王卉 劉慶菊 韓平
摘要:液相色譜-高分辨質(zhì)譜(LC-HRMS)具有高分辨率、高通量、高精確度等優(yōu)勢,在動物源農(nóng)產(chǎn)品的獸藥殘留檢測研究中顯示出極大的潛力。本文綜述了2014—2018年LC-HRMS檢測動物源農(nóng)產(chǎn)品中獸藥殘留的應(yīng)用研究進展。其中,QuEChERS方法和有機溶劑提取法是常用的獸藥殘留提取方法,提取液用PSA、C18和氧化鋁等吸附劑凈化,綠色的樣品前處理方法是未來的發(fā)展趨勢;液相系統(tǒng)和色譜柱的改良,使獸藥化合物得到更好的分離,提高了質(zhì)譜檢測的靈敏度;HRMS分辨率和靈敏度的提高,增強了LC-HRMS定性定量分析動物源農(nóng)產(chǎn)品中獸藥殘留的能力;數(shù)據(jù)處理軟件的開發(fā)和應(yīng)用,提高了LC-HRMS在獸藥殘留檢測中的工作效率。盡管LC-HRMS在獸藥殘留檢測中取得了進展,但仍存在不足和發(fā)展空間。
關(guān)鍵詞:液相色譜(LC)-高分辨質(zhì)譜(HRMS);動物源農(nóng)產(chǎn)品;獸藥殘留;樣品前處理;色譜分離;質(zhì)譜檢測;數(shù)據(jù)處理
中圖分類號: TS207.5+3
文獻標志碼: A
文章編號:1002-1302(2020)02-0057-08
收稿日期:2018-11-08
作者簡介:王 卉(1982—),女,內(nèi)蒙古鄂倫春人,博士,助理研究員,主要從事農(nóng)產(chǎn)品安全檢測工作。E-mail:wangh@brcast.org.cn。
通信作者:韓 平,副研究員,主要從事農(nóng)產(chǎn)品安全檢測工作。E-mail:hanp@brcast.org.cn。
獸藥殘留是畜禽產(chǎn)品質(zhì)量的主要監(jiān)控指標,獸藥的不科學(xué)使用會導(dǎo)致動物體內(nèi)藥物蓄積,對人類及環(huán)境產(chǎn)生慢性、長遠和積累性的影響。獸藥經(jīng)畜禽代謝后,通常以原藥的形式進入環(huán)境中,引起土壤污染、水污染和植物蓄積,環(huán)境中的獸藥殘留再通過食物鏈進入人體,影響人體健康[1]。當人體中的獸藥殘留蓄積到一定量時,會引起人體毒性反應(yīng),導(dǎo)致癌變、畸變、基因突變等不良后果[2]。因此,動物源農(nóng)產(chǎn)品的獸藥殘留問題已經(jīng)成為國際上公認的農(nóng)業(yè)和環(huán)境問題[3]。
液相色譜(LC)-高分辨質(zhì)譜(HRMS)檢測技術(shù)是動物源農(nóng)產(chǎn)品中獸藥殘留檢測分析的常規(guī)技術(shù)手段[4],LC能夠分離非揮發(fā)性化合物和大部分揮發(fā)性化合物[5],HRMS具有高精確度、高通量、全掃描等優(yōu)勢,LC與HRMS聯(lián)用可全面獲取樣品中化合物[6]的精確分子質(zhì)量和碎片離子信息,區(qū)分同分異構(gòu)體和同重化合物,鑒定未知物[7]。
在LC-HRMS檢測動物源農(nóng)產(chǎn)品中獸藥殘留的研究中,首先通過樣品前處理來提取和凈化樣品中的獸藥化合物,前處理方法的選擇直接影響檢測結(jié)果。經(jīng)前處理后的樣品,通過液相色譜進行分離,以降低基質(zhì)的復(fù)雜程度,獲得高質(zhì)量的質(zhì)譜數(shù)據(jù)[8-9]。然后再用HRMS進行檢測分析,常用HRMS有飛行時間(TOF)質(zhì)譜、四級桿飛行時間(QTOF)質(zhì)譜、軌道阱質(zhì)譜(Orbitrap)、線性離子阱-軌道阱質(zhì)譜(LTQ-Orbitrap)、四級桿-軌道阱質(zhì)譜(Q-Orbitrap)等[10-13],隨著HRMS分辨率和靈敏度的不斷提高[14-17]和質(zhì)譜采集數(shù)據(jù)量的增大,需不斷開發(fā)和優(yōu)化相應(yīng)軟件來處理數(shù)據(jù)。
