喻武鵑 汪燕 梁成剛 廖凱 韋春玉 付全蘭 張威 關(guān)志秀
摘要:? 為探索薄殼苦蕎的“源-庫(kù)”關(guān)系,提高產(chǎn)量水平,進(jìn)而指導(dǎo)薄殼苦蕎雜交育種。該研究選用雜交薄殼苦蕎種質(zhì)米55為材料,以母本小米蕎為對(duì)照,對(duì)灌漿期的葉片光合特性、籽粒淀粉合成關(guān)鍵酶活性與主要農(nóng)藝和產(chǎn)量性狀進(jìn)行測(cè)定分析。結(jié)果表明:(1)灌漿期米55葉片凈光合速率顯著或極顯著高于對(duì)照。(2)籽粒蔗糖濃度稍低于對(duì)照,葡萄糖濃度稍高于對(duì)照,均未達(dá)到顯著差異水平。(3)籽粒腺苷二磷酸葡萄糖焦磷酸化酶活性高于對(duì)照,且前期達(dá)到極顯著差異水平。(4)籽粒淀粉合成酶活性和淀粉濃度都稍高于對(duì)照。(5)米55的株高降低,單株粒數(shù)提高,千粒重增加,產(chǎn)量顯著提高。上述結(jié)果說(shuō)明增“源”、擴(kuò)“庫(kù)”在雜交薄殼苦蕎米55上取得一定進(jìn)展,葉片光合同化能力、單株粒數(shù)和千粒重改良是未來(lái)薄殼苦蕎育種的重要研究方向。
關(guān)鍵詞: 雜交薄殼苦蕎, 凈光合速率, 腺苷二磷酸葡萄糖焦磷酸化酶, 淀粉合成酶, 產(chǎn)量
中圖分類號(hào):? Q945文獻(xiàn)標(biāo)識(shí)碼:? A
文章編號(hào):? 1000-3142(2020)02-0218-08
Abstract:? In order to explore the relationship of ‘source-sink of thin-shell tartary buckwheat, to improve the yield level, and to guide the crossbreeding of thin-shell tartary buckwheat, a hybrid thin-shell germplasm of tartary buckwheat (M55) was selected as study object. Leaf photosynthetic characteristics, key enzymes activity of starch synthesis, major agronomic and yield traits during grain filing were measured and analyzed with female parent of Xiaomiqiao as the control (CK). The results were as follows: (1) The net photosynthetic rate in leaves of M55 was significantly or extremely significantly higher than CK during grain filling. (2) The sucrose concentrations in grains of M55 were slightly lower without statistic diffe-rences, while the glucose concentrations were slightly higher without statistic differences, compared to CK. (3) The activities of ADPGase in grains of M55 were higher than CK, noticing that an extremely significant differences was determined in grains at early grain filling stage. (4) Moreover, both SS activity and starch concentration of M55 were slightly higher than CK during grain filling. (5) The plant height of M55 was lower than CK, while the grain number per plant and 1 000-grain weight were increased, and the yield increased significantly. The above results showed that the improvement of ‘source and ‘sink was partly achieved in M55, the capacity of leaf photosynthesis, grain number per plant and 1 000-grain weight per plant were proposed to increase the? yield of thin-shell tartary buckwheat in further research.
