• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Rap1 signaling in tumor cell migration and invasion

    2017-02-27 05:54:21YiLeiZhangRuoChenWangKenChengBrianRingLiSuKeyLaboratoryofMolecularBiophysicsofMinistryofEducationSchoolofLifeScienceandTechnologyHuazhongUniversityofScienceandTechnologyWuhan40074ChinaSunYatsenUniversityGuangzhou50
    Cancer Biology & Medicine 2017年1期

    Yi-Lei Zhang, Ruo-Chen Wang, Ken Cheng, Brian Z. Ring, Li Su,Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 40074, China;Sun Yat-sen University, Guangzhou 5075, China;Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 5806, China

    Roles of Rap1 signaling in tumor cell migration and invasion

    Yi-Lei Zhang1, Ruo-Chen Wang1, Ken Cheng2, Brian Z. Ring1, Li Su1,31Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;2Sun Yat-sen University, Guangzhou 510275, China;3Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China

    Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.

    Tumor; metastasis; Rap1; RapGEFs; RapGAPs

    Introduction

    Cell migration and tumor metastasis are responsible for up to 90% of cancer-associated mortality1. Ras-associated protein-1 (Rap1) plays important roles in the regulation of multiple key events in tumor cell migration, invasion, and metastasis. Rap1, a member of the 21-kilodalton Ras-like small GTPase family, can bind to either guanosine triphosphate (GDP) or guanosine diphosphate (GDP) and is modulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)2,3. Rap1 shares a high degree of sequence identity (53%) with Ras protein4and can revert the phenotype of K-Ras-transformed cells5. Consistent with this observation, overexpressed Rap1V12, a constitutively active form of Rap1 (Rap1GTP), inhibits lysophosphatidic acid (LPA)-induced Ras-dependent ERK activation6. However, Rap1 can also activate B-Raf and ERKs in a manner independent and distinct of Ras7. The many roles of Rap1 include its participation in regulation of integrin- and cadherin-mediated cell adhesion in response to various membrane receptors8and regulation of both the recycling,avidity, and affinity of integrins by modulating an inside-out activation process9-11. Rap1 activation may promote the formation of cadherin-mediated cell-cell contacts through inside-out regulation12or cell-cell contact-induced E-cadherin-mediated outside-in signaling13.

    Regulation of Rap1 activity is primarily controlled by RapGEFs and GAPs (Figure 1). The dissociation rate of nucleotides from Rap1 is slow; however, GEFs accelerate this exchange reaction by several orders of magnitude14. Given that GEFs weaken the association between Rap1 and nucleotides, increases in GTP-bound forms over GDP-bound forms are caused by the higher intracellular concentration of GTP than GDP by approximately ten times15. GEFs contain a catalytic CDC25 homology domain and show selective activity for Rap1, although some GEFs can interact with other small G proteins16. This modulation of nucleotide binding of GEFs allows GEFs to respond to diverse stimuli, resulting in spatiotemporal regulation of Rap1. For example, RapGEFs, such as Epac1 and Epac2, are directly regulated by the secondary messenger cAMP, which controls local Epac-Rap1 signaling through its cellular distribution. Epac1 activation triggers the relocalization of Epac1 to the plasma membrane, activating membrane-localized Rap1 and enhancing integrin-mediated cell adhesion17. Another RapGEF, C3G, is regulated through post-translational modifications by Src and interacts with adaptor proteins of the Crk family upon activation of several receptors, includingplatelet-derived growth factor receptor and insulin receptor18-20. Rap1-bound GTP is efficiently hydrolyzed into GDP in the presence of RapGAPs, which accelerate the GTP hydrolysis reaction by several orders of magnitude.

    Figure 1 Mechanisms by which Rap1 signaling controls tumor cell invasion and metastasis. Rap1 signaling regulates integrin- or cadherinmediated cell adhesion, expression levels of proteases (e.g., matrix metalloproteinase), and cytoskeletal changes, which are linked to tumor cell proliferation, invasion, and metastasis.

    Two families of Rap1-specific GAPs exist: the Rap1GAP and SIPA1 families21. The mechanism through which all GAPs catalyze GTP hydrolysis primarily depends on the stabilization of the catalytic machinery of G protein through insertion of a catalytic side chain into the nucleotide-binding pocket, an arginine side chain for RasGAPs and asparagine side chain for RapGAPs22. Through differentially distributed subcellular features, such as protein-protein interactions and epigenetic modifications, RapGAPs target different Rap1-dependent signaling complexes and consequently perform distinct cellular functions. For example, Rap1GAP is recruited from the cytosol to the plasma membrane by its interaction with Gαz, which is activated by G protein coupled receptors23. E6 oncoprotein binds to SIPA1L1 (E6TP1) and targets it for degradation, resulting in deregulation of Rap1 activity24. In melanoma cells, Rap1GAP is downregulated via promoter methylation, promoting Rap1 activation, ERK phosphorylation, and cell proliferation and survival25.