本文概述了2014—2018年LC-HRMS在動物源農(nóng)產(chǎn)品的檢測研究中,涉及樣品前處理、液相分離、質(zhì)譜檢測、數(shù)據(jù)處理等方面的研究現(xiàn)狀,并對該技術(shù)未來的發(fā)展趨勢進行展望,旨在為此類研究提供參考。
1 樣品前處理
提取和凈化是LC-HRMS檢測動物源農(nóng)產(chǎn)品中獸藥殘留的主要步驟,溶劑提取法和QuEChERS(quick,easy,cheap,effective,rugged,safe)方法是獸藥殘留常用的提取方法[18-26]。提取后得到的樣品中可能存在共提物,會增加檢測噪聲,因此須進一步凈化處理將其去除,以降低檢測的檢測限和定量限。
當采用溶劑提取法提取動物源農(nóng)產(chǎn)品中的獸藥殘留時,單一溶劑提取可能無法取得滿意效果,此時可采用多種溶劑混合提取,如Chiesa等用有機溶劑提取魚中的21種抗生素時發(fā)現(xiàn),單獨使用濃度為70%的甲醇(含0.1%甲酸)提取,或者單獨使用乙腈(含0.1%甲酸)對樣品進行提取,均不能使所有目標化合物取得滿意的回收率,因此將試驗分為2步,首先用酸化甲醇提取,再用酸化乙腈提取,最終獲得了滿意的回收率[27]。此外,可以在提取過程中應(yīng)用其他提取方法輔助提取來降低檢測限,如2015年,Cepurnieks等用5%三氯乙酸 (TCA)溶液提取牛奶中的26種抗生素[28],檢測濃度<100 ng/mL。2018年,Saluti等用0.25%TCA水溶液提取牛奶中14種抗生素時,引入超聲來輔助提取,使檢測限≤33 μg/kg[29]。
QuEChERS方法是一種通用的前處理方法[30],可同時提取樣品中的多種獸藥殘留。根據(jù)化合物的不同性質(zhì),可改變QuEChERS方法中溶劑、酸、鹽、吸附劑等的種類和用量,提高獸藥殘留提取回收率[31],除方法的改進外,QuEChERS方法提取自動前處理平臺的應(yīng)用是此項術(shù)進步的重要表現(xiàn),自動化處理不僅減少了試劑對環(huán)境的污染,同時減少了人為因素對試驗的影響,如Jia等應(yīng)用QuEChERS自動前處理平臺提取了鱸魚中的24種大環(huán)內(nèi)酯類藥物及其代謝產(chǎn)物[32-45]。
凈化處理是提高獸藥檢測靈敏度的重要方法。常用的吸附劑有N-丙基乙二胺(PSA)、C18、氧化鋁和硅酸鎂等。近年來,科研人員對吸附劑凈化效果的研究不斷細化,如Chen等用QuEChERS方法提取雞肉中的16種β-內(nèi)酰胺類藥物,試驗用QuEChERS凈化管(150 mg C18,300 mg PSA 和900 mg 無水硫酸鎂)凈化提取液,上機檢測的檢測限(LOD)為0.01~0.35 μg/kg,定量限(LOQ)為003~1.16 μg/kg[23],Lopez-Garcia等也采用QuEChERS方法來提取雞肉中的獸藥殘留[22],并評價了 PSA、硅酸鎂、C18鍵合鋯膠(Z-Sep+)、氧化鋁和C18等吸附劑的凈化效果,發(fā)現(xiàn)經(jīng)硅酸鎂和氧化鋁凈化后的檢測靈敏度最好,而其他的吸附劑對目標化合物有吸附,導(dǎo)致靈敏度低。
動物源農(nóng)產(chǎn)品中獸藥殘留提取和凈化方法的選擇,要基于樣品基質(zhì)的理化性質(zhì)和研究目的,如果前處理方式不當,可能導(dǎo)致基質(zhì)干擾嚴重,有些重要的化合物未被提取,或在提取過程中丟失,進而影響研究結(jié)果。
2 色譜分離
