhì)衰變理論的食品貨架期預(yù)測模型及其應(yīng)用研究進(jìn)展[J]. 食品科學(xué),2012,33(21):345-350.
Shi Bolin, Zhao Lei, Zhi Ruicong. Advances in predictive shelf life models based on food quality deterioration theory and their applications[J]. Food Science, 2012, 33(21): 345-350. (in Chinese with English abstract)
[67] 史策,錢建平,韓帥,等. 水產(chǎn)品貨架期預(yù)測模型的研究進(jìn)展[J]. 食品科學(xué),2017,38(15):294-301.
Shi Ce, Qian Jianping, Han Shuai, et al. Progress in shelf life prediction models for aquatic products[J]. Food Science, 2017, 38(15): 294-301. (in Chinese with English abstract)
[68] García Míriam R, Vilas C , Herrera J R , et al. Quality and shelf-life prediction for retail fresh hake ()[J]. International Journal of Food Microbiology, 2015, 208: 65-74.
[69] 劉壽春,趙春江,楊信廷,等. 豬肉冷鏈物流感官質(zhì)量控制圖設(shè)計與應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(7):177-182.
Liu Shouchun, Zhao Chunjiang, Yang Xinting, et al. Design and application of control charts in pork sensory quality during cold chain logistics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 177-182. (in Chinese with English abstract)
[70] 高翔,肖建華,王洪斌. 基于 ZINB 模型和氣象因素的禽霍亂發(fā)病預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(15):176-182.
Gao Xiang, Xiao Jianhua, Wang Hongbin. Prediction of avian pasteurellosis based on ZINB model and meteorological factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 176-182. (in Chinese with English abstract)
[71] 章德賓,徐家鵬,許建軍,等. 基于監(jiān)測數(shù)據(jù)和BP神經(jīng)網(wǎng)絡(luò)的食品安全預(yù)警模型[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(1):221-226.
Zhang Debin, Xu Jiapeng, Xu Jianjun, et al. Model for food safety warning based on inspection data and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 221-226. (in Chinese with English abstract)
[72] 于麗娜,張國鋒,賈敬敦,等. 基于區(qū)塊鏈技術(shù)的現(xiàn)代農(nóng)產(chǎn)品供應(yīng)鏈[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2017,48(S1):387-393.
Yu Li’na, Zhang Guofeng, Jia Jingdun, et al. Modern agricultural product supply chain based on block chain technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 387-393. (in Chinese with English abstract)
[73] Zhao G, Liu S, Lopez C, et al. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions[J]. Computers in Industry, 2019, 109: 83-99.
[74] Antonucci F, Figorilli S, Costa C, et al. A review on blockchain applications in the agri-food sector[J]. Journal of the Science of Food and Agriculture, 2019, 99: 6129-6138.
[75] Kamble S S, Gunasekaran A, Sharma R. Modeling the blockchain enabled traceability in agriculture supply chain[J/OL]. International Journal of Information Management. [2019-11-12] https://doi.org/10.1016/j.ijinfomgt.2019.05.023.
[76] Leng K J, Bi Y, Jing L B. Research on agricultural supply chain system with double chain architecture based on block chain technology[J]. Future Generation Computer Systems, 2018, 86: 641-649.
[77] 錢建平,范蓓蕾,史云,等. 基于區(qū)塊鏈的農(nóng)產(chǎn)品可信追溯系統(tǒng)框架構(gòu)建[J]. 中國農(nóng)業(yè)信息,2019,31(3):48-57.
Qian Jianping, Fan Beilei, Shi Yun, et al. The structure of credible traceability system for agricultural products based on blockchain[J]. China Agricultural Informatics, 2019, 31(3): 48-57. (in Chinese with English abstract)
[78] Kamilaris A, Fonts A, Prenafeta-Boldv F X. The rise of block chain technology in agriculture and food supply chains[J]. Trends in Food Science & Technology, 2019, 91: 640-652.
[79] CB Insights. How blockchain could transform food safety [EB/OL]. [2019-11-12] https://www.cbinsights.com/research/ blockchain-grocery-supply-chain.
[80] Wass S. Food companies unite to advance blockchain for supply chain traceability[EB/OL]. [2019-11-12] https://www.gtreview.com/news/fintech/food-companies-unite- to-advance-blockchain- for-supply-chain-traceability.
[81] Carrefour. The food blockchain[EB/OL]. [2019-11-12] https://actforfood.carrefour.com/Why-take-action/the-food- blockchain.
