• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of New Capabilities Using Machine Learning for Space Weather Prediction*

    2020-04-16 13:53:38LIUSiqingCHENYanhongLUOBingxianCUIYanmeiZHONGQiuzhenWANGJingjingYUANTianjiaoHUQinghuaHUANGXinCHENHong
    空間科學(xué)學(xué)報 2020年5期

    LIU Siqing CHEN Yanhong LUO Bingxian CUI Yanmei ZHONG Qiuzhen WANG Jingjing YUAN Tianjiao HU Qinghua HUANG Xin CHEN Hong

    Development of New Capabilities Using Machine Learning for Space Weather Prediction*

    LIU Siqing1,2,3CHEN Yanhong1,2LUO Bingxian1,2,3CUI Yanmei1,2ZHONG Qiuzhen1,2,3WANG Jingjing1,2YUAN Tianjiao1,2HU Qinghua3,4HUANG Xin4,5CHEN Hong5,6

    1 (100190) 2 (100190) 3 (100049) 4 (300072) 5 (100101) 6 (430070)

    With the development of space exploration and space environment measurements, the numerous observations of solar, solar wind, and near Earth space environment have been obtained in last 20 years. The accumulation of multiple data makes it possible to better use machine learning technique, which has achieved unforeseen results in industrial applications in last decades, for developing new approaches and models in space weather investigation and prediction. In this paper, the efforts on the forecasting methods for space weather indices, events, and parameters using machine learning are briefly introduced based on the study works in recent years. These investigations indicate that machine learning, especially deep learning technique can be used in automatic characteristic identification, solar eruption prediction, space weather forecasting for solar and geomagnetic indices, and modeling of space environment parameters.

    Space weather forecasting, Machine learning, Deep learning

    1 Automatic Characteristic Identification

    In last decades, machine learning, especially deep learning pushed a big success in image and voice recognition. In space weather field, there are numerous solar images observations which provide abundant information about solar active region, magnitude, emission,. Sunspots are darker areas on the solar photosphere and most of solar eruptions occur in complex sunspot groups. The morphological or magnetic features of sunspot groups are mainly predictors of solar eruption forecasting. Currently, both identification and classification of sunspots are mainly carried out manually by experts, which is a subjective, time-consuming, and labor-intensive pro-cess. With the rapid accumulation of solar observation data, applying the machine learning method into solar active feature automatic recognition and solar eruption forecasting is explored.

    The Mount Wilson classification scheme describes the spatial distribution of magnetic polarities in sunspot groups, which plays an important role in forecasting solar flares. This scheme considers bipolar sunspot groups as a basic type, and other types are regarded as deformations of the bipolar sunspot group. Statistically, large flares are more likely to occur in ARs with complex magnetic types, while the ARs of Alpha type have a lower probability of flare eruption. Using a Convolutional Neural Network (CNN) method, Fang.[1]developed an automatic procedure for the recognition of the predefined magnetic types in sunspot groups, which is based on the SDO/HMI SHARP data taken during the time interval 2010–2017 (Figure1). In the study, the sunspot magnetic type falls into three categories, the unipolar group, the bipolar group,and other complex multipolar groups, called-. There are three different models (A, B, and C) built, which take magnetograms, continuum images, and the two-channel pictures as input, respectively.

    Fig.1 Schematic of the CNN structure for automatic rec-ognition of magnetic type in sunspot groups[1]

    The model results show that CNN has a productive performance in identification of the magnetic types in solar active regions (Table1). The best recognition result emerges when continuum images are used as input data solely, and the total accuracy exceeds 95%, for which the recognition accuracy of Alpha type reaches 98% while the accuracy fortype is slightly lower but maintains above 88%.

    2 Machine Learning for Solar Eruption Forecasting

    Solar eruptions, such as solar flare, Coronal Mass Ejections (CMEs),Solar Proton Event (SPE) can significantly affect near-Earth space environment and lead the subsequent effects on space assets, navigation and communication, and ground based electric power system. Therefore, it is very important to predict when solar eruption occurs. However, the current capability is still very limited.

    The conventional solar flare forecasting models mainly rely on morphological or physical parameters extracted from active regions, but these parameters have limited forecasting capability. Instead of extracting the man-made physical parameters from the active region, Huang.[2]firstly try to apply the deep learning method to automatically dig out the forecasting patterns hidden in the data. In this manuscript, all active regions within ±30° of the central meridian for line-of-sight magnetograms observed by the SOHO/MDI and the SDO/HMI from 1996 April to 2015 October are collected, and the HMI data is fused with the MDI data to generate a big data set. Supported by this data set, a solar flare forecasting model by using the convolutional neural network (Figure2) is developed. The network consists of the convolutional layer, the nonlinear layer, the pooling layer, and the fully connected layer. The convolutional layer is used to extract forecasting patterns from input magnetograms. The nonlinear layer adds the nonlinear transform into the forecasting model. The pooling layer reduces the dimensionality of parameters in the network. And finally, the fully connected layer can provide high- level reasoning for the solar flare forecasting. This forecasting model can be used to forecast solar flares with the threshold of C, M, or X levels within the forecasting period of 6, 12, 24, or 48 h. The testing results of the forecasting model show that the performance of the proposed forecasting model is com-parable to the state-of-the-art flare forecasting models.