在LC-HRMS檢測動物源農(nóng)產(chǎn)品的獸藥殘留研究中,LC分離能夠降低樣品的復(fù)雜程度,利于質(zhì)譜對樣品進行準確全面的檢測。與HRMS串聯(lián)使用的LC,已經(jīng)從高效液相色譜(HPLC)改進為超高效液相色譜(UPLC),UPLC的分辨率、靈敏度和穩(wěn)定性都優(yōu)于HPLC。同時,色譜柱的改良也有力地推動了LC-HRMS在動物源農(nóng)產(chǎn)品獸藥殘留檢測中的應(yīng)用。
在獸藥殘留的液相色譜分析研究中,以硅膠為基質(zhì)的反相色譜柱在獸藥檢測中的應(yīng)用最為廣泛[46]。其中,反相C18色譜柱可保留非極性化合物,而苯基柱適合分析親水性化合物[47]。與反相色譜柱相比,親水相互作用色譜柱(HILIC)對極性強的獸藥化合物的保留效果更好[48-49]。而且色譜柱填料的改進使色譜柱性能更加優(yōu)異,具體表現(xiàn)在填料顆粒的體積變小,超高效液相色譜柱的填料顆粒小于2 μm,因此分離效果更好,峰寬變窄[50],色譜的峰容量得到提高,分離效果得到改善,減少了質(zhì)譜中的離子抑制。液相色譜柱可承受的壓力增加,高達 1 500 bar[51],對樣品的洗脫速度加快,縮短了樣品的分析時間[52]。Zhao等在應(yīng)用LC-Q-Orbitrap測定斑石鯛中的80種獸藥殘留(獸殘)的研究中,對6種反相色譜柱分離樣品的效果進行了比較,其中色譜柱直徑和填料孔徑尺寸最小的亞乙基雜化橋顆粒(BEH) C18色譜柱的分離能力、效率和靈敏度優(yōu)于其他5種色譜柱[36]。
近年來,微流液相色譜(μLC)、毛細管液相色譜(CLC)及納升液相色譜(nano LC)與HRMS的聯(lián)用提高了HRMS的檢測靈敏度[53-54],是未來LC-HRMS檢測發(fā)展的重要方向。Alcantara-Duran等應(yīng)用nano LC-HRMS定量檢測蜂蜜、牛奶、牛肉和雞蛋等樣品中的87種獸藥,將前處理后的樣品稀釋100倍,nano LC-HRMS仍能夠檢測到溶液中的目標化合物[37],極大地提高了檢測靈敏度。Mirabelli等用nano LC-HRMS檢測殺蟲劑的檢測限可達到10 pg/mL[55]。
3 質(zhì)譜檢測
電噴霧電離(ESI)源是液相色譜-質(zhì)譜(LC-MS)應(yīng)用中最常用的接口之一。ESI電離是一種軟電離方式,電離效率高。Araceli等采用ESI、大氣壓化學(xué)電離(APCI)和大氣壓光電離(APPI)3種電離方式對5種化合物的電離效果進行比較研究,結(jié)果表明,化合物經(jīng)ESI電離后,產(chǎn)生的峰面積和信噪比明顯高于APCI和APPI[56]。在LC-MS的應(yīng)用研究中,超過80%的研究選用了ESI離子源,而APCI和APPI電離方式報道較少[57]。
樣品經(jīng)離子源電離后,進入質(zhì)譜檢測。HRMS具有高分辨率,能提供高精確度的全掃描數(shù)據(jù),有良好的定性能力[11,58-60]。特別是當檢測的同分異構(gòu)體或同重化合物的保留時間和精確質(zhì)量數(shù)相同而無法區(qū)分時,可以通過碎片離子信息的差異作進一步的區(qū)分。因此,碎片離子信息采集的是否全面,是評價高分辨質(zhì)譜性能的重要評價指標。目前,常用的HRMS數(shù)據(jù)采集模式主要分為數(shù)據(jù)依賴型采集(DDA)和數(shù)據(jù)非依賴型采集(DIA)。DDA采集時,質(zhì)譜自動從全掃描一級質(zhì)譜(FS MS)轉(zhuǎn)換成全掃描二級質(zhì)譜(FS MS/MS),后者是在前者的基礎(chǔ)上開發(fā)出來的,包括離子碎片采集(AIF)和MSE采集模式等,能夠獲得所檢測質(zhì)量范圍內(nèi)所有的母離子和碎片離子信息。此外,離子淌度技術(shù)也是HRMS分離同分異構(gòu)體和同重化合物的重要技術(shù),該技術(shù)在電場中根據(jù)離子的大小、結(jié)構(gòu)和電荷對其進行分離[61-62]。