Key words: hybrid thin-shell buckwheat, net photosynthetic rate, ADPGase, starch synthase, yield
葉片是作物重要的“源”器官,種子是重要的“庫(kù)”器官。灌漿期葉片的光合同化能力及產(chǎn)物分配與種子淀粉合成和作物產(chǎn)量形成密切相關(guān)(Bahaji et al.,2014;Tsukaguchi et al.,2016)。種子的淀粉合成是由“源”器官輸入的蔗糖經(jīng)一系列酶促反應(yīng)催化合成(Bahaji et al.,2014;梁成剛等,2019)。作物中可溶性糖含量、淀粉合成相關(guān)酶活性與淀粉的合成與積累密切相關(guān)(姜東等,2001;潘俊峰等,2015;陳雅玲和包勁松,2017)。腺苷二磷酸葡萄糖焦磷酸化酶(ADPGase)是淀粉生物合成的重要關(guān)鍵酶,其催化形成的腺苷二磷酸葡萄糖(ADPG)是淀粉合成的直接前體物質(zhì)。淀粉合成酶(SS)以ADPG為葡萄糖供體,將葡萄糖基轉(zhuǎn)移至α-1,4葡萄糖鏈的非還原端,從而催化淀粉的形成(袁亮等,2006;陳雅玲和包勁松,2017)。通過(guò)對(duì)水稻、小麥、玉米等作物的研究,發(fā)現(xiàn)ADPGase、SS在籽粒淀粉的合成中起重要作用(張吉旺等,2008;陳雅玲和包勁松,2017;李雙等,2018)。
苦蕎(Fagopyrum tataricum)亦名韃靼蕎麥,屬蓼科(Polygonaceae)蕎麥屬(Fagopyrum)一年生草本植物,是我國(guó)一種重要的雜糧作物??嗍w種子蛋白質(zhì)含量高,黃酮類物質(zhì)含量豐富,具有很高的營(yíng)養(yǎng)價(jià)值和保健作用(Cui et al.,2018;Kalinová et al.,2018;Zhang et al.,2018)。然而,由于常規(guī)栽培苦蕎味苦、果殼厚、極難脫殼,無(wú)法直接加工獲得成品米,限制了苦蕎米的生產(chǎn)與苦蕎類加工品的開(kāi)發(fā)(王安虎等,2010;李進(jìn)才等,2017)。因此,研制適宜苦蕎脫殼的加工設(shè)備與選育具有易脫殼特性的苦蕎新品種是解決生產(chǎn)苦蕎米的兩個(gè)重要途徑。目前,受制于苦蕎種子殼厚、顆粒小、易碎等因素,在加工設(shè)備研制和脫殼工藝研究上尚未取得理想結(jié)果(朱新華等,2017)。小米蕎是云南地方苦蕎種質(zhì),雖然具有殼薄、易加工成苦蕎米的特性,但是由于小米蕎生育期較長(zhǎng)、易倒伏、產(chǎn)量低等,所以在生產(chǎn)上難以直接進(jìn)行推廣種植(唐鏈等,2016)。Wang & Campbell(2007)首次報(bào)道利用苦蕎薄殼種質(zhì)與常規(guī)苦蕎進(jìn)行雜交,獲得了苦蕎雜交薄殼種質(zhì)。Mukasa et al.(2009)指出溫湯去雄法可有效實(shí)現(xiàn)苦蕎薄殼種質(zhì)與常規(guī)苦蕎的雜交育種。王安虎等(2010)以旱苦蕎為材料進(jìn)行輻射誘變和EMS化學(xué)誘變選育得到苦蕎薄殼品種米蕎一號(hào)。陳慶富等(2015)以厚殼高產(chǎn)苦蕎晉蕎麥2號(hào)與小米蕎進(jìn)行有性雜交,育成易脫殼、且口感好的薄殼苦蕎新品系。淀粉雖是苦蕎種子的重要組成成分,但關(guān)于苦蕎特別是薄殼苦蕎種子淀粉合成與積累及其與產(chǎn)量形成的研究鮮見(jiàn)有報(bào)道。因此,本研究以有性雜交育種獲得的薄殼雜交種質(zhì)米55為主要材料,對(duì)其葉片光合特性、淀粉合成相關(guān)酶活性變化以及農(nóng)藝、產(chǎn)量性狀等進(jìn)行探索,為雜交薄殼苦蕎的高產(chǎn)栽培技術(shù)研究與種植推廣提供依據(jù)。
1材料與方法
1.1 試驗(yàn)設(shè)計(jì)