    Table1 Performance of the three models (A, B, and C), which take magnetograms, continuum images, and the two- channel pictures as input, respectively[1]

    Fig.2 Structure of the convolutional neural network for solar flare forecasting[2]

    It is well established that solar flares and Coronal Mass Ejections (CMEs) are powered by the free magnetic energy stored in volumetric electric currents in the corona, predominantly in Active Regions (ARs).The parameters in the Space-weather HMI Active Region Patches (SHARP) data from the Solar Dynamics Observatory/HMI observation of vector magnetic field are designed and generated to search for eruption-related signatures that can be further employed for predicting flares and CMEs. Wang[3]reported research done on the modification of these SHARP parameters with an attempt to improve flare prediction. The newly modified parameters are weighed heavily by magnetic Polarity In version Lines (PIL) with a high magnetic gradient, as suggested by Schrijver, by multiplying the parameters with a PIL mask. It is demonstrated that the number of the parameters that can well discriminate erupted and non-erupted ARs increases significantly by a factor of two, in comparison with the original parameters (as shown in Figure3). This improvement suggests that the high-gradient PILs are tightly related with solar eruption that agrees with previous studies. This also provides new data that possess potential to improve the machine-learning based solar flare prediction models.

    Fig.3 Fisher ranking score (F-score) for each parameter. Black dots refer to the F-scores for the original SHARP parameters; red for the modified SHARP parameters.

    Names of the parameters are on the-axis[3]

    It is known that the properties of the Polarity Inversion Line (PIL) in solar Active Regions (ARs) are strongly correlated to flare occurrences. Wang.[3]suggestedthat the PIL mask, enclosing the PIL areas, had significant potential for improving machine learning based flare prediction models. Wang[4]adopted an unsupervised machine learning algorithm, Kernel Principle Component Analysis (KPCA), to directly derive features from the PIL mask and difference PIL mask (as shown in Figure4), and use those features to classify ARs into two categories, non-strong flaring ARs and strong-flaring (M-class and above flares) ARs, for time-in-advance from one hour to 72 h at a 1 hour cadence. The two best features are selected from the KPCA results to develop random forest classifiers for predicting flares, and the models are then evaluated and compared to similar models based on the-value (as suggested by Schrijver) and differencevalue. The results show that the features derived from the PIL masks by KPCA are effective in predicting flare occurrence, with overall better Fisher ranking scores and similar predictive statistics as the-value characteristics.

    3 Forecasting of Solar and Geomagnetic Indices with Machine Learning

    The forecasting of solar activity index, represented by Solar 10.7 cm radio flux (10.7), and geomagnetic activity, represented by,,,, is very important in space weather as they are widely used to describe the level of solar activity and geomagnetic fields. These indices are also the necessary inputs for many empirical and theoretical models in space environment research and application.

    Fig.4 Radial magnetic field, Br, in the active region AR 12673 taken at 11:48 UT, 6 September 2017, and minimum and maximum of the image are –1000 Gs and 1000 Gs, respectively (a). Positive/negative magnetic polarity mask derived from the Br image (b). PIL mask derived from the Br polarity mask. The red squares enclose the sub-images with a size of 250×250 Pixel centered at the centroid of the PIL mask used in this study (c). Bottom right: the corresponding difference PIL mask at Y = 48 h (d)[4]

    Traditional methods for10.7medium-term fore--casting mainly include linear regression and empirical model based on the periodic variation. Wang.[5]discovered that forecasting errors of10.7are heteroscedastic, something that is not often considered in previous models. In addition, task correlation between different forecasting steps is ignored in current multistep-ahead forecast models. Wang[5]proposed a linear multistep forecasting model based on the correlation between different forecasting steps and the characteristic of heteroscedasticity (CH-MF model). Further, a variational Bayesian procedure was introduced to optimize the model. The performance of the proposed model is tested using10.7historical data. Figure5 shows the forecasting results in 2001, which indicates that the model is more effective and reliable than the linear regression model for10.7multistep forecasting task. Thus, it is reasonable to consider task correlation and to embed heteroscedasticity in10.7medium-term forecasting task.