HRMS的分辨率隨硬件的發(fā)展不斷提高。如Qtof是四級桿與飛行時間質(zhì)譜串聯(lián)的儀器,它在實際檢測中的分辨率<30 000,主要用來做定性試驗,可提供一級和二級質(zhì)譜數(shù)據(jù)作為定性判斷依據(jù),Nacher-Mestre等用UPLC- Xevo G2 Qtof定性篩查了動物加工副產(chǎn)品中的150種獸藥,當基質(zhì)加標量為0.2 mg/kg時可檢測出75%獸藥,當基質(zhì)加標量為0.1 mg/kg 時可檢測出65%的獸藥,當加標量為0.02 mg/kg時可檢測出30%的獸藥[42]。而 LTQ-Orbitrap 的分辨率高于Qtof,分辨率設(shè)置范圍為7 500~100 000,可以提供多級質(zhì)譜數(shù)據(jù)作定性定量研究。Saito-Shida等對146種化合物進行定量測定時,比較了應(yīng)用LC-Orbitrap-MS建立的方法和應(yīng)用LC-QTOF-MS建立方法的線性、回收率、精密度和基質(zhì)效應(yīng),結(jié)果表明Orbitrap-MS的選擇性和靈敏度優(yōu)于QTOF-MS[63],而且LTQ-Orbitrap的多級質(zhì)譜(MSn)數(shù)據(jù)采集模式可以為獸藥及其代謝物的鑒定提供更豐富的碎片離子信息。比LTQ-Orbitrap性能更好的Q-Orbitrap分辨率可以達到140 000,Jia等應(yīng)用UHPLC-Q-Orbitrap對鱸魚中的24種大環(huán)內(nèi)酯類藥物及其代謝產(chǎn)物做定性定量檢測,其中確定限(CCα)為 0.12~3.61 μg/kg,檢測容量(CCβ)為0.20~6.02 μg/kg[32],具體檢測結(jié)果見表1。
HRMS最初主要被應(yīng)用于定性篩查研究中,目前隨著HRMS硬件的不斷進步,HRMS的分辨率和靈敏度得到提高,使基質(zhì)干擾問題得以解決[5,64],HRMS在全掃描模式下的選擇性與三重四級桿在選擇反應(yīng)監(jiān)測(selected reaction monitoring,SRM)模式下的選擇性一樣好,因此被越來越多地應(yīng)用于獸藥定量研究中。4 數(shù)據(jù)分析
在LC-HRMS檢測動物源農(nóng)產(chǎn)品獸藥殘留的研究中,根據(jù)研究目的不同,可分為靶向檢測數(shù)據(jù)處理和非靶向檢測數(shù)據(jù)處理。在靶向檢測研究中,數(shù)據(jù)處理步驟包括原始數(shù)據(jù)采集、生成參考數(shù)據(jù)庫(自建數(shù)據(jù)庫或在線數(shù)據(jù)庫)、化合物的分離鑒定、數(shù)據(jù)的標準化和量化、數(shù)據(jù)分析步驟一體化(自動處理工具)。其中,數(shù)據(jù)的采集主要采用儀器供應(yīng)商提供的軟件[39-41,44],如Thermo Fisher Scientific公司的Xcalibur軟件、Waters公司的MassLynx軟件、AB公司的Multiquant軟件、Agilent公司的Mass Hunter等,常用的數(shù)據(jù)處理軟件見表2。數(shù)據(jù)分析所用數(shù)據(jù)庫主要有2類,一類是由科研人員自己建立的數(shù)據(jù)庫,另一類是在線數(shù)據(jù)庫,如Chemspider、Metlin、Drug Bank等。通過搜索化合物的精確質(zhì)量數(shù),可以得到與之對應(yīng)的化合物,但是存在以下問題:數(shù)據(jù)庫中所含化合物不夠全面;對給定的精確質(zhì)量數(shù)不能提供準確的分子結(jié)構(gòu);或?qū)ν痪_質(zhì)量數(shù)給出多個化合物。