選用苦蕎雜交薄殼種質(zhì)米55(M55)為材料,以采集于云南的地方薄殼種質(zhì)小米蕎(母本)為對(duì)照。田間試驗(yàn)于2017年8月—11月和2018年8月—11月在貴州師范大學(xué)蕎麥產(chǎn)業(yè)技術(shù)研究中心教學(xué)實(shí)驗(yàn)基地進(jìn)行,采用隨機(jī)區(qū)組設(shè)計(jì),每小區(qū)面積為8 m2(2 m × 4 m),3次重復(fù),種植密度為100萬(wàn)株·hm-2,肥料作為底肥一次輸入,每公頃施用60 kg純N、60 kg P2O5、30 kg K2O,采用常規(guī)栽培措施進(jìn)行管理,全生育期使用化學(xué)與生物方法防治病蟲(chóng)害。
1.2 試驗(yàn)方法
1.2.1 樣品采集2017年種植季節(jié),在苦蕎進(jìn)入開(kāi)花期后,每個(gè)小區(qū)選擇生長(zhǎng)一致的30株植株進(jìn)行掛牌供農(nóng)藝性狀與產(chǎn)量性狀測(cè)定;另選擇生長(zhǎng)一致的30株植株對(duì)灌漿進(jìn)程一致的300~400粒種子進(jìn)行標(biāo)記供生理指標(biāo)測(cè)定。在種子開(kāi)花后10 d(灌漿前期)、20 d(灌漿中期)和30 d(灌漿后期)分別對(duì)植株進(jìn)行株高與分枝數(shù)的測(cè)定。分別對(duì)每個(gè)小區(qū)掛牌植株6株進(jìn)行取樣,分裝后置于烘箱中105 ℃殺青15 min,60 ℃烘干2 d至恒重,供產(chǎn)量性狀測(cè)定。同期,選擇100粒標(biāo)記種子進(jìn)行取樣,迅速置于液氮中,保存于-80 ℃冰箱,供碳水化合物與淀粉合成關(guān)鍵酶活性測(cè)定。2017年與2018年,在種子成熟期,對(duì)每個(gè)小區(qū)未進(jìn)行取樣的4 m2區(qū)域進(jìn)行測(cè)產(chǎn)。
1.2.2 葉片光合特性的測(cè)定2017年種植季節(jié),在苦蕎灌漿前期、中期和后期,選擇陽(yáng)光明媚的天氣在11:00—15:00間使用3051D光合作用測(cè)定儀(浙江托普云農(nóng)科技股份有限公司,浙江)對(duì)植株頂端全展葉片的凈光合速率、蒸騰速率、氣孔導(dǎo)度和水分利用率進(jìn)行測(cè)定,外置光源的光量子通量密度設(shè)置為1 500 μmol·m-2·s-1。具體操作步驟和方法與儀器使用說(shuō)明書(shū)保持一致。
1.2.3 種子淀粉、蔗糖、葡萄糖含量的測(cè)定選取5~10粒種子去殼、稱重,使用淀粉Elisa-kit#ml076679、蔗糖Elisa-kit#ml076697和葡萄糖Elisa-kit#ml076790(上海酶聯(lián)生物科技有限公司,上海)進(jìn)行淀粉、蔗糖、葡萄糖含量的測(cè)定,具體操作步驟和方法與試劑盒說(shuō)明書(shū)保持一致。
1.2.4 種子ADPGase、SS活性的測(cè)定選取5~10粒種子去殼、稱重,使用ADPGase Elisa-kit#ml076673和SS Elisa-kit#ml076670(上海酶聯(lián)生物科技有限公司,上海)進(jìn)行ADPGase和SS酶活性的測(cè)定,具體操作步驟和方法與試劑盒說(shuō)明書(shū)保持一致。
1.3 數(shù)據(jù)分析與處理
使用軟件Excel2003和SPSS18.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,差異顯著性分析使用t-test法進(jìn)行。
2結(jié)果與分析
2.1 米55的葉片光合特性
灌漿前期和中期苦蕎葉片凈光合速率維持在較高水平,灌漿后期葉片凈光合速率急劇下降,其中,米55葉片凈光合速率在灌漿前期極顯著高于對(duì)照,在灌漿中期和后期顯著高于對(duì)照(圖1:A)。灌漿期間苦蕎葉片蒸騰速率與氣孔導(dǎo)度的變化幅度較小,不同灌漿時(shí)期米55與對(duì)照間差異均不顯著(圖1:B,C)。灌漿前期和中期苦蕎葉片水分利用率維持在較高水平,灌漿后期葉片水分利用率急劇下降,不同灌漿時(shí)期米55與對(duì)照間差異均不顯著(圖1:D)。