    Moreover, the diversity of cellular functions regulated by small G proteins is determined by the distinct downstream effectors of these proteins. The effectors of Rap1 include the adaptor proteins AF-6, RAPL, Ezrin, Rasip1, Radil, Krit1, RacGEFs (e. g. , Tiam1 and Vav2), and RhoGAPs, including RA-RhoGAP and Arap326-31, which contribute to the regulation of Rap1-dependent cellular functions, such as cell adhesion, junction, migration, and polarization. RAPL deficiency has been speculated to significantly reduce the ability of chemokine-stimulated lymphocytes to adhere to ICAM and migrate into peripheral lymph nodes and spleen26. AF-6 interacts with p120 catenin and inhibits E-cadherin endocytosis in a Rap1-dependent manner27, affecting E-cadherin-mediated cell-cell adhesion. Rasip1 mediates Rap1-induced cell spreading without affecting adhesion; it induces junctional tightening via interaction with Radil28. Concomitantly, Rap1 promotes translocation of Radil from cytoplasm to plasma membrane, and Radil overexpression increases cell adhesion29. Rap1 interacts with Tiam1 and Vav2 without affecting their catalytic activity but in turn activates Rac and CDC42, regulating cell polarization and movement30,31. Furthermore, the Rap1 effector B-Raf can mediate ERK activation, and regulation of PI3K/Akt by Rap1 is an important mechanism in the control of cell survival and proliferation32(Figure 1).

    Tumor cell migration, invasion, and metastasis: roles of Rap1 signaling and its regulators

    The diverse roles of Rap1 in the regulation of normal cell growth are translated into several distinct activities in tumorcell development. Rap1 demonstrates distinct actions during metastasis depending on the assay employed and cancer type studied (Table 1) based on standard assays used to determine the roles of Rap1 include overexpression of wild-type Rap1 or its active mutants (Rap1V12 or Rap1E63), the use of extracellular stimuli, such as HGF, TGFβ, EGF, or cAMP analogs, and the use of siRNAs and the pharmacological inhibitor GGTI-298, followed by assessment of the invasive capacity of tumor cells by means of scratch and Transwell assays in vitro or xenograft models in vivo. Active Rap1 inhibits tumor invasion and metastasis in bladder, lung, and brain33,34, whereas it has the opposite effect in melanoma, leukemia, breast cancer, esophageal squamous cell carcinoma, head and neck squamous cell carcinoma (HNSCC), pancreatic carcinoma, and non-small cell lung carcinoma35-40. Rap1 activation promotes the adhesion of lymphoma cells to endothelial cells and its subsequent transmigration into the hematopoietic system, through which lymphoma cells spread to distant organs39. Moreover, Rap1E63 contributes to the invasive ability of prostate cancer cells41, whereas Rap1V12 suppresses prostate cancer metastasis42. Additionally, both Rap1V12 and Rap1GAP impair the migratory and invasive abilities of melanoma cells39, whereas the two isoforms of Rap1, Rap1A, and Rap1B exert the opposite effect on cell motility in glioma43,44. These manifold phenotypes reflect the multiple signaling pathways that exist downstream of Rap1.

    Similar to Rap1, which plays diverse roles in tumor metastasis, Rap1 regulators are pleiotropic (Table 2). Overexpression of the Rap1 activator DOCK4 suppresses invasion of mouse osteosarcoma cells45. Targeted shRNA-mediated EPAC1 inhibition reduces pancreatic cancer cell migration and invasion46. Stable expression of a nondegradable mutant of RAPGEF2 in breast cancer cells blocks tumor invasion and metastasis47. Rap1GAP inhibits tumor cell invasion in pancreatic carcinoma, thyroid carcinoma, melanoma, renal carcinoma, and colon cancer48-50; however, increased expression of Rap1GAP induces cell invasion in leukemia51. High expression of SIPA1 promotes tumor invasion and metastasis in prostate cancer, melanoma, and breast cancer52,53In colon cancer, downregulation of endogenous SIPA1 increases the invasive ability of cells54. This finding is inconsistent with the result for ovarian cancer, wherein C3G/Rap1 signaling promotes cell invasion, whereas Rap1GAP does not affect cell mobility55,56. Most of the studies included in Table 2 also assessed the role of Rap1 and the effect of GEFs and GAPs on tumor invasion and metastasis. Exceptions are the study on Rap1GAP in pancreatic carcinoma49and SIPA1 in melanoma and colorectal carcinoma52,54; these studies did not assess whether Rap1 is involved in the observed cellular changes.

    Other potential functions of Rap1 GEFs and GAPs in addition to their regulatory role on Rap1 activity cannot be ruled out. A recent study demonstrated that nuclear SIPA1 could activate integrin β1 promoter and promote breast cancer cell invasion in a Rap1-independent manner53. Moreover, the opposite influences of Rap1GAP and SIPA1 on regulation of melanoma cell invasion imply that there exist multiple mechanisms through which Rap1GAPs can affect cell migration and invasion. Several independent investigations have shown that the Rap1 GEF PDZ-GEF2 promotes tumor cell invasion in colon cancer, whereas Rap1GAP and SIPA1 suppresses cancer cell invasion54,57. This finding suggests a potential central role of Rap1 signaling and Rap1 signaling partners in colorectal carcinoma metastasis, and that the function of the Rap1 signaling proteins in tumor metastasis is very complex and mediates the effect of a host of other cellular and tissue-specific factors. Dissemination of tumor cells from the original tumor mass involves a breakdown of cell-cell adhesion. Tumor cell migration is promoted by disruption of the extracellular matrix to form a proteolytic microtrack. Rap1 signaling participates in several processes that contribute to these events (Figure 2), as outlined below.

