王葉峰田中俊謝家平
基于策略型消費者的預售退貨策略研究
王葉峰1,2,田中俊2,謝家平2
(1.浙江萬里學院物流與電子商務學院,浙江 寧波 315100;2.上海財經(jīng)大學國際工商管理學院,上海 200433)
賣方的頻繁降價促銷和退貨策略使得消費者行為越來越復雜,導致消費者表現(xiàn)出策略型等待購買和退貨行為。賣方預售時采用退貨策略雖然可提高消費者的產(chǎn)品估值,但同時也面臨大量退貨風險,尤其是面對越來越復雜的策略型消費者,如何處理這些退貨就成為賣方必須解決的核心問題。本文運用理性預期均衡理論,構建了三種產(chǎn)能約束下的預售退貨模型,研究了存在策略型消費者時,單一預售策略、預售退貨不再銷售和預售退貨可再正常銷售策略,如何影響賣方的預售退貨策略設計。研究發(fā)現(xiàn):當賣方產(chǎn)能有限,且退貨再處理成本足夠低時,(1)當預訂需求較小且低于賣方一半產(chǎn)能時,預售與退貨可再正常銷售的退貨保證機制相結合,能夠使賣方獲得最優(yōu)期望利潤;(2)當預訂需求較高且超過賣方一半產(chǎn)能時,賣方適合采用單一預售策略,不需要提供任何退貨保證。
策略型消費者;預售;退貨;理性預期
“需求側”的策略型消費者預期產(chǎn)品未來可能會降價而選擇等待,但也可能因為未來產(chǎn)品潛在不可得激起其購買欲望,使得消費者需求越來越難以預測。同時,“供給側”全球化市場競爭加劇,產(chǎn)品更新速度加快和替代性越來越強,而銷售周期越來越短,促使產(chǎn)品“供給側”與“需求側”的不匹配嚴重加劇。
為了應對復雜的策略型消費者,賣方采用的策略主要包括:(1)通過預售誘使消費者提前購買[1]。例如,淘寶、京東商城和蘇寧易購等第三方平臺,在2015年“雙十一”預售大閘蟹、家電、汽車等國內(nèi)外產(chǎn)品,一些產(chǎn)品的單店成交額近億元;(2)采用退貨保證提高消費者產(chǎn)品估值[2]。由于預售使得消費者購買和消費行為分離,導致消費者在拿到預訂產(chǎn)品之后,只要產(chǎn)品的實際價值低于消費者的心理預期或者退款不小于消費者對產(chǎn)品的實際價值,消費者都會提出退貨申請,從而產(chǎn)生大量退貨。例如,2015年10月,預訂消費者在拿到iphone 6s之后,發(fā)現(xiàn)三星和臺積電生產(chǎn)的芯片存在質(zhì)量差別,出現(xiàn)眾多果粉退貨潮,導致蘋果股價下跌10%。因此,基于“需求側”策略型消費者和“供給側”預售退貨策略的普遍性,如何選擇預售退貨策略,既能阻止策略型消費者等待購買,又能提高“供給側”賣方的利潤,正是本文研究的關鍵問題。
在預售(Advance selling)研究領域,消費者策略型行為(Strategic Consumer Behavior)越來越引起研究者們的關注。所謂策略型(或戰(zhàn)略型)消費者行為是指消費者基于對產(chǎn)品未來價格的預期,會比較理性地選擇購買時機,等待產(chǎn)品進一步降價的消費行為[3]。Dana[4]認為策略型消費者對預售產(chǎn)品的需求依賴于價格和庫存水平。Shugan & Xie[5]對在預售過程中存在產(chǎn)能限制時的策略型消費者行為進行了分析,認為提前購買可以降低消費者面臨的缺貨風險,增加企業(yè)的利潤。Zhao & Stecke[6]和Prasad,Stecke & Zhao[7]均考慮了第一期即預售期的策略型消費者行為。Swinney[8]基于對消費者策略型等待選擇購買行為的考慮,研究了消費者對預售和正常銷售兩種銷售策略的選擇問題。Huang & Mieghem[9]研究了策略型消費者愿意點擊并因此提供預售信息,認為策略型消費者行為對提高企業(yè)利潤是有好處的。Li & Zhang[10]關注策略型消費者面對相對確定的產(chǎn)品價值但不確定的產(chǎn)品可得性,預訂由溢價利潤和提前需求信息的利益驅(qū)動,并且研究了兩個驅(qū)動力之間的相互作用。消費者價值(Consumer Value)的標準定義就是一個消費者愿意為該產(chǎn)品支付的最大美元價值[11]。上述預售文獻雖然考慮了消費者策略型行為,但均未涉及退貨策略。本文重點研究消費者策略型行為對賣方預售退貨策略決策的影響。