[82] JD.com Blog. JD blockchain open platform[EB/OL]. [2019-11-12] https://jdcorporateblog.com/jd-launches-blockchain-open- platform.
[83] Hendrix Genetics. New blockchain project involving turkeys and animal welfare[EB/OL]. [2019-11-12] https://www.hendrix- genetics.com/en/news/new-blockchain-project-involving-turkeys- and-animal-welfare.
[84] Ireland Craft Beers. Downstream beer[EB/OL]. [2019-11-12] http://www.down-stream.io.
[85] Fast Company. In China, you can track your chicken on-you guessed it- the Blockchain[EB/OL]. [2019-11-12] https://www. fastcompany.com/40515999/in-china-you-can-track-your- chicken-on-you-guessed-it-the-blockchain.
[86] Hyperledger. Bringing traceability and accountability to the supply chain through the power of HyperledgerSawtooth’s distributed ledger technology[EB/OL]. [2019-11-12] https://sawtooth. hyperledger.org/examples/seafood.html.
[87] 邵奇峰,金澈清,張召,等. 區(qū)塊鏈技術(shù):架構(gòu)及進(jìn)展[J]. 計算機(jī)學(xué)報,2017,41(5):969-988.
Shao Qifeng, Jin Cheqing, Zhang Zhao, et al. Blockchain: Architecture and research progress[J]. Chinese Journal of Computers, 2017, 41(5): 969-988. (in Chinese with English abstract)
Review on agricultural products smart traceability system affected by new generation information technology
QianJianping, Wu Wenbin, Yang Peng※
(,/,,100081,)
From the problem of mad cow disease to date, the traceability system as effective means to ensure food safety has been introduced for nearly 30 years. Now, reducing breakage degree for traceability chain, enhancing traceability credibility, and improving early warning capacity for agri-food quality and safety, these has increasingly become hot topics of traceability system research, which is also urgent problems in traceability system application. Focusing on these issues, the agricultural products smart traceability system affected by new generation information technologies based on the relevant literature was summarized and analyzed. Firstly, the development stages of traceability system from 1.0 to 3.0 were presented. The features of the three stages were information recording for 1.0, data integration for 2.0, and intelligent decision-making for 3.0 , respectively. Secondly, the relationship of new generation information technology including internet of things (IoT), big data, cloud computing, blockchain, artificial intelligence (AI) was described. The new generation of information technology is not only the vertical promotion of single technology, but also the horizontal penetration of technology integration. The development trend about big data, artificial intelligence and block chain were summarized. Finally, the relevant research on the issues of reducing the breakage degree for traceability with AI, improving early warning capability for agri-food quality and safety with big data, and enhancing the traceability credibility of the whole supply chain with blockchain were summarized. The orientation of in-depth study was put forward in the light of the technology development trend. For combing AI, traceability granularity should be improved from within and among supply chains through establishment some flexible and intelligent traceability models. For coming big data, prediction quality and optimization processing model should be enhanced through data mining and analysis from different levels. For coming blockchain, traceability block structure optimization, privacy protection, block chain consensus algorithm should be performed to meet the requirement agri-food. In fact, AI, big data, block chain and other technologies have different characteristics. In order to improve the intelligent level for traceability system, the different technologies should be integrated deeply. This paper provides a useful reference for grasping the development trend of traceability system, for knowing the research hot spot and for understanding the application bottleneck.
agricultural products; traceability; new generation information technology; artificial intelligence; big data; block chain; food safety
2019-11-18
2020-01-22
國家自然科學(xué)基金項目(31971808);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程引進(jìn)英才“智慧農(nóng)業(yè)”項目(962-3)
錢建平,博士,研究員,主要從事農(nóng)產(chǎn)品智慧供應(yīng)鏈管理與追溯技術(shù)研究。Email:qianjianping@caas.cn
楊 鵬,博士,研究員,主要從事農(nóng)業(yè)資源管理與智慧農(nóng)業(yè)研究。Email:yangpeng@caas.cn
10.11975/j.issn.1002-6819.2020.05.021
TP301; S23
A
1002-6819(2020)-05-0182-10
錢建平,吳文斌,楊 鵬. 新一代信息技術(shù)對農(nóng)產(chǎn)品追溯系統(tǒng)智能化影響的綜述[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):182-191. doi:10.11975/j.issn.1002-6819.2020.05.021 http://www.tcsae.org
Qian Jianping, Wu Wenbin, Yang Peng. Review on agricultural products smart traceability system affected by new generation information technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 182-191. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.05.021 http://www.tcsae.org