    Rap1 signaling regulates cell adhesion

    Rap1 signaling regulates integrins and cadherins, which play important roles in cell adhesion to ECM and in cell-cell adhesion58. In lung cancer, cAMP-induced Epac-Rap activation suppresses TGFβ- and HGF-stimulated cell migration by enhancing cell-cell adhesion34. JAM-A drives breast cancer cell migration and adhesion through activation of Rap1 and integrin β1 and formation of a complex between JAM-A, AF-6, and PDZ-GEF236. Disrupting the balance in Rap1 activity in melanoma cells via expression of Rap1V12 or Rap1GAP impairs cell adhesion and migration via the FAK-and integrin-dependent pathways39. Given that both Rap1-specific GAPs Rap1GAP and SIPA1 inhibit cell adhesion to ECM, concluding that Rap1 plays a role in the regulation of cell adhesion is reasonable25,52. In prostate cancer cells, SIPA1 promotes tumor cell invasion and metastasis at least partially by inhibiting Rap1-mediated cell adhesion to ECM42. Reduced cell-cell adhesion is required for individual cell dissemination and invasion at the leading edge of the tumor mass during epithelial mesenchymal transition (EMT), and mesenchymal-migrating tumor cells require strong cell-to-ECM adhesion, whereas amoeboid movement does not58. In terms of the specific role of Rap1 in regulating integrin activation and integrin-mediated cell adhesion, Rap1 forms a complex containing talin combined with RIAM, which

    Table 1 Rap1 in tumor cell invasion and metastasis

    Table 2 Role of Rap1 GEFs and GAPs in tumor cell invasion and metastasis

    Figure 2 Dynamic change in Rap1 signaling during tumor cell invasion and metastasis. Dynamic change or cycling of Rap1 activity is required for invasive and metastatic behavior of tumor cells. For instance, while inactivation of Rap1-cadherin or integrin signaling is associated with reduced cell-cell adhesion or cell adhesion to extracellular matrix in one stage (steps 1 and 3), a separate step might entail increased Rap1 activity and cell adhesion (steps 2, 4, 5, and 6).

    targets talin to integrin59. However, a complete description of the roles of Rap1 in mediating cell adhesion in tumor cell invasion and metastasis requires further clarification.

    Rap1 signaling modulates expression of matrix metalloproteinases (MMPs)

    During tumor invasion and metastasis, MMPs degrade ECM barriers, cleave and activate target proteins, and regulate cell adhesion. In HNSCCs, Rap1 promotes nuclear localization of β-catenin, which induces TCF-dependent MMP7 transcription, thereby contributing to tumor cell invasion37. Knockdown of C3G in ovarian cancer cells reduces MMP2 and MMP9 production and Rap1-GTP level56. However, in HNSCCs, overexpression of Rap1GAP increases the expression levels of MMP2 and MMP9 and the invasive capacity of cells, although the role of Rap1 in this process is unclear62. Overexpression of SIPA1 in prostate cancer cells reduces MMP12 expression42. By contrast, SIPA1 knockdown in breast cancer cells reduces MMP9 expression through the FAK/Akt pathway53.

    Rap1 signaling controls Rho GTPase-mediated regulation of cytoskeletal dynamics

    Several Rho family members function in actin cytoskeleton rearrangement and consequently in modulation of cell motility. Rap1 signaling can participate in motility regulation involving Rho family proteins, particularly Cdc42, Rac1, and RhoA. Rap1 associates with RacGEFs, such as Vav2 and Tiam1, to induce translocation of Vav2 and activates Rac1 to promote cell spreading30. Cdc42 activation by Rap1 increases the activity of cell polarization-related protein complex, which in turn activates Rac1 through Tiam1 and subsequently enhances cell polarization31. Moreover, Rap1 can interact with and activates Arap3, a RhoA GAP. During tumor metastasis, Rap1 increases the ability of melanoma cell to migrate via Vav2-dependent activation of the RhoA/ ROCK/MLC pathway60. In vitro overexpressed Rap1GAP inhibits Rap1, Rac1 activation, and thyroid tumor cell migration61. Additionally, Rap1's inhibitory effects on bladder cancer and glioma cell migration are intensified by reduced Rac1 activity33,43. Rap1 signaling can regulate Rhofamily protein activities either positively or negatively, causing a wide range of effects on tumor cell invasion and metastasis.

    Rap1 signaling controls cell proliferation

    Tumor cell growth can increase tumor volume and mass, contributing to invasion via physical pushing63. An inhibitory effect of Rap1 signaling-related molecules on cell proliferation and invasion has been repeatedly observed; for instance, DOCK4 inhibits osteosarcoma and Rap1GAP inhibits pancreatic cancer, thyroid carcinoma, and melanoma cells25,45,48,49. Additionally, SIPA1 drives both cell proliferation and invasion in melanoma cells52. SIPA1-induced expression exerts little effect on primary tumor mass in prostate cancer but significantly increases both tumor cell invasion and metastasis, suggesting that SIPA1 promotes metastasis through mechanisms other than proliferation42. SIPA1 knockdown impairs the invasive capacity of breast cancer cells while it enhances their proliferation53. Similarly, overexpression of Rap1V12 in melanoma cells increases tumor mass but inhibits tumor metastasis in vivo39. Moreover, Rap1GAP overexpression inhibits cell growth but induces MMP2- and MMP9-mediated oropharyngeal squamous carcinomas cell invasion51.

    Regulation of Rap1 is dependent on tissue and subcellular-specific factors

    Rap1 signaling can affect metastasis in different manners depending on tumor types (Table 3). Tissue-specific protein expression in different tumor types likely contributes to theregulation of Rap1 signaling, similar to the spatiotemporally regulated patterns of gene expression during tumor development64. Indeed, Rap1 has been implicated in the activation and inhibition of ERK pathway in different cell types21; cAMP-induced activation of Rap1 inhibits C-Rafinduced ERK activation65. However, in neuronal cells expressing B-Raf, activated Rap1 can directly bind to B-Raf and induces downstream ERK activation7,66. Additionally, over-activation or inactivation of Rap1 inhibits melanoma cell motility, suggesting that change in Rap1 activity is critical for the metastatic dissemination of melanoma cells39. The interaction of Rap1 signaling with tissue-specific factors may explain this considerably diverse functions of Rap1. For example, while basal level of Rap1-GTP maintains cell adhesion, insulin-like growth factor type I receptor transiently regulates Rap1 activity through C3G and Rap1GAP to promote cell movement67.