早期關于消費者退貨行為的研究主要是一些營銷類研究文獻,該領域大多數(shù)關于消費者退貨行為的研究都假設當消費者的退貨服從泊松分布等一般分布時,研究廠商的最優(yōu)定價和庫存控制策略[12-13]。Hess & Mayhew[14]采用統(tǒng)計方法把消費者行為分為消費者購買行為(Consumer Purchasing Behavior)和消費者退貨行為(Consumer Return Behavior)兩類。一些研究假設消費者的退貨行為主要依賴于購買產(chǎn)品的質(zhì)量、產(chǎn)品的退貨價格、產(chǎn)品的銷售價格和不同退貨策略等因素,即如果消費者對于預售產(chǎn)品價值存在較高的不確定,而且產(chǎn)品銷售價格高于消費者對于產(chǎn)品的實際價值[15-17],或者消費者會基于賣方提供的不同退款金額的退貨策略,如賣方提供的退款大于消費者對于預售產(chǎn)品的實際價值,或者如果產(chǎn)品質(zhì)量低于消費者的心理預期等,都會導致產(chǎn)生消費者退貨行為[18,19]。雖然以上論文研究了消費者退貨行為,但是沒有同時考慮消費者策略型購買行為對賣方預售和退貨策略的影響。
目前對預售和退貨策略分別展開的研究已經(jīng)比較成熟,但將預售與退貨策略相結合的研究文獻相對較少。Chu & Gerstner[20]探索企業(yè)產(chǎn)能是有限時提供部分退款,并能再銷售退貨給其他消費者,讓消費者取消預購服務的可能性,提供退款對企業(yè)和消費者都是有利的。Guo[21]延伸了Chu & Gerstner[20]的研究,考慮少數(shù)賣主壟斷市場的預售,檢查產(chǎn)能約束情況下,競爭環(huán)境中部分退款政策的獲利能力。Gallego等[22]考慮銷售看漲期權(解釋為部分退款費用)給價值不確定的消費者,并且把預售和現(xiàn)場銷售解釋為沒有退款和全額退款費用。
在預售階段,消費者產(chǎn)品估值是不確定的,產(chǎn)品價值與消費者需求偏好差異導致消費者無缺陷退貨問題。因此,目前預售領域的一些研究開始轉(zhuǎn)向基于產(chǎn)品無缺陷的退貨策略研究。Nasiry & Popescu[23]研究賣方如何基于消費者后悔行為選擇合適的預售策略,并分析產(chǎn)能有限情況下的無缺陷退貨策略。楊光勇和計國君[24]研究了不再銷售、正常再銷售與降價再銷售退貨產(chǎn)品策略對賣方退貨策略的影響。該文雖然考慮了消費者策略型行為,但沒有研究預售策略。毛照昉等[25]考慮了策略型消費者行為,研究季節(jié)性易逝品的預售與回購聯(lián)合決策問題,消費者在銷售期退回消費券的情況相當于無缺陷退貨,但該文獻假設產(chǎn)能過剩,而本文研究的是產(chǎn)能有限情況下的預售退貨保證策略。
綜上所述,相關文獻研究了考慮策略型消費者行為時,賣方提供的無缺陷退貨策略,但沒有研究當賣方采用預售策略時,賣方是否應該提供退貨保證機制?雖然也有學者研究了預售退貨策略,但是沒有考慮消費者的策略型行為,而這正是業(yè)界關注的重點和難點問題,亟待展開專題研究。因此,本文借鑒Guo[21]和Nasiry & Popescu[23]進行拓展研究,沿襲在賣方產(chǎn)能有限情況下實施預售策略,將競爭市場環(huán)境的預售策略聚焦研究一家壟斷賣方采用預售退貨策略的情況,本文運用理性預期均衡理論,分別針對單一預售策略、預售退貨不再銷售和預售退貨可再正常銷售策略,構建了幾種產(chǎn)能約束下的預售退貨模型,研究策略型消費者影響預售退貨的機制設計,并對不同預售退貨策略進行比較分析,為業(yè)界提供指導建議。
關于產(chǎn)品預售和退貨策略中的所有參與者將依次做出以下決策(具體事件順序如圖1所示),模型中所有變量含義如表1所示。
圖1 事件發(fā)生序列
Figure 1 Sequence of events
表1 符號定義
由于產(chǎn)能有限,所以不是所有剩余消費者需求都能在第二期被滿足。在理性預期均衡中,消費者對價格和第二期產(chǎn)品可得率的預期及賣方對消費者需求和消費者估值的信仰與實際結果均一致,所有參與者都沒有動機偏離理性預期均衡。
高類型消費者在第一期預訂的期望效用為
推遲等待到第二期購買的期望效用為:
命題2:賣方提供不再銷售退貨策略時的期望利潤低于不提供退貨時的期望利潤。
命題2證明過程略
根據(jù)命題2可知,雖然退貨策略向消費者傳遞了高質(zhì)量產(chǎn)品信號,刺激更多消費者提前預訂,增加了預訂量,但同時也因為產(chǎn)品與消費者期望不匹配而產(chǎn)生更多的退貨量,而且退貨不再銷售不僅降低銷量,以及因退款減少的預售期利潤,還失去了退貨再一次銷售獲得利潤的機會。這使得賣方提供預售退貨不再銷售策略時的期望利潤低于單一預售策略時的期望利潤。所以,賣方提供不再銷售的預售退貨策略總是不利的。
很明顯,第二期產(chǎn)品可得率需要根據(jù)高類型消費者數(shù)量與產(chǎn)能大小,分不同情況計算。
當高類型消費者數(shù)量超過賣方產(chǎn)能時,所有產(chǎn)能被預訂完,在正常銷售期初,只有預訂消費者可以拿到產(chǎn)品,低類型消費者只有在第二期出現(xiàn)退貨時,才有機會購買。而這與現(xiàn)實情況是不符的,因為當高類型消費者預訂需求超過賣方產(chǎn)能時,只會提高產(chǎn)品的正常銷售價格,例如2013年,蘋果的Iphone 5S金色版智能手機首次在中國大陸預售時,因為缺貨導致水貨價格一路上漲,甚至漲到上萬元。所以,當預售出現(xiàn)缺貨時,即使高價都有可能買不到產(chǎn)品,就更不會出現(xiàn)消費者無缺陷退貨行為了,只有當預售產(chǎn)品存在質(zhì)量問題時,預訂消費者才會提出退貨申請。故為了符合現(xiàn)實情況,本文只分析產(chǎn)能大于高類型消費者需求的無缺陷退貨。
由此可得命題3。
命題4:當賣方允許預訂高類型消費者在第二期退貨,產(chǎn)能大于高類型消費者需求時,在不同的退款范圍,賣方與消費者之間存在唯一理性預期均衡,所有策略型消費者全部提前購買,最優(yōu)預訂價格
命題4證明過程略。
由命題4可知高類型消費者需求小于產(chǎn)能時,雖然退貨補償可以增加消費者的最大支付意愿,從而使賣方可以制定高于單一預售時的預訂價格,但同時也產(chǎn)生了更高比例的退貨數(shù)量,所以退款金額不能太高,否則會增加高類型消費者的退貨量,不一定對賣方有利。
命題5證明過程略。
命題5表明只有當賣方對于正常銷售期退貨的再處理成本較低,并低于某一臨界閾值時,賣方與策略型消費者之間才存在理性預期均衡。而且,通過比較產(chǎn)能和退款金額不同時賣方的再處理成本可知:當產(chǎn)能更多,賣方提供更慷慨大方的退款時,賣方為了獲取更高的期望利潤,就必須提高物流管理水平,降低再包裝、儲存和配送等再處理成本。否則,就采用單一預售策略。
圖2 退款金額對最優(yōu)預訂價格的影響
Figure 2 Effect of the refund amount on the optimal booking price
圖3 退款金額對賣方總利潤的影響
Figure 3 Effect of the refund amount on the seller's total profit
如圖3所示,(1)無論高類型消費者需求大于或者小于賣方的一半產(chǎn)能,三種預售策略下的期望利潤都隨預訂需求遞增,只是單一預售策略下,賣方的利潤與退款金額和再處理成本無關,保持不變;(2)當高類型消費者需求小于賣方一半產(chǎn)能時,兩種退貨策略下的期望利潤都隨退款金額遞增,而且退貨可再銷售時的期望利潤最大。這是因為雖然相比于退貨不再銷售策略,賣方的預訂價格不是最高的,但是由于退回的產(chǎn)品可再銷售,彌補了部分退款補償造成的損失;(3)當高類型消費者需求超過一半產(chǎn)能時,兩種不同退貨策略下的利潤都隨著退款金額遞減,且都小于單一預售策略時的期望利潤。所以,在賣方產(chǎn)能有限且預訂需求量較大的情況下,尤其是當賣方產(chǎn)能小于預訂需求時,賣方不需要提供任何退貨保證預售策略。因為產(chǎn)能的稀缺性可以讓賣方制定更高的預訂價格。例如現(xiàn)實中同是快時尚代名詞的西班牙服裝品牌Zara,采用的就是在產(chǎn)能有限情況下,選擇更高價格銷售策略,給其帶來了高于同行美國品牌Gap的收益。