    For geomagnetic index, there are various studies related toforecasting. The artificial Neural Network (NN) is the most popular algorithm for short-timeforecasting. For example, Liu[6]developed a model forecasting1~3.5 h in advance using traditional NN, which is used in practical operations, and its forecast results are on the website of Space Environment Prediction Center (SEPC), Chinese Academy of Science. Tan.[7]proposed aforecasting model 1-hour in advance based on Long Short-Term Memory (LSTM). LSTM is developed from Recurrent Neural Networks (RNNs)[8]. LSTM can hold long-term memory and is helpful for learn-ing sequential data. It can find complex nonlinear relationships in the data set. The input of the LSTM model forforecasting is made up of a time series of,and, with 6 h of time lag.is the Boyle Index[9]which is related to solar wind, whileis the solar wind dynamic pressure. Considering the data imbalance between storm and no-storm time, the three sub-model structure is designed (Figure6), which includes a classification model and two regression sub-models to improve the performance of geomagnetic storm forecasting.

    Fig.5 Comparison between F10.7 observations and forecast values in 2001[5]

    The effectiveness of deep learning inforecasting was compared with another fiveforecas-ting models dealing with the performance forforecasting and geomagnetic storm forecasting. Table 2 shows that the RMSE and MAE of the LSTM model are the smallest among the six models which are 0.4765 and 0.6382, respectively. In addition, CC is the largest among the six models which is 0.8147. The verification for geomagnetic storm forecasting also indicates the LSTM model can improve the prediction ability of the occurrence of geomagnetic storms (≥5). It is helpful using LSTM for deep learning to build theforecasting model.

    Fig.6 Kp forecasting model structure (a) and the structure of the submodels A and O (b)[7]

    Table2 Comparison on Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (CC) of Kp forecasting among six models[7]

    4 Modeling Space Environment Parameters Using Deep Learning

    The ultimate purpose of space weather prediction is to give the accurate description of all kinds of space environment parameters, such as high energetic particle flux, magnetic field, electron density, plasma density, neutral density,. Many research and modeling works were performed considering the physical process and mechanism of space environment. They can give a relatively objective description of the long-term behavior of the system, while most of them are not appropriately used in space weather operation.

    Therefore, empirical model is still a useful met-hod to give the prediction of space weather para-meters. Traditional NN method is also tried to make some parameters prediction. For ionosphere, the02(The critical frequency of ionospheric F2-layer) predic-tion model for 24 h in advance was established using traditional Back-Propagation (BP) network[10,11]. With more and more ionospheric mea-surements obtained, new skills in machine learning should be developed to give a more accurate forecast of ionosphere in global range, especially to improve the prediction during geomagnetic storms. Using IGS TEC products, solar 10.7cm flux index, geomagnetic index, solar wind speed and the southward com-ponents of interplanetary magnetic field, Yuan.[12]built a forecast model for Beijing station (40°N, 115°E) based on the deep learning Recurrent Neural Network (RNN). The Root Mean Square Error (RMSE) of the disturbed ionosphere TEC predicted by RNN model is lower than that of BPNN (Back Propagation Neural Network) model by 0.49~1.46 TECU (Figure7). The forecasting accuracy of ionospheric positive storm by RNN model is increased by 16.8% with solar wind parameters. Furthermore, the RMSE of RNN model on 31 strong TEC storm in 2001 and 2015 are less than that of BPNN model by 0.2 TECU, and the RMSE of RNN model is decreased by 0.36~ 0.47 TECU as solar wind parameters are added. The results indicate that RNN model is more reliable than BP model for short-term forecasting of TEC. Moreover, the adding of interplanetary solar wind parameters is helpful for predicting TEC positive storm.

    Fig.7 Forecasting RMSE of TEC during magnetic disturbed time (a) and magnetic quite time (b) in Beijing.

    Inputs are10.7, TEC andfor sample set 1,10.7, TEC,, solar wind speed and IMFfor sample set 2 and10.7, TEC, solar wind speed and IMFfor sample set 3[12]

    Based on deep learning, a regional TEC predic-tion model 24 h in advance for Chinese region is also developed. The RMSE is 4.84 TECU during the quiet time, and 6.86 TECU during the geomagnetic disturbed time. The spatial distribution of the RMSE during geomagnetic quiet time and geomagnetic storm time are shown in Figure8.