    Table 3 Bidirectional effects of Rap1 signaling in different tumor types

    Protein subcellular localization of Rap1 is vital to the specificity and diversity of its function68. Relatedly, tumor cell dissemination and invasion depends on the stability and activity of Rap1 (Figure 2). Rap1 phosphorylation prevents the membrane association of Rap1, resulting in cytosolic and nuclear accumulation and in subsequent decrease in Rap1-dependent cell adhesion69,70. In addition, Rap1 stabilizes βcatenin in the nucleus and enhances β-catenin-dependent transcription and invasion in HNSCC37,51. SIPA1, recruited by AF6 and co-localized with Rap1 at cell adhesion sites, inhibits endogenous Rap1GTP and integrin β1-mediated cell adhesion to fibronectin71. However, nuclear-localized SIPA1 activates the integrin β1 gene promoter and promotes cell invasion and adhesion (Figure 3)53.

    Novel targets for the prevention of metastasis: insights from related studies on Rap1 signaling

    Prevention or early detection of the initial dissemination of tumor cells and secondary spread of tumor is an important goal in research aiming to find better clinical therapies72. In a melanoma metastasis model, six distinct Rap1-regulating molecules were used to predict the aggressive capability of melanoma cells52. Several inhibitors of cell motility, such as metalloproteinase inhibitor73and the fascin inhibitor Migrastatin74, have been suggested to demonstrate clinical utility in preventing tumor cell dissemination and subsequent invasion and metastasis. However, formation of metastases often occurs prior to the diagnosis of cancer. The Rap1 signaling pathway offers many targets for novel clinical tools given that Rap1 affects not only cell polarity and cell adhesion but also cell proliferation and invasion. Treatmentwith the demethylating agent 5-aza-2'-deoxycytidine induces Rap1GAP expression and reduces melanoma cell proliferation and survival25. In addition, treatment with 5-aza-deoxycytidine and/or the histone deacetylation inhibitor trichostatin A induces Rap1GAP expression in thyroid tumor cells, reducing cell invasion and proliferation48,75. Additional studies on these and other novel reagents targeting Rap1 signaling molecules are called for.

    Figure 3 Subcellular localization of Rap1 and SIPA1 during tumor cell invasion and metastasis. Subcellular localization of Rap1 (A) and SIPA1 (B) contributes to their distinct functions within a cell.

    Conclusions

    Rap1 signaling plays several important roles in tumor cell invasion and metastasis. The full scope of its functions remains unknown; Rap1 can induce very distinct effects depending on the tissue in which Rap1 is expressed. Therefore, the specific functions and effects of Rap1 signaling on metastasis in different tumor types remains a subject of continuing research. Additionally, many proteins contribute to the diversity in the control of tumor invasion and metastasis by Rap1 signaling, and the full panoply of factors that work with Rap1 resulting in diverse control mechanisms is not yet fully elucidated. Future works employing high throughput screening strategies to identify new molecules contributing to Rap1 signaling and real-time monitoring of Rap1 signaling during tumor invasion and metastasis are needed to further define the roles of Rap1.

    Acknowledgements

    This study is supported by grants from the National Natural Science Foundation of China (Grant No. 31271504 and 31471310) and the Shenzhen Science and Technology Innovation Committee, China (Grant No. JCYJ2013040 1144744187).

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011; 147: 275–92.

    2.Gloerich M, Bos JL. Regulating rap small G-proteins in time and space. Trends Cell Biol. 2011; 21: 615–23.

    3.Hattori M, Minato N. Rap1 GTPase: functions, regulation, and malignancy. J Biochem. 2003; 134: 479–84.

    4.Caron E. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci. 2003; 116: 435–40.

    5.Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A rasrelated gene with transformation suppressor activity. Cell. 1989; 56: 77–84.

    6.Cook SJ, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 1993; 12: 3475–85.

    7.Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJS. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997; 89: 73–82.

    8.Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol. 2006; 85: 283–93.

    9.Bos JL, de Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, et al. The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans. 2003; 31: 83–6.

    10.Dustin ML, Bivona TG, Philips MR. Membranes as messengers in T cell adhesion signaling. Nat Immunol. 2004; 5: 363–72.

    11.Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004; 7: 585–95.

    12.Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 2009; 1788: 790–6.

    13.Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 2005; 118: 4765–83.

    14.Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294: 1299–304.

    15.Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998; 394: 337–43.

    16.Rebhun JF, Castro AF, Quilliam LA. Identification of Guanine Nucleotide Exchange Factors (GEFs) for the Rap1 GTPase: regulation of MR-GEF by M-RAS-GTP interaction. J Biol Chem. 2000; 275: 34901-8.

    17.Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K. Direct spatial control of Epac1 by cyclic AMP. Mol Cell Biol. 2009; 29: 2521–31.

    18.Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata K, et al. Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 2008; 13: 549–69.

    19.Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001; 20: 3333–41.

    20.Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001; 410: 944–8.

    21.Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol. 2001; 2: 369–77.

    22.Raaijmakers JH, Bos JL. Specificity in Ras and Rap signaling. J Biol Chem. 2009; 284: 10995–9.

    23.Meng JW, Glick JL, Polakis P, Casey PJ. Functional interaction between Gαzand Rap1GAP suggests a novel form of cellular crosstalk. J Biol Chem. 1999; 274: 36663–9.