因此,須根據(jù)元素組成,對化合物分子式進行推斷,并結(jié)合特征碎片離子信息鑒定化合物,最后通過檢測標準品來確證。在使用數(shù)據(jù)處理軟件時,參數(shù)設(shè)置會影響研究結(jié)果,例如,若質(zhì)量提取窗口設(shè)置范圍過寬,可能有假陽性檢出。為避免假陽性或假陰性,須要對質(zhì)量提取窗口的寬度范圍進行試驗,如Jia等試驗了質(zhì)量提取窗口設(shè)置成1~10 μg/kg時,數(shù)據(jù)處理軟件對羅非魚中獸藥及其代謝物的選擇性,發(fā)現(xiàn)當質(zhì)量提取窗口為3 μg/kg時,目標分析物的提取效果最好[39]。
在動物源農(nóng)產(chǎn)品的非靶向檢測研究中,數(shù)據(jù)分析步驟為原始數(shù)據(jù)采集、數(shù)據(jù)保存和轉(zhuǎn)化、數(shù)據(jù)導(dǎo)入、數(shù)據(jù)壓縮和矩陣建立、數(shù)據(jù)歸一化、特征檢測、生物標志物篩查、鑒定。多元統(tǒng)計分析方法如主成分分析(PCA)和正交偏最小二乘判別分析(OPLS-DA)等可識別動物源樣品中的獸藥及其代謝產(chǎn)物,通用的商業(yè)軟件可能無法直接處理LC-HRMS檢測的原始數(shù)據(jù),因此須要對原始數(shù)據(jù)進行格式轉(zhuǎn)換,轉(zhuǎn)換成開放性的數(shù)據(jù)格式之后便可進行數(shù)據(jù)處理[65-66]。近年來,隨著數(shù)據(jù)處理軟件的升級,自動化處理的程度越來越高。如Morales-Gutierrez等應(yīng)用UPLC-LTQ-Qrbitrap MS檢測雞的肉、肝、腎中的阿莫西林及其代謝產(chǎn)物時,用PCA方法對數(shù)據(jù)進行處理,獲得了區(qū)分用藥組和非用藥組的化合物,試驗測得的原始數(shù)據(jù)首先經(jīng)Xcalibur軟件轉(zhuǎn)化成mzXML文件,再用MzMine軟件和XCMS軟件來處理此數(shù)據(jù),得到可以用Matlab處理的數(shù)據(jù)矩陣,最后用PCA法處理的數(shù)據(jù)矩陣,得到組間差異化合物[35]。而在Arias等用OPLS-DA模型識別用藥豬與未用藥豬之間差異的研究[67]中,數(shù)據(jù)前處理僅使用了TransOmics軟件[沃特世科技(上海)有限公司],經(jīng)歸一化、標準化的數(shù)據(jù)直接導(dǎo)入SIMCA軟件(德國賽多利斯集團)進行多元統(tǒng)計分析。自動處理軟件的開發(fā),簡化了處理過程,縮短了處理時間。
5 展望
動物源農(nóng)產(chǎn)品中的獸藥殘留直接危害公眾健康,因此受到消費者和監(jiān)管部門的重視。高效準確地檢測動物源農(nóng)產(chǎn)品中的獸藥殘留情況,對保證動物源農(nóng)產(chǎn)品的質(zhì)量安全具有重要意義?;贚C-HRMS的獸藥殘留檢測方法已經(jīng)發(fā)展成為一項非常重要的檢測手段,綠色、高效的提取方法是未來 LC-HRMS 前處理方法的發(fā)展方向,色譜系統(tǒng)和色譜柱填料的進步,特別是將新型的色譜分離技術(shù)如nanoLC、μLC和CLC等與HRMS相結(jié)合是減少基質(zhì)效應(yīng)、提高分離效率的發(fā)展方向,HRMS分辨率的不斷提高以及應(yīng)用軟件的優(yōu)化會進一步促進LC-HRMS技術(shù)在動物源農(nóng)產(chǎn)品獸藥殘留檢測中的應(yīng)用研究。
參考文獻:
[1]王小平. 獸藥殘留對生態(tài)環(huán)境的影響及人體的危害[J]. 山東畜牧獸醫(yī),2016(6):47-48.