GFS表示灌漿期。*與**分別表示米55與對(duì)照間差異達(dá)到0.05和0.01水平。下同。
2.2 米55的淀粉合成特性
灌漿期苦蕎籽粒葡萄糖濃度呈逐漸上升的趨勢(shì),米55與對(duì)照籽粒葡萄糖濃度維持在4.34~5.75 mg·g-1 FW間,變化幅度較小,米55籽粒葡萄糖濃度高于對(duì)照,但未達(dá)到顯著差異(圖2:A)。灌漿期苦蕎籽粒蔗糖濃度變化幅度較小,米55與對(duì)照籽粒蔗糖濃度維持在8.76~9.67 mg·g-1 FW間,差異不顯著(圖2:B)。灌漿期苦蕎籽粒淀粉濃度呈逐漸上升的趨勢(shì),米55籽粒淀粉濃度稍高于對(duì)照,但也未達(dá)到顯著差異水平(圖2:C)。由圖3:A可知,灌漿期苦蕎籽粒ADPGase活性呈逐漸上升的趨勢(shì),米55籽粒ADPGase活性在灌漿前期極顯著高于對(duì)照,其余時(shí)期差異不顯著。不過(guò),灌漿期米55籽粒ADPGase平均活性(3次測(cè)定的平均值)極顯著高于對(duì)照。灌漿期苦蕎籽粒SS活性呈緩慢上升的趨勢(shì),米55籽粒SS活性略高于對(duì)照小米蕎,但差異未達(dá)到顯著水平(圖3:B)。
2.3 米55的農(nóng)藝性狀與產(chǎn)量性狀
苦蕎具有無(wú)限花序生物學(xué)特征,營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)重疊期長(zhǎng)。由表1可知,灌漿期間株高與分枝數(shù)均出現(xiàn)逐漸增加的趨勢(shì),雜交株系米55較對(duì)照具有株高明顯降低的特征,灌漿期間其株高均極顯著低于對(duì)照。米55的分枝數(shù)略高于對(duì)照,但差異不顯著。灌漿前期與中期米55的單株粒數(shù)較對(duì)照分別提高25.8%和27.7%,單株粒重較對(duì)照分別提高26.2%和31.7%,均達(dá)到顯著差異水平;灌漿后期,米55單株粒數(shù)與單株粒重較對(duì)照分別提高117.1%和128.4%,均達(dá)到極顯著差異水平。灌漿前期和中期,米55種子千粒重與對(duì)照差異不顯著,但在灌漿后期顯著高于對(duì)照。由圖4可知,2017年和2018年米55產(chǎn)量較對(duì)照分別提高79.1%和94.8%,均達(dá)到顯著差異水平,表明雜交獲得的薄殼種質(zhì)米55較母本對(duì)照增產(chǎn)明顯。
3討論與結(jié)論
3.1 苦蕎薄殼種質(zhì)米55的光合特性與淀粉合成
苦蕎生育期短, 具有無(wú)限花序特征, 灌漿期“庫(kù)-源”關(guān)系失衡,進(jìn)而導(dǎo)致種子結(jié)實(shí)率低和充實(shí)度差。灌漿期苦蕎葉片光合同化能力及其持續(xù)時(shí)間對(duì)蕎麥產(chǎn)量的提高具有重要作用(鞏巧玲等,2008)。Liang et al.(2016)研究指出,延長(zhǎng)苦蕎有效灌漿期,以增強(qiáng)碳水化合物的再活化是苦蕎高圖 2米55籽粒蔗糖、葡萄糖和淀粉濃度變化產(chǎn)提高的重要途徑。本研究發(fā)現(xiàn),灌漿期苦蕎雜交薄殼種質(zhì)米55與母本對(duì)照的葉片凈光合速率在灌漿前期和中期維持在較高水平,但在灌漿后期(30 d)急劇下降,說(shuō)明薄殼苦蕎的葉片光合持續(xù)時(shí)間較短,這可能是導(dǎo)致薄殼苦蕎產(chǎn)量水平低的一個(gè)重要原因。灌漿期米55葉片的氣孔導(dǎo)度、蒸騰速率與水分利用率與對(duì)照無(wú)顯著差異,但葉片凈光合速率顯著或極顯著高于對(duì)照,說(shuō)明雜交薄殼苦蕎葉片光合同化能力較母本明顯提高。