    24.Gao QS, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol. 1999; 19: 733–44.

    25.Zheng H, Gao L, Feng YF, Yuan LY, Zhao HB, Cornelius LA. Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer Res. 2009; 69: 449–57.

    26.Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004; 5: 1045–51.

    27.Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y. Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem. 2005; 280: 24095–103.

    28.Post A, Pannekoek WJ, Ross SH, Verlaan I, Brouwer PM, Bos JL. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci U S A. 2013; 110: 11427–32.

    29.Liu LH, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA. Radil controls neutrophil adhesion and motility through β2-integrin activation. Mol Biol Cell. 2012; 23: 4751–65.

    30.Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J Cell Biol. 2004; 167: 111–22.

    31.Gérard A, Mertens AEE, van der Kammen RA, Collard JG. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol. 2007; 176: 863–75.

    32.Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, et al. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem. 2003; 278: 41756–67.

    33.Vallés AM, Beuvin M, Boyer B. Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT- cells. J Biol Chem. 2004; 279: 44490–6.

    34.Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, de Rooij J. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal. 2008; 20: 1104–16.

    35.Gao L, Feng YF, Bowers R, Becker-Hapak M, Gardner J, Council L, et al. Ras-associated protein-1 regulates extracellular signalregulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 2006; 66: 7880–8.

    36.McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 2011; 13: R31.

    37.Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, et al. Rap1 stabilizes β-catenin and enhances β-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010; 16: 65–76.

    38.Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, et al. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene. 2012; 31: 2783–93.

    39.Lin KBL, Tan P, Freeman SA, Lam M, McNagny KM, Gold MR. The Rap GTPases regulate the migration, invasiveness and in vivo dissemination of B-cell lymphomas. Oncogene. 2010; 29: 608–15.

    40.Infante E, Heasman SJ, Ridley AJ. Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol. 2011; 89: 577–86.

    41.Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009; 69: 4962–8.

    42.Shimizu Y, Hamazaki Y, Hattori M, DoiK, Terada N, Kobayashi T, et al. SPA-1 controls the invasion and metastasis of human prostate cancer. Cancer Sci. 2011; 102: 828–36.

    43.Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell. 2009; 20: 5156–65.

    44.Barrett A, Evans IM, Frolov A, Britton G, Pellet-Many C, Yamaji M, et al. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling. J Cell Sci. 2014; 127: 2647–58.

    45.Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DCR, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003; 112: 673–84.

    46.Almahariq M, Tsalkova T, Mei FC, Chen HJ, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013; 83: 122–8.

    47.Magliozzi R, Low TY, Weijts BGMW, Cheng TH, Spanjaard E, Mohammed S, et al. Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013; 27: 574–85.

    48.Zuo H, Gandhi M, Edreira MM, Hochbaum D, Nimgaonkar VL, Zhang P, et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 2010; 70: 1389–97.

    49.Zhang LZ, Chenwei L, Mahmood R, van Golen K, Greenson J, Li GY, et al. Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res. 2006; 66: 898–906.

    50.Kim WJ, Gersey Z, Daaka Y. Rap1GAP regulates renal cell carcinoma invasion. Cancer Lett. 2012; 320: 65–71.

    51.Mitra RS, Goto M, Lee JS, Maldonado D, Taylor JMG, Pan QT, et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage squamous cell carcinoma. Cancer Res. 2008; 68: 3959–69.

    52.Mathieu V, Pirker C, Schmidt WM, Spiegl-Kreinecker S, L?tsch D, Heffeter P, et al. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget. 2012; 3: 399–413.

    53.Zhang Y, Gong Y, Hu D, Zhu P, Wang N, Zhang Q, et al. Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells. Oncogene. 2015; 34: 1451–62.

    54.Ji K, Ye L, Toms AM, Hargest R, Martin TA, Ruge F, et al. Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells. Cancer Genomics Proteomics. 2012; 9: 321–7.

    55.Ho SM, Lau KM, Mok SC, Syed V. Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene. 2003; 22: 4243–56.

    56.Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, et al. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett. 2015; 359: 241–9.

    57.Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cellmatrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr. 2011; 5: 323–31.

    58.Kooistra MRH, Dubé N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007; 120: 17–22.

    59.Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonistinduced activation of integrin αbβ3. Curr Biol. 2006; 16: 1796–806.

    60.Hernández-Varas P, Coló GP, Bartolomé RA, Paterson A, Medra?o-Fernández I, Arellano-Sánchez N, et al. Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells. J Biol Chem. 2011; 286: 18492–504.

    61.Tsygankova OM, Prendergast GV, Puttaswamy K, Wang Y, Feldman MD, Wang HB, et al. Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol. 2007; 27: 6647–58.

    62.Mitra RS, Zhang ZC, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003; 22: 6243–56.

    63.Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147: 992–1009.

    64.Levine M. Transcriptional enhancers in animal development and evolution. Curr Biol. 2010; 20: R754–63.

    65.Zwartkruis FJT, Wolthuis RMF, Nabben NMJM, Franke B, Bos JL. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 1998; 17: 5905–12.

    66.Grewal SS, Horgan AM, York RD, Withers GS, Banker GA, Stork PJS. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J Biol Chem. 2000; 275: 3722–8.

    67.Guvakova MA, Lee WSY, Furstenau DK, Prabakaran I, Li DC, Hung R, et al. The small GTPase Rap1 promotes cell movement rather than stabilizes adhesion in epithelial cells responding to insulin-like growth factor I. Biochem J. 2014; 463: 257–70.