    High-energy electron at GEO is regarded as a killed electron as it can penetrate the components of satellites and result in an accumulated charge within the material, causing a deep dielectric charging and discharging process which can cause abnormal behavior in satellite systems[13]. Based on a deep learn-ing method of Long Short-Term Memory (LSTM), Wei.[14]developed a model to predict the daily >2 MeV electron integral flux 1-day ahead at geosta-tionary orbit. The experiment included different input combinations among geomagnetic indices and solar wind parameters. It showed that when the model takes daily >2 MeV electron integral flux, daily averaged magnetopause subsolar distance, and daily summedindex as inputs, the prediction efficiencies in 2008, 2009, and 2010 are 0.833, 0.896 and 0.911, respectively. This value reaches 0.900 for 2008, when hourly >2MeV electron integral flux, hourly magnetopause subsolar distance, and daily summedindex are taken as inputs. Figure9 shows the comparisons among the results of two categories of forecasting models and observations in 2008. The prediction efficiencies of the Persistence model and the 27-order Autoregressive model for the same tested time are 0.679 and 0.743, respectively. Therefore, the model developed based on the LSTM method can improve the prediction efficiency significantly for daily >2 MeV electron integral flux 1-day ahead at geostationary orbit.

    Fig.8 RMSE of TEC regional prediction model during quiet time and geomagnetic storm time

    Fig.9 Comparison among forecasting results of two categories of forecasting models and observations in 2008. The daily >2 MeV electron integral flux of 108cm–2·d–1·sr–1 over the entire time of each year is shown as a dark gray dashed curve. LSTM represents Long Short-Term Memory[14]

    5 Other Potential Applications for Machine Learning

    Another aspect of application is the similarity model for a recommendation in operational space weather prediction. If a similar event was dug out from historical data and recommended to forecasters, the forecasters can reference the event’s process and give a more reliable forecast for current event. A CME eventsimilarity model for the recommendation was now developing in Space Environment Prediction Center (SEPC) for better predicting the effect of the observed CME on Earth space.

    Machine learning is not new to space weather. Traditional Neural Network has been used since1990 s. However, machine learning has never been as successful as it is now, which necessarily leads to new success and progress in space weather. The efforts introduced in this paper are just the beginning of the innovation. It is expectable that more helpful methods will be developed and used in automatically identifying events/features, space weather forecasting, modeling, and knowledge discovery in the future.

    Fig.10 Radar map of variable weights for CME parameters from additive models

    [1] FANG Y, CUI Y, AO X, Deep learning for automatic recognition of magnetic type in sunspot groups [J]., 2019:9196234

    [2] HUANG X, WANG H, XU L,. Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms [J].2019, 856:7

    [3] WANG J, LIU S, AO X,Parameters derived from the SDO/HMI vector magnetic field data: potential to improve machine-learning-based solar flare prediction models [J]., 2019, 884:175

    [4] WANG J, LIU S, AO X,. Solar flare predictive features derived from polarity inversion line masks in active regions using an unsupervised machine learning algorithm [J]., 202092:140

    [5] WANG Z, HU Q, ZHONG Q, WANG Y. Linear multistep10.7forecasting based on task correlation and heteroscedasticity [J].2018, 5:863-874

    [6] LIU Y, LUO B, LIU S, GONG J.Forecast models based on neural networks [J]., 2013, 19(2):70-80

    [7] TAN Y, HU Q, WANG Z, ZHONG Q. Geomagnetic indexforecasting with LSTM [J]., 2018, 16:406-416

    [8] GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks [M]. Heidelberg: Springer, 2012

    [9] BOYLE C, REIFF P, HAIRSTON M. Empirical polar cap potentials [J].1997, 102(A1):111-125

    [10] CHEN Y, XUE B, LI L. Forecasting of ionospheric critical frequency using neural networks [J]., 2005,25(2):99-103

    [11] CHEN C, WU Z, SUN S,. Forecasting of ionospheric02in china using neural network [J].., 2011, 31(3):304-310

    [12] YUAN T, CHEN Y, LIU S, GONG J. Prediction model for Ionospheric total electron content based on deep learning recurrent neural network [J]., 2018, 38(1):48-57

    [13] LANZEROTTI L J, LAFLEUR K, MACLENNAN C G, MAURER D W. Studies of spacecraft charging on a geosyn-chronous telecommunications satellite [J]., 1998, 22(1):79-82

    [14] WEI L, ZHONG Q, LIN R. Quantitative prediction of high-energy electron integral flux at geostationary orbit based on deep learning [J]., 2018, 16:903-916

    P353

    LIU Siqing, CHEN Yanhong, LUO Bingxian, CUI Yanmei, ZHONG Qiuzhen, WANG Jingjing, YUAN Tianjiao, HU Qinghua, HUANG Xin, CHEN Hong. Development of New Capabilities Using Machine Learning for Space Weather Prediction., 2020, 40(5): 875-883. DOI:10.11728/cjss2020.05.875

    * Supported by National Natural