淀粉是苦蕎種子中最主要的貯藏物質(zhì),淀粉合成與積累直接關(guān)乎產(chǎn)量的形成。蔗糖是“源”器官向“庫(kù)”器官進(jìn)行長(zhǎng)距離運(yùn)輸?shù)闹饕妓衔?,而蔗糖分解產(chǎn)生的葡萄糖則是作物種子淀粉合成的重要前體物質(zhì)(Bahaji et al.,2014)。李友軍等(2006)研究指出灌漿期小麥籽粒蔗糖與葡萄糖含量均隨灌漿進(jìn)程呈降低趨勢(shì)。王艷芳等(2006)研究發(fā)現(xiàn)灌漿期玉米籽粒蔗糖含量先增加,至灌漿14 d達(dá)到峰值后逐漸下降,葡萄糖含量則呈逐漸下降趨勢(shì)。本研究發(fā)現(xiàn),灌漿期薄殼苦蕎籽粒的蔗糖和葡萄糖濃度維持在較穩(wěn)定水平,米55種子中蔗糖濃度稍低于對(duì)照,而葡萄糖濃度稍高于對(duì)照,但均未達(dá)到顯著差異水平。
作物ADPGase、SS活性與淀粉合成密切相關(guān)(姜東等,2001;陳雅玲和包勁松,2017)。Dai(2010)研究發(fā)現(xiàn)高淀粉含量小麥品種的ADPGase和SS等淀粉合成關(guān)鍵酶活性明顯高于淀粉含量低的品種。同樣,崔麗娜等(2011)研究發(fā)現(xiàn)高淀粉玉米較低淀粉玉米也表現(xiàn)出ADPGase、可溶性淀粉合成酶活性高等特性。付景等(2012)研究指出超級(jí)稻品種弱勢(shì)粒的低ADPGase和SS活性是灌漿速率小、粒重輕的一個(gè)重要原因。徐云姬等(2015)研究也發(fā)現(xiàn)低ADPGase、SS活性也是玉米果穗頂部籽粒灌漿較差、粒重較低的重要原因。陳煒等(2018)研究指出灌漿期小麥籽粒淀粉呈逐漸上升趨勢(shì)。本研究發(fā)現(xiàn),米55種子ADPGase活性均高于對(duì)照,且在灌漿前期達(dá)到極顯著差異水平,說(shuō)明米55種子中淀粉的合成能力較對(duì)照有所提高。灌漿期薄殼苦蕎籽粒淀粉濃度同樣呈逐漸上升趨勢(shì),米55籽粒淀粉濃度高于對(duì)照,但差異未達(dá)到顯著水平。同樣,米55籽粒SS活性稍高于對(duì)照,但也未達(dá)到顯著水平。這可能與米55“庫(kù)”容量增加有關(guān),而“源”供應(yīng)相對(duì)不足。因此,提高葉片光合同化能力是未來(lái)高產(chǎn)雜交育種的重要研究方向。
3.2 苦蕎薄殼種質(zhì)米55的農(nóng)藝性狀與產(chǎn)量形成
Wang & Campbell(2007)首次報(bào)道了苦蕎薄殼種質(zhì)與常規(guī)苦蕎的雜交育種工作,并指出薄殼雜交育種難度較大。Mukasa et al.(2009)指出溫湯去雄是薄殼苦蕎雜交育種的有效方法。近年來(lái)國(guó)內(nèi)學(xué)者也陸續(xù)開(kāi)展了薄殼苦蕎的育種工作(王安虎等,2010;陳慶富等,2015)。但是,目前世界范圍內(nèi)仍未見(jiàn)薄殼苦蕎的大面積種植報(bào)道,薄殼苦蕎的農(nóng)藝性狀與產(chǎn)量性狀改良研究還有待進(jìn)一步深入(Mukasa,2011;李春花等,2015)。汪燦等(2013)以80份苦蕎材料為研究對(duì)象,發(fā)現(xiàn)高產(chǎn)苦蕎的主要特征為植株高大、分枝較少、單株產(chǎn)量高、千粒重高。唐鏈等(2016)指出株高與主莖分枝數(shù)是雜交育種改良苦蕎產(chǎn)量的重要目標(biāo)性狀。潘凡等(2015)研究發(fā)現(xiàn)主莖分枝數(shù)、單株粒數(shù)是影響苦蕎單株粒重的重要因素。石桃雄等(2018)研究指出,單株粒數(shù)可作為高產(chǎn)苦蕎育種的重要指標(biāo)。本研究發(fā)現(xiàn),薄殼苦蕎株高、分枝數(shù)與產(chǎn)量間并不存在明顯的相關(guān)性,母本小米蕎株高過(guò)高、生產(chǎn)上倒伏時(shí)常發(fā)生、減產(chǎn)嚴(yán)重。相比之下,苦蕎薄殼種質(zhì)米55的株高降低、單株粒數(shù)提高、千粒重增加、產(chǎn)量顯著提高。說(shuō)明提高植株的單株粒數(shù)和千粒重是薄殼苦蕎高產(chǎn)雜交育種的重要途徑。
參考文獻(xiàn):
BAHAJI A, JUN L, SNCHEZ-LPEZ M, et al., 2014. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields [J]. Biotechnol Adv, 32(1): 87-106.