    68.Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009; 8: 935–48.

    69.Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang ZP, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem. 2013; 288: 27712–23.

    70.Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal. 2013; 6: ra39.

    71.Su L, Hattori M, Moriyama M, Murata N, Harazaki M, Kaibuchi K, et al. AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J Biol Chem. 2003; 278: 15232–8.

    72.Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013; 34: 283–9.

    73.Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141: 52–67.

    74.Chen L, Yang SY, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010; 464: 1062–6.

    75.Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer. 2011; 18: 301-10.

    76.Wang K, Li J, Guo H, Xu XQ, Xiong G, Guan XY, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012; 33: 2147–54.

    77.Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. β-Arrestin2 regulates lysophosphatidic acidinduced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PloS One. 2013; 8: e56174.

    78.Tsygankova OM, Wang HB, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem. 2013; 288: 24636–46.

    79.Wu JJ, Zhang YS, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem. 2011; 286: 33954–62.

    80.Qiu TT, Qi XF, Cen JN, Chen ZX. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep. 2012; 28: 622–8.

    81.Dong XY, Tang WX, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer. 2012; 19: 575–88.

    82.Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA. Junctional adhesion molecule A interacts with Afadin and PDZGEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol Biol Cell. 2009; 20: 1916–25.

    Cite this article as:Zhang Y, Wang R, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017; 14: 90-9. doi: 10.20892/j.issn.2095-3941.2016.0086

    Brian Z. Ring and Li Su

    E-mail: bzring@gmail.com and lisu@hust.edu.cn

    Received October 24, 2016; accepted December 7, 2016. Available at www.cancerbiomed.org