本文針對策略型消費者與預售退貨策略展開研究,一方面由于策略型消費者為了最大化自己的購買效用,總是會選擇等待更低的價格購買已很普遍,這不僅加劇了“供給側”與“需求側”不匹配風險,消費者還可能因為等待而面臨產(chǎn)品不可得的風險,尤其是在賣方產(chǎn)能有限的情況下,缺貨風險更大;另一方面,退貨策略可以提高消費者的最大支付意愿,已在各行業(yè)得到廣泛應用,并受到國內(nèi)外學術界越來越多的關注。但是,在賣方采用預售策略時,如何選擇恰當?shù)耐素洷WC機制就成為賣方必須解決的重要問題。所以,本文研究了存在策略型消費者時,單一預售策略、退貨不再銷售和退貨可再正常銷售三種策略對賣方預售策略的影響。結果表明:當賣方產(chǎn)能有限,兩期消費者需求相關,且退貨可再銷售時的再處理成本低于某一臨界值時,(1)當預訂需求小于產(chǎn)能的一半時,賣方可以采用退款金額較小的退貨可再正常銷售的預售策略。(2)當高類型消費者需求超過賣方一半產(chǎn)能,尤其是預訂需求大于賣方所有產(chǎn)能時,賣方不需要提供任何退貨保證,適合采用單一預售策略。
結合更復雜的實際情況,可以從以下幾方面進行擴展:(1)可以研究賣方同時預售同一品牌兩款同類產(chǎn)品時,應該如何設計退貨保證機制;(2)研究多企業(yè)同時預售的競爭環(huán)境下,策略型消費者對賣方預售退貨策略的影響。
[1] Chu Y L, Zhang H.Optimal Preorder Strategy with Endogenous Information Control[J] .Management Science,2011,57(6):1055- 1077.
[2] Altug M S, Aydinliyim T, Counteracting Strategic Purchase Deferrals: The Impact of Online Retailers’ Return Policy Decisions[J]. Manufacturing & Service Operations Management,2016,18(3):376- 392.
[3] Cachon G P, Swinney R, Purchasing, pricing, and quick response in the presence of strategic consumers[J].Management Science,2009, 55(3):497–511.
[4] Dana J D, Advance-Purchase Discounts and Price Discrimination in Competitive Markets[J].Journal of Political Economy,1998,106(2): 395- 422.
[5] Shugan S M, Xie J. Advance selling as a competitive marketing tool[J].International Journal Research Marketing,2005,22(3): 351– 373.
[6] Zhao X, Stecke K E. Pre-orders for New to-be-released Products Considering Consumers Loss Aversion[J]. Production and Operations Management,2010,19(2):198-215.
[7] Prasad, A., Stecke K.E.,Zhao X..Advance Selling by a Newsvendor Retailer[J].Production and Operations Management,2010,20(1):129- 142.
[8] Swinney R. Selling to strategic consumers when product value is uncertain: The value of matching supply and demand[J].Management Science,2011,57(10):1737–1751.
[9] Huang T, van Mieghem JA. The Promise of Strategic Customer Behavior: On the Value of Click Tracking[J]. Production and Operations Management,2012,22(3):1-14.
[10] Li C, Zhang F. Advance demand information, Price discrimination, and Pre-order strategies[J].Manufacturing & Service Operations Management,2013,15(1):57-71.
[11] Cohen M, Nahmias S, Pierskall W A. Dynamic Inventory System with Recycling[J].Naval Research Logistics,1980,27(2):289-296.
[12] Kelle P, Silver E. Purchasing Policy of New Containers Considering the Random Returns of Previously Issued Containers [J].IIE Transactions, 1989,21(4):349-354.
[13] Fleischmann, M, Kuik R,Dekker R. Controlling Inventories with Stochastic Item Returns: A Basic Model[J]. European Journal of Operational Research,2002,138(1):63-75.
[14] Hess J, Mayhew G E. Modeling merchandise returns in direct marketing[J]. Journal of Direct Marketing,1997,11(2):20-35.
[15] Su X. Consumer Returns Policies and Supply Chain Performance[J]. Manufacturing & Service Operations Management,2009,11(4): 595- 612.
[16] Shulman J D, Coughlan A T, Savaskan R C. Optimal Reverse Channel Structure for Consumer Product Returns[J].Marketing Science, 2010, 29(6):1071-1085.
[17] Shulman J D, Coughlan A T, Savaskan R C. Managing Consumer Returns in a Competitive Environment[J].Management Science,2011, 57(2):347-362.
[18] Davis S, Gerstner E, Hagerty M. Money Back Guarantees in Retailing: Matching Products to Consumer Tastes[J].Journal of Retailing, 1995, 71(1):7-22.
[19] Davis S, Hagerty M, Gerstner E. Return Policies and the Optimal Level of hassle[J].Journal of Economics & Business,1998,50(5): 445-460.
[20] Chu W, Gerstner E, Hess J D. Managing dissatisfaction: how to decrease customer opportunism by partial refunds[J].Journal of Service Research,1998,1(2):140-155.
[21] Guo L. Service cancellation and competitive refund policy[J]. Marketing Science,2009,28(5):901–917.
[22] Gallego G, Sahin ?. Revenue management with partially refundable fares[J].Operation Research,2010,58(4):817–833.
[23] Nasiry J, Popescu I..Advance Selling When Consumers Regret[J]. Management Science,2012,58(6):1160-1177.
[24] 楊光勇,計國君.存在戰(zhàn)略顧客的退貨策略研究[J].管理科學學報,2014,17(8):23-33+94.
Yang G Y, Ji G J. Research on return strategy in the presence of strategic consumers[J]. Journal of Management Sciences in China,2014,17(8):23-33+94.
[25] 毛照昉,劉彎彎,李輝.季節(jié)性易逝品預售與回購聯(lián)合決策研究[J] .管理科學學報,2016,19(2):74-84.
Mao Z F, Liu W W, Li F. Joint strategy of advance-selling and buy-back for seasonal perishable products[J]. Journal of Management Sciences in China,2016,19(2):74-84.
[26] Zhongjun Tian, Yefeng Wang. Advance selling with preorder- dependent customer valuation [J]. Operations Research Letters,2016,44(4):557-562.
[27] Yeon-Koo Che.Customer return policies for experience goods [J].The Journal of Industrial Economics,1996,XLIV:17-24.
Research on the advance selling and return policy based on strategic consumer
WANG Yefeng1,2, TIAN Zhongjun2, XIE Jiaping2
(1. College of Logistics and Electronic Commerce, Zhejiang Wanli University, Ningbo 315100, China;2. School of International Business Administration, Shanghai University of Finance and Economics, Shanghai 200433, China)
With the rapid development of the global markets, information technology and “Internet+” industry, human beings economic life entered the digital and network age. Sellers are facing challenges from global markets and competitors. Those challenges include product updates faster, product value changes over time, and consumer’s demand becomes more and more personalized, diversified, and predicted difficulty. The seller frequently made use of price promotions and return policies to induce more consumers to buy. These policies have trained consumers to become more and more sophisticated. As such, consumers always strategically choose the chance to buy products at lower prices. In other word, consumers often delay to purchase strategically and even apply the seller to return the full or partial refund for them, which damages the benefit of the seller. While advance selling can improve the accuracy of demand forecasts, increase the seller’s profit, and make consumers avoid the risk of stockout in the sale season by preordering or buying in advance. Therefore, different economic entities have adopted the Web platform to provide advance selling with the return policy of tangible products or intangible services for the consumer, which can enhance the consumer product value but encounter the risk of higher returned amounts. So, how to deal with the returned product has become a core problem that the seller must solve, especially facing more and more complicated strategic consumer.
First of all, in the model setting, this paper divides the consumers into high-type consumers and low-type consumers according to the consumer's product value. All the high-type consumers are strategic. All the low-type consumers arrive in the second period. The demand for both types of consumers is relevant. To attract consumers to purchase in advance, the seller will provide return policy. In the case of not affecting the secondary sales of returned products, the preorder customers will choose to return the preordered product after receiving the product in the regular selling period if they find that the actual product value is less than the refund provided by the seller. Buyers will choose to retain the product if the actual product value is higher than the refund. The seller deals with the return in two ways. One is that the returned product is no longer sold, the other is that the returned product is sold at the same price of the new product in the regular selling period. This is no fault return since the returned product has no quality problem. This paper assumes that the remaining consumers will have the same maximum willingness to pay for the returned product and the new product.
Secondly, based on the consumer behavior theory, rational expectation equilibrium theory, and newsvendor model, this paper analyzes the influence of several different return guarantee mechanisms of advance selling with limited manufacture capacity. The total market demand (normalizing the total market size as 1) on the seller's profit is determined at the same time of taking into account the strategic behavior and return behavior. This paper establishes three advance selling and return models with the capacity constraints, and studies how the design of the seller’s advance selling and return policies are affected by three different strategies: single advance selling strategy, advance selling strategy with return product no resold and return product regularly resold strategy in the presence of strategic consumer. The research discovers when the seller capacity is limited, and the disposal cost of the returned product is low enough, the seller gains the optimal expected profit by combining advance selling with the return policy of the returned product resold regularly as the preorder demand is less than half of the seller capacity. Conversely, the seller is adapted to use a single advance selling strategy without offering any return guarantee when the preorder demand is more than half of the seller capacity.
Finally, this paper verifies the validity of conclusions by adopting the numerical simulation analysis and suggests that the seller is more beneficial from the return guarantee mechanisms of the advance selling. It is necessary for the seller to improve the processing level of the returned product as much as possible to reduce the reprocessing cost. Also, this paper proposes several future research topics by combining the more complicated reality situation and according to the theory and numerical analysis.
Strategic consumer; Advance selling; Return; Rational expectations
2016-10-30
2017-06-14
Supported by the National Natural Science Foundation of China (71272015), the National Social Science Foundation of China (15ZDB161), the Youth Projects of Major Program of Humanities and Social Science Research Plan in Colleges and Universities of Zhejiang Province (2016QN035), the Doctor Project of Zhejiang Wanli University (1741000541) and the Modern Port Service Industry and Creative Culture Research Center of the Key Research Institute of Philosophy and Social Science of Zhejiang Province
F713
A
1004-6062(2020)01-0079-007
10.13587/j.cnki.jieem.2020.01.009
2016-10-30
2017-06-14
國家自然科學基金資助項目(71272015);國家社會科學基金資助重大課題(15ZDB161);浙江省高校重大人文社科項目攻關計劃青年重點項目(2016QN035);浙江萬里學院博士工程項目(1741000541);浙江省哲學社會科學——臨港現(xiàn)代服務業(yè)與創(chuàng)意文化研究中心
王葉峰(1976—),女,陜西西安人;博士;主要從事供應鏈與運營管理研究。
中文編輯:杜 健;英文編輯:Charlie C. Che