CHEN QF, CHEN QJ, SHI TX, et al., 2015. Inheritance of tartary buckwheat thick shell character and its relationships with yield factors [J]. Crops, (2): 27-31.? [陳慶富, 陳其餃, 石桃雄, 等, 2015. 苦蕎厚果殼性狀的遺傳及其與產(chǎn)量因素的相關(guān)性研究 [J]. 作物雜志,(2): 27-31.]
CHEN W, LI HB, DENG XP, 2018. The characteristics of sucrose metabolism in flag leaf and grain starch accumulation during grain filling period under different cultivation modes [J]. Acta Agric Boreal-Occident Sin, 27(5): 641-649.? [陳煒, 李紅兵, 鄧西平, 2018. 不同栽培模式下冬小麥灌漿過(guò)程中旗葉蔗糖代謝和籽粒淀粉積累特性 [J]. 西北農(nóng)業(yè)學(xué)報(bào), 27(5):641-649.]
CHEN YL, BAO JS, 2017. Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm [J]. Chin J Rice Sci, 31(1): 1-12.? [陳雅玲, 包勁松, 2017. 水稻胚乳淀粉合成相關(guān)酶的結(jié)構(gòu)、功能及其互作研究進(jìn)展 [J]. 中國(guó)水稻科學(xué), 31(1):1-12.]
CUI LN, XU Z, GAO RQ, et al., 2011. Comparison of enzymes activity associated with sucrose metabolism in developing grains in different genotypes maize (Zea mays L.) [J]. J Chin Cereal Oil Assoc, 26(10): 56-60.? [崔麗娜, 許診, 高榮岐, 等, 2011. 不同基因型玉米籽粒發(fā)育過(guò)程中糖代謝相關(guān)酶活性的比較 [J]. 中國(guó)糧油學(xué)報(bào), 26(10):56-60.]
CUI XD, DU JJ, LI J, et al., 2018. Inhibitory site of α-hairpinin peptide from tartary buckwheat has no effect on its antimicrobial activities [J]. Acta Bioch Bioph Sin, 50 (4): 408-416.
DAI ZM, 2010. Activities of enzymes involved in starch synthesis in wheat grains differing in starch content [J]. Russ J Plant Physiol, 57(1): 74-78.
FU J, XU YJ, CHEN L, et al., 2012. Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice [J]. Chin J Rice Sci, 26(3): 302-310.? [付景, 徐云姬, 陳露, 等, 2012. 超級(jí)稻花后強(qiáng)、弱勢(shì)粒淀粉合成相關(guān)酶活性和激素含量變化及其與籽粒灌漿的關(guān)系 [J]. 中國(guó)水稻科學(xué), 26(3):302-310.]
GONG QL, FENG BL, GAO JF, et al., 2008. Leaf senescence of different buckwheat genotypes at later growing stage [J]. Agric Res Arid Areas, 26(5): 27-31.? [鞏巧玲, 馮佰利, 高金鋒, 等, 2008. 不同基因型蕎麥生育后期葉片衰老特性研究 [J]. 干旱地區(qū)農(nóng)業(yè)研究, 26(5):27-31.]
JIANG D, YU ZW, LI YG, et al., 2001. Changes of soluble sugar contents in leaf, stem and grain in winter wheat and its relationship with grain starch accumulation [J]. J Triticeae Crops, 21(3): 38-41.? [姜東, 于振文, 李永庚, 等, 2001. 冬小麥葉莖??扇苄蕴呛孔兓捌渑c籽冬小麥葉莖??扇苄蕴呛孔兓捌渑c籽粒淀粉積累的關(guān)系 [J]. 麥類作物學(xué)報(bào), 21(3):38-41.]
KALINOV JP, VRCHOTOV N, TSKA J, 2018. Contribution to the study of rutin stability in the achenes of tartary buckwheat (Fagopyrum tataricum) [J]. Food Chem, 258: 314-320.
LI CH, RYO O, KIWA K, et al., 2015. Study on selecting method for excellent offspring lines of tartary buckwheat [J]. J Plant Genet Resourc, 16(1): 168-172.? [李春花, 大澤良, 小林喜和, 等, 2015. 苦蕎雜交后代優(yōu)良株系篩選研究 [J]. 植物遺傳資源學(xué)報(bào),16(1):168-172.]
LI JC, ZHAO XH, ZHAO JC, et al., 2017. Physical characte-ristics of tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.] seeds [J]. Cereal Feed Ind, (10): 8-12.? [李進(jìn)才, 趙習(xí)姮, 趙建城, 等, 2017. 苦蕎麥籽粒的物理學(xué)特性研究 [J]. 糧食與飼料工業(yè),(10):8-12.]
LI S, SI ZY, SHEN XJ, et al., 2018. Effect of different water and nitrogen levels on starch synthesis enzyme activity in wheat grains during grain filling stage and wheat yield [J]. J Triticeae Crops, 38(4): 460-468.? [李雙, 司轉(zhuǎn)運(yùn), 申孝軍, 等, 2018. 水氮供應(yīng)對(duì)灌漿期冬小麥籽粒淀粉合成相關(guān)酶活性及產(chǎn)量的影響 [J]. 麥類作物學(xué)報(bào), 38(4):460-468.]
LI YJ, XIONG Y, LUO BS, 2006. Comparison among three wheat varieties with different gluten types in carbohydrate metabolism and the enzymes activities in the kernel during grain filling [J]. J NW A & F Univ (Nat Sci Ed), 34(1): 13-19.? [李友軍, 熊瑛, 駱炳山, 2006. 不同類型小麥籽粒灌漿期碳水化合物代謝及相關(guān)酶活性研究 [J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 34(1):13-19.]
LIANG CG, SONG YX, GUO X, et al., 2016. Characteristics of the grain-filling process and starch accumulation of high-yield common buckwheat ‘cv. Fengtian 1 and tartary buckwheat ‘cv. Jingqiao 2 [J]. Cereal Res Comm, 3(44): 393-403.
LIANG CG, WANG Y, YU WJ, et al., 2019. Progress in plant leaf starch degradation and starch excess research [J]. J Guizhou Norm Univ (Nat Sci Ed), 37(3): 1-8.? [梁成剛, 汪燕, 喻武鵑, 等, 2019. 植物葉片淀粉分解與淀粉超量積累研究 [J]. 貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 37(3):1-8.]
MUKASA Y, 2011. Studies on new breeding methodologies and variety developments of two buckwheat species (Fagopyrum esculentum Moench and F. tataricum Gaertn.) [J]. Res Bull Naro Hokkaido Agric Res Cen, (195): 57-114.? [六笠裕治, 2011. ソバ屬栽培2種(Fagopyrum esculentum Moench, F. tataricum Gaertn.)の新たな育種法と育種に関する研究 [J]. 北海道農(nóng)業(yè)研究センター研究報(bào)告,(195): 57-114.]
MUKASA Y, SUZUKI T, HONDA Y, 2009. Suitability of rice-tartary buckwheat for crossbreeding and for utilization of rutin [J]. Jap Agric Res Quart, 43 (3): 199-206.
PAN F, SHI TX, CHEN QJ, et al., 2015. Variation in major agronomic traits and its contribution to grain weight per plant in tartary buckwheat germplasm [J]. Plant Sci J, 33(6): 829-839.? [潘凡, 石桃雄, 陳其皎, 等, 2015. 苦蕎種質(zhì)主要農(nóng)藝性狀的變異及其對(duì)單株粒重的貢獻(xiàn)研究 [J]. 植物科學(xué)學(xué)報(bào), 33(6):829-839.]
PAN JF, CUI KH, XIANG J, et al., 2015. Characteristics of non-structural carbohydrate accumulation and translocation in rice genotypes with various sink-capacity [J]. J Huazhong Agric Univ, 34(1): 9-15.? [潘俊峰, 崔克輝, 向鏡, 等, 2015. 不同庫(kù)容量類型基因型水稻莖鞘非結(jié)構(gòu)性碳水化合物積累轉(zhuǎn)運(yùn)特征 [J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 34(1):9-15.]
SHI TX, LI RY, LIANG LB, et al., 2018. Analysis of agronomic traits in recombinant inbred line population of tartary buckwheat (Fagopyrm tataricum)? [J]. J S Chin Agric Univ, 39(1): 18-24.? [石桃雄, 黎瑞源, 梁龍兵, 等, 2018. 苦蕎重組自交系群體農(nóng)藝性狀分析) [J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 39(1):18-24.]
TANG L, LIANG CG, LIANG LB, et al., 2016. Genetic correlation analysis of plant height and main stem branching number of tartary buckwheat [J]. Jiangsu Agric Sci, 44(9): 129-132.? [唐鏈, 梁成剛, 梁龍兵, 等, 2016. 苦蕎株高及主莖分枝數(shù)的遺傳相關(guān)分析 [J]. 江蘇農(nóng)業(yè)科學(xué), 44(9): 129-132.]
TSUKAGUCHI T, MURAKAMI K, MICHIMOTO T, 2016. A quantitative measure for assimilate partitioning efficiency in rice (Oryza sativa L.)? [J]. Field Crop Res, 198: 122-130.
WANG AH, CAI GZ, ZHAO G, et al., 2010. Producing rice bitter buckwheat Miqiao No.1 and its cultival technology [J]. Seed, 29(2):104-106.? [王安虎, 蔡光澤, 趙鋼, 等, 2010. 制米苦蕎品種米蕎一號(hào)及其栽培技術(shù) [J]. 種子, 29(2):104-106.]
WANG C, HU D, YANG H, et al., 2013. Multiple analysis of relationship between main agronomic traits and yield in tartary buckwheat [J]. Crops, (6): 18-22.? [汪燦, 胡丹, 楊浩, 等, 2013. 苦蕎主要農(nóng)藝性狀與產(chǎn)量關(guān)系的多重分析 [J]. 作物雜志,(6):18-22.]
WANG YF, ZHANG LJ, FAN JJ, et al., 2006. Relationship between soluble sugar contents and starch accumulation in grain during grain-filling stage in spring maize [J]. J Maize Sci, 14(2): 81-83.? [王艷芳, 張立軍, 樊金娟, 等, 2006. 春玉米子粒灌漿期可溶性糖含量變化與淀粉積累關(guān)系的研究 [J]. 玉米科學(xué), 14(2):81-83.]
WANG YJ, CAMPBELL CG, 2007. Tartary buckwheat breeding (Fagopyrum tataricum L. Gaertn.) through hybridization with its rice-tartary type [J]. Euphytica, 156(3): 399-405.
XU YJ, GU DJ, QIN H, et al., 2015. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling [J]. Acta Agron Sin, 41(2): 297-307.? [徐云姬, 顧道健, 秦昊, 等, 2015. 玉米灌漿期果穗不同部位籽粒碳水化合物積累與淀粉合成相關(guān)酶活性變化 [J]. 作物學(xué)報(bào), 41(2):297-307.]
YUAN L, PAN GT, ZHANG ZM, et al., 2006. Research progress of starch metabolism and its regulation in plants [J]. Mol Plant Breed, (s2): 65-72.? [袁亮, 潘光堂, 張志明, 等, 2006. 植物中淀粉的代謝及其調(diào)控研究進(jìn)展 [J]. 分子植物育種, (s2):65-72.]
ZHANG JM, WANG D, WU YH, et al., 2018. Lipid-polymer hybrid nanoparticles for oral delivery of tartary buckwheat flavonoids? [J]. J Agric Food Chem, 66(19): 4923-4932.
ZHANG JW, DONG ST, WANG KJ, et al., 2008. Effects of shading in field on key enzymes involved in starch synthesis of summer maize [J]. Acta Agron Sin, 34(8): 1470-1474? [張吉旺, 董樹(shù)亭, 王空軍, 等, 2008. 大田遮陰對(duì)夏玉米淀粉合成關(guān)鍵酶活性的影響 [J]. 作物學(xué)報(bào), 34(8):1470-1474.]
ZHU XH, FAN WG, LI Z, et al., 2017. Test and development of an non-thermal tartary buckwheat huller [J]. J Chin Agric Univ, 22(12): 146-155.? [朱新華, 范維果, 李澤, 等, 2017. 苦蕎麥非熱脫殼機(jī)試驗(yàn)研制 [J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 22(12):146-155.]
(責(zé)任編輯 周翠鳴)