    Copyright ? 2017 by Cancer Biology & Medicine

    人妻少妇偷人精品九色| 亚洲在线观看片| 久久久欧美国产精品| 国产精品亚洲一级av第二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人av| 国产淫片久久久久久久久| 在线播放国产精品三级| 欧美最新免费一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 我要搜黄色片| 看十八女毛片水多多多| 日韩国内少妇激情av| 联通29元200g的流量卡| 人人妻人人看人人澡| 人妻制服诱惑在线中文字幕| 黄色一级大片看看| 熟女电影av网| 一区二区三区高清视频在线| 神马国产精品三级电影在线观看| 亚洲精品日韩在线中文字幕 | 男人舔奶头视频| 人人妻人人澡欧美一区二区| 看非洲黑人一级黄片| 十八禁网站免费在线| 男女边吃奶边做爰视频| 亚洲无线在线观看| 午夜日韩欧美国产| 最新在线观看一区二区三区| 韩国av在线不卡| 国产91av在线免费观看| 久久人妻av系列| 看黄色毛片网站| 九九在线视频观看精品| 色哟哟哟哟哟哟| 中文字幕av成人在线电影| 亚洲国产精品sss在线观看| 九九久久精品国产亚洲av麻豆| 国产成人福利小说| 99国产精品一区二区蜜桃av| 一级毛片我不卡| 精品无人区乱码1区二区| 国产aⅴ精品一区二区三区波| 亚洲av五月六月丁香网| www日本黄色视频网| 狂野欧美激情性xxxx在线观看| 国产精品一区www在线观看| 天堂网av新在线| 国产亚洲精品久久久久久毛片| 搡女人真爽免费视频火全软件 | 欧美极品一区二区三区四区| 看免费成人av毛片| 在线观看一区二区三区| 97热精品久久久久久| 国产精品久久电影中文字幕| .国产精品久久| 在线观看一区二区三区| 97热精品久久久久久| 欧美极品一区二区三区四区| 国产老妇女一区| 热99在线观看视频| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 午夜福利在线观看免费完整高清在 | 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩卡通动漫| 免费看日本二区| 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 中文字幕熟女人妻在线| 51国产日韩欧美| 麻豆一二三区av精品| 精品人妻偷拍中文字幕| 欧美性感艳星| 在线免费观看不下载黄p国产| 99热这里只有是精品50| 国产高清视频在线播放一区| 狂野欧美激情性xxxx在线观看| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 大又大粗又爽又黄少妇毛片口| 午夜福利在线观看免费完整高清在 | 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久精品大字幕| 色哟哟哟哟哟哟| 精品久久久久久久久av| 国产黄色视频一区二区在线观看 | 国产又黄又爽又无遮挡在线| 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 女人被狂操c到高潮| 搞女人的毛片| 日韩制服骚丝袜av| 亚洲国产色片| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 两个人视频免费观看高清| 校园春色视频在线观看| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 能在线免费观看的黄片| 在线播放无遮挡| 欧美日本亚洲视频在线播放| 一区二区三区四区激情视频 | 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 最后的刺客免费高清国语| 午夜久久久久精精品| 熟女电影av网| 嫩草影院精品99| 久久久国产成人精品二区| 免费看光身美女| 国产高清激情床上av| 久久久久国内视频| 国产在线男女| 亚洲欧美成人综合另类久久久 | 一区二区三区四区激情视频 | 99视频精品全部免费 在线| 国产私拍福利视频在线观看| 午夜爱爱视频在线播放| 亚洲最大成人中文| 97超视频在线观看视频| 熟女人妻精品中文字幕| 国产精品一区二区三区四区免费观看 | 在线免费观看不下载黄p国产| 中国美白少妇内射xxxbb| 美女大奶头视频| 天天躁日日操中文字幕| 99热精品在线国产| 黄片wwwwww| 欧美成人一区二区免费高清观看| 精品一区二区三区av网在线观看| 自拍偷自拍亚洲精品老妇| 69人妻影院| 亚洲精品乱码久久久v下载方式| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 亚洲精品影视一区二区三区av| 美女 人体艺术 gogo| videossex国产| 国产成人影院久久av| 国产视频内射| 99热精品在线国产| 国产精品亚洲一级av第二区| 黄片wwwwww| 日本免费a在线| 最近2019中文字幕mv第一页| 少妇熟女欧美另类| 亚洲在线观看片| 中文亚洲av片在线观看爽| 欧美bdsm另类| 日韩欧美免费精品| 51国产日韩欧美| 成人一区二区视频在线观看| 亚洲专区国产一区二区| 国产精品一区二区性色av| 日韩一区二区视频免费看| 悠悠久久av| 夜夜看夜夜爽夜夜摸| 亚州av有码| 毛片一级片免费看久久久久| 午夜激情欧美在线| 国产色婷婷99| 亚洲中文字幕一区二区三区有码在线看| 最好的美女福利视频网| 激情 狠狠 欧美| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 国内精品美女久久久久久| 国产成人福利小说| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 日韩av不卡免费在线播放| 乱人视频在线观看| 在线看三级毛片| 中文字幕久久专区| 天天躁夜夜躁狠狠久久av| 精品午夜福利在线看| 一夜夜www| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲18禁久久av| aaaaa片日本免费| 国产精品一区二区三区四区免费观看 | 最后的刺客免费高清国语| 看片在线看免费视频| 国产 一区精品| 俺也久久电影网| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 国产人妻一区二区三区在| 一个人看视频在线观看www免费| 搡女人真爽免费视频火全软件 | 赤兔流量卡办理| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 午夜影院日韩av| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| avwww免费| 一本一本综合久久| 久久鲁丝午夜福利片| 久久久久久久久久黄片| 成年女人毛片免费观看观看9| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 成人欧美大片| 久久精品国产清高在天天线| 国产视频内射| 1000部很黄的大片| 日本免费a在线| av在线老鸭窝| av国产免费在线观看| 午夜免费激情av| 日韩欧美在线乱码| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 欧美日本视频| 黑人高潮一二区| 夜夜夜夜夜久久久久| 国产白丝娇喘喷水9色精品| 亚洲av美国av| 亚洲欧美精品综合久久99| 全区人妻精品视频| 女人十人毛片免费观看3o分钟| 天堂网av新在线| 国产 一区精品| 日本欧美国产在线视频| 国产精品一区二区三区四区免费观看 | 最近的中文字幕免费完整| 人妻制服诱惑在线中文字幕| 久久久久久大精品| 最近最新中文字幕大全电影3| 国产乱人视频| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 国产人妻一区二区三区在| 亚洲av五月六月丁香网| 嫩草影院精品99| 级片在线观看| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区 | 一进一出抽搐gif免费好疼| 男女之事视频高清在线观看| 国产在线男女| 亚洲国产欧洲综合997久久,| 欧美高清性xxxxhd video| 老熟妇仑乱视频hdxx| 少妇猛男粗大的猛烈进出视频 | 小蜜桃在线观看免费完整版高清| 91麻豆精品激情在线观看国产| 国产亚洲欧美98| 欧美区成人在线视频| 成人漫画全彩无遮挡| 国产大屁股一区二区在线视频| 国产乱人视频| 美女内射精品一级片tv| 99热这里只有是精品50| 欧美bdsm另类| 最近在线观看免费完整版| 老女人水多毛片| 一级黄色大片毛片| 床上黄色一级片| 可以在线观看的亚洲视频| 亚洲第一电影网av| 国产精品野战在线观看| 久久精品国产鲁丝片午夜精品| 男女做爰动态图高潮gif福利片| 少妇人妻一区二区三区视频| 久久99热这里只有精品18| 变态另类丝袜制服| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看| 亚洲av.av天堂| 综合色丁香网| 九九爱精品视频在线观看| 波野结衣二区三区在线| 日韩欧美三级三区| 国产麻豆成人av免费视频| 成人永久免费在线观看视频| 成人国产麻豆网| 国内精品宾馆在线| 97超碰精品成人国产| 色噜噜av男人的天堂激情| 69av精品久久久久久| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | av在线天堂中文字幕| 免费观看精品视频网站| 国产一区亚洲一区在线观看| 老女人水多毛片| avwww免费| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 毛片女人毛片| 久久精品91蜜桃| 天天躁日日操中文字幕| 黄色一级大片看看| 久久6这里有精品| 亚洲性久久影院| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲| 99热这里只有是精品在线观看| 99久久久亚洲精品蜜臀av| 久久久久九九精品影院| 国产精品1区2区在线观看.