[2]童建軍,孫穩(wěn)平,朱育紅. 獸藥殘留危害分析與管控[J]. 中國畜禽種業(yè),2017(4):34-37.
[3]湯曉艷,鄭 鋅,王 敏,等. 畜禽產(chǎn)品獸藥殘留限量標準現(xiàn)狀與發(fā)展方向[J]. 食品科學(xué)技術(shù)學(xué)報,2017(4):8-12.
[4]Kaufmann A. The current role of high-resolution mass spectrometry in food analysis[J]. Analytical and Bioanalytical Chemistry,2012,403(5):1233-1249.
[5]Masia A,Suarez-Varela M M,Llopis-Gonzalez A,et al. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry:a review[J]. Analytica Chimica Acta,2016,936:40-61.
[6]Rochat B. From targeted quantification to untargeted metabolomics:why LC-high-resolution-MS will become a key instrument in clinical labs[J]. Trends in Analytical Chemistry,2016,84(suppl1):151-164.
[7]Rathahao-Paris E,Alves S,Junot C A. High resolution mass spectrometry for structural identification of metabolites in metabolomics[J]. Metabolomics,2016,12(1):10.
[8]Gao P,Xu G W. Mass-spectrometry-based microbial metabolomics:recent developments and applications[J]. Analytical and Bioanalytical Chemistry,2015,407(3):669-680.
[9]Rainville P D,Theodoridis G,Plumb R S. Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping[J]. Trends in Analytical Chemistry,2014,61:181-191.
[10]Delatour T,Racault L,Bessaire T A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges[J]. Food Additives and Contaminants Part A(Chemistry Analysis Control Exposure & Risk Assessment),2018,35(4):632-645.
[11]Fu Y Q,Zhao C X,Lu X,et al. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography-high resolution mass spectrometry[J]. Trends in Analytical Chemistry,2017,96(SI):89-98.
[12]Kaufmann A,Walker S. Comparison of linear intrascan and interscan dynamic ranges of orbitrap and ion-mobility time-of-flight mass spectrometers[J]. Rapid Communications in Mass Spectrometry,2017,31(22):1915-1926.
[13]Fu Y,Zhou Z,Kong H,et al. Non-targeted screening method for illegal additives based on ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Analytical Chemistry,2016,88(17):8870-8877.
[14]Kaufmann A,Butcher P,Maden K,et al. Quantitative and confirmative performance of liquid chromatography coupled to high-resolution mass spectrometry compared to tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2011,25(7):979-992.
[15]Morin L P,Mess J N,Garofolo F. Large-molecule quantification:sensitivity and selectivity head-to-head comparison of triple quadrupole with Q-TOF[J]. Bioanalysis,2013,5(10):1181-1193.
[16]Grund B,Marvin L,Rochat B. Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,124:48-56.
[17]Kaufmann A,Butcher P,Maden K,et al. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry[J]. Analytica Chimica Acta,2015,862:41-52.
[18]Moretti S,Dusi G,Giusepponi D A,et al. Screening and confirmatory method for multiclass determination of 62 antibiotics in meat[J]. Journal of Chromatography A,2016,1429:175-188.
[19]Cotton J,Leroux F,Broudin S,et al. High-resolution mass spectrometry associated with data mining tools for the detection of pollutants and chemical characterization of honey samples[J]. Journal of Agricultural and Food Chemistry,2014,62(46):11335-11345.
[20]Turnipseed S B,Lohne J J,Storey J M,et al. Challenges in implementing a screening method for veterinary drugs in milk using liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2014,62(17):3660-3674.
[21]Lopez-Garcia M,Romero-Gonzalez R,Garrido F A. Determination of rodenticides and related metabolites in rabbit liver and biological matrices by liquid chromatography coupled to orbitrap high resolution mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,137:235-242.
[22]Lopez-Garcia M,Romero-Gonzalez R,Garrido F A. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography-orbitrap high resolution mass spectrometry[J]. Journal of Chromatography A,2018,1540:21-30.
[34]Wang J,Leung D. The challenges of developing a generic extraction procedure to analyze multi-class veterinary drug residues in milk and honey using ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Drug Testing and Analysis,2012,4(Supplement S1):103-111.
[35]Morales-Gutierrez F J,Hermo M P,Barbosa J,et al. High-resolution mass spectrometry applied to the identification of transformation products of quinolones from stability studies and new metabolites of enrofloxacin in chicken muscle tissues[J]. Journal of Pharmaceutical and Biomedical Analysis,2014,92:165-176.
[36]Zhao F,Gao X,Tang Z X,et al. Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry[J]. Journal of Chromatography B(Analytical Technologies in the Biomedical and Life Sciences),2017,1065:20-28.
[37]Alcantara-Duran J,Moreno-Gonzalez D,Gilbert-Lopez B,et al. Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry[J]. Food Chemistry,2018,245:29-38.
[38]Jia W,Shi L,Chu X G. Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole orbitrap mass spectrometry[J]. Food Chemistry,2018,239:427-433.
[39]Jia W,Chu X G,Chang J,et al. High-throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution orbitrap mass spectrometry[J]. Analytica Chimica Acta,2017,957:29-39.
[40]Nunes K S,Vallim J H,Assalin M R,et al. Depletion study,withdrawal period calculation and bioaccumulation of sulfamethazine in tilapia (Oreochromis niloticus) treated with medicated feed[J]. Chemosphere,2018,197:89-95.
[41]Arsand J B,Jank L,Martins M T,et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry[J]. Talanta,2016,154:38-45.
[42]Nacher-Mestre J,Ibanez M,Serrano R,et al. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry[J]. Chemosphere,2016,154:231-239.
[43]Hiba A,Carine A,Haifa A R,et al. Monitoring of twenty-two sulfonamides in edible tissues:investigation of new metabolites and their potential toxicity[J]. Food Chemistry,2016,192:212-227.
[44]Du L J,Yi L,Ye L H,et al. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent[J]. Journal of Chromatography Acta,2018,1537:10-20.
[45]Junza A,Saurina J,Barron D,et al. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry[J]. Journal of Chromatography Acta,2016,1460:92-99.
[46]Feng S X,Chiesa O A,Kijak P,et al. Determination of ceftiofur metabolite desfuroylceftiofur cysteine disulfide in bovine tissues using liquid chromatography-tandem mass spectrometry as a surrogate marker residue for ceftiofur[J]. Journal of Agricultural and Food Chemistry,2014,62(22):5011-5019.
[47]Iglesias A,Nebot C,Miranda J M,et al. Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry[J]. Environmental Science and Pollution Research,2012,19(8):3235-3249.
[48]Chung S W,Lam C H. Development of a 15-class multiresidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk,egg and meat by liquid chromatography-tandem mass spectrometry[J]. Analytical Methods,2015,7(16):6764-6776.
[49]Diez C,Guillarme D,Spoerri A S,et al. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2015,882:127-139.
[50]胡海燕,朱馨樂,胡 昊,等. 超高效液相色譜簡介及應(yīng)用比較[J]. 中國獸藥雜志,2010,44(4):48-50.
[51]la Barbera G,Capriotti A L,Cavaliere C A,et al. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages[J]. Food Research International,2017,100(1):28-52.
[52]Theodoridis G A,Gika H G,Want E J,et al. Liquid chromatography-mass spectrometry based global metabolite profiling:a review[J]. Analytica Chimica Acta,2012,711:7-16.
[53]Kim D,Kim B,Hyung S W,et al. An optimized method for the accurate determination of nitrofurans in chicken meat using isotope dilution-liquid chromatography/mass spectrometry[J]. Journal of Food Composition and Analysis,2015,40:24-31.
[54]Perez-Fernandez V,Dominguez-Vega E,Chankvetadze B,et al. Evaluation of new cellulose-based chiral stationary phases Sepapak-2 and Sepapak-4 for the enantiomeric separation of pesticides by nano liquid chromatography and capillary electrochromatography[J]. Journal of Chromatography A,2012,1234:22-31.
[55]Mirabelli M F,Wolf J C,Zenobi R. Pesticide analysis at ppt concentration levels:coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2016,408(13):3425-3434.
[56]Garcia-Ac A,Segura P A,Viglino L,et al. Comparison of APPI,APCI and ESI for the LC-MS/MS analysis of bezafibrate,cyclophosphamide,enalapril,methotrexate and orlistat in municipal wastewater[J]. Journal of Mass Spectrometry,2011,46(4):383-390.
[57]Holcapek M,Jirasko R,Lisa M. Recent developments in liquid chromatography-mass spectrometry and related techniques[J]. Journal of Chromatography Acta,2012,1259:3-15.
[58]夏 曦,李曉薇,丁雙陽,等. 液相色譜-高分辨質(zhì)譜在獸藥殘留分析中的應(yīng)用進展[J]. 質(zhì)譜學(xué)報,2011(6):333-340.
[59]Lehotay S J,Sapozhnikova Y,Mol H G. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry[J]. Trends in Analytical Chemistry,2015,69(SI):62-75.
[60]Perez-Ortega P,Lara-Ortega F J,Garcia-Reyes J F,et al. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food[J]. Talanta,2016,160:704-712.
[61]Porta T,Varesio E,Hopfgartner G. Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry[J]. Analytical Chemistry,2013,85(24):11771-11779.
[62]Regueiro J,Negreira N,Hannisdal R,et al. Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry[J]. Food Control,2017,78:116-125.
[63]Saito-Shida S,Hamasaka T,Nemoto S A. Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry:comparison between orbitrap and time-of-flight mass analyzers[J]. Food Chemistry,2018,256:140-148.
[64]Kellmann M,Muenster H,Zomer P,et al. Full scan MS in comprehensive qualitative and quantitative residue analysis in food and feed matrices:how much resolving power is required?[J]. Journal of the American Society for Mass Spectrometry,2009,20(8):1464-1476.
[65]Orchard S,Montechi-Palazzi L W,Binz P A,et al. Five years of progress in the standardization of proteomics data 4(th)annual spring workshop of the hupo-proteomics standards initiative April 23-25,2007 ecole nationale superieure(ens),Lyon,F(xiàn)rance[J]. Proteomics,2007,7(19):3436-3440.
[66]扈 慶,方 向. mzXML在質(zhì)譜數(shù)據(jù)共享中的應(yīng)用[J]. 計算機與應(yīng)用化學(xué),2007,24(12):1635-1637.
[67]Arias M,Chevallier O P,Graham S F,et al. Metabolomics reveals novel biomarkers of illegal 5-nitromimidazole treatment in pigs. Further evidence of drug toxicity uncovered[J]. Food Chemistry,2016,199:876-884.華兆暉,范世航,李 俊. 甘藍型油菜啟動子pBnaC05g31880D的克隆與功能分析[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(2):65-72.