| 亚洲七黄色美女视频| 日韩成人伦理影院| 亚洲性夜色夜夜综合| 青春草视频在线免费观看| 99热网站在线观看| av黄色大香蕉| 高清日韩中文字幕在线| 国产aⅴ精品一区二区三区波| 久久这里只有精品中国| 别揉我奶头 嗯啊视频| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 亚洲精品在线观看二区| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 国产精华一区二区三区| 永久网站在线| 在现免费观看毛片| 亚洲中文字幕一区二区三区有码在线看| 成人无遮挡网站| 99久久九九国产精品国产免费| 我要搜黄色片| 日韩国内少妇激情av| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 天天一区二区日本电影三级| 两个人视频免费观看高清| 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 色5月婷婷丁香| 亚洲精品国产成人久久av| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 黄色欧美视频在线观看| 欧美精品国产亚洲| 国产精品野战在线观看| 91久久精品国产一区二区三区| a级一级毛片免费在线观看| 波多野结衣高清作品| 国产精品一区二区免费欧美| 国产欧美日韩精品亚洲av| 精品久久久久久久久久免费视频| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 综合色av麻豆| 亚洲精品乱码久久久v下载方式| 国产女主播在线喷水免费视频网站 | 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 国产精品伦人一区二区| 一级a爱片免费观看的视频| 久久久国产成人精品二区| 亚洲成人精品中文字幕电影| 欧美成人精品欧美一级黄| 日本色播在线视频| 国产91av在线免费观看| 一进一出好大好爽视频| 国产高清三级在线| 变态另类丝袜制服| 97超碰精品成人国产| 舔av片在线| av在线亚洲专区| 久久综合国产亚洲精品| 久久久久国产精品人妻aⅴ院| 欧美一区二区亚洲| 黄色配什么色好看| 性插视频无遮挡在线免费观看| h日本视频在线播放| 欧美成人a在线观看| 变态另类成人亚洲欧美熟女| 午夜福利视频1000在线观看| 悠悠久久av| 精品人妻熟女av久视频| 亚洲精品在线观看二区| 成年女人毛片免费观看观看9| 亚洲成人中文字幕在线播放| 亚洲图色成人| 久久久久久久久久黄片| 亚洲丝袜综合中文字幕| 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 男女之事视频高清在线观看| h日本视频在线播放| 欧美成人一区二区免费高清观看| 午夜福利在线观看免费完整高清在 | 熟女人妻精品中文字幕| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 亚洲美女视频黄频| 国产成人a区在线观看| 久久人人爽人人爽人人片va| 午夜日韩欧美国产| 亚洲七黄色美女视频| 看十八女毛片水多多多| 男人的好看免费观看在线视频| 不卡一级毛片| 国产中年淑女户外野战色| ponron亚洲| 麻豆乱淫一区二区| 91av网一区二区| 亚洲美女搞黄在线观看 | 老师上课跳d突然被开到最大视频| 久久中文看片网| 久久久精品大字幕| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 69人妻影院| 久久鲁丝午夜福利片| 亚洲五月天丁香| 成人亚洲欧美一区二区av| 毛片女人毛片| 日本黄大片高清| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 亚洲美女黄片视频| 久久久久久久久久久丰满| 国产一区二区激情短视频| 国产免费男女视频| 精品午夜福利在线看| 久久久久久久久久久丰满| 97碰自拍视频| 最近在线观看免费完整版| 九九在线视频观看精品| 男女下面进入的视频免费午夜| 久久这里只有精品中国| 亚洲av免费高清在线观看| 特级一级黄色大片| 国产一区二区三区在线臀色熟女| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 男插女下体视频免费在线播放| 亚洲,欧美,日韩| 免费高清视频大片| 欧美成人精品欧美一级黄| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 天天一区二区日本电影三级| 亚洲无线在线观看| 亚洲不卡免费看| av中文乱码字幕在线| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 美女xxoo啪啪120秒动态图| 99精品在免费线老司机午夜| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 1024手机看黄色片| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 中国美白少妇内射xxxbb| 国内揄拍国产精品人妻在线| 午夜老司机福利剧场| 人妻丰满熟妇av一区二区三区| av中文乱码字幕在线| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 最近最新中文字幕大全电影3| 国产三级在线视频| 国产探花极品一区二区| 色噜噜av男人的天堂激情| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 中文字幕久久专区| 99国产极品粉嫩在线观看| 最近视频中文字幕2019在线8| 91精品国产九色| av.在线天堂| 亚洲美女视频黄频| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 国产高清视频在线观看网站| 国产色爽女视频免费观看| 99热网站在线观看| av黄色大香蕉| 久久这里只有精品中国| 欧美高清性xxxxhd video| 少妇丰满av| 国产精品久久电影中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 淫秽高清视频在线观看| 国产av麻豆久久久久久久| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 丰满人妻一区二区三区视频av| 欧美高清性xxxxhd video| 久久精品国产清高在天天线| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| av中文乱码字幕在线| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 九九在线视频观看精品| 一级毛片我不卡| 身体一侧抽搐| 久99久视频精品免费| 久久人人精品亚洲av| 直男gayav资源| 国产高清视频在线观看网站| 少妇的逼水好多| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 亚洲四区av| 婷婷精品国产亚洲av在线| 夜夜夜夜夜久久久久| 黄片wwwwww| 国产色爽女视频免费观看| 欧美一区二区国产精品久久精品| 国产成人一区二区在线| 一区二区三区免费毛片| 国产极品精品免费视频能看的| 能在线免费观看的黄片| 午夜福利18| 亚洲美女搞黄在线观看 | 最近视频中文字幕2019在线8| 久久精品国产亚洲av涩爱 | 插阴视频在线观看视频| 两个人的视频大全免费| 亚洲成a人片在线一区二区| 久久精品国产自在天天线| 国产大屁股一区二区在线视频| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清| 色综合色国产| 六月丁香七月| 亚洲一区二区三区色噜噜| 久久精品国产亚洲网站| av天堂在线播放| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 精品免费久久久久久久清纯| 国产高清不卡午夜福利| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 高清毛片免费观看视频网站| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 免费看光身美女| 嫩草影院新地址| 内射极品少妇av片p| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 国产不卡一卡二| 一级av片app| 亚洲av中文av极速乱| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 在现免费观看毛片| 欧美三级亚洲精品| 久久九九热精品免费| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 欧美潮喷喷水| 日本精品一区二区三区蜜桃| 亚洲精品456在线播放app| 97碰自拍视频| 联通29元200g的流量卡| 亚洲一级一片aⅴ在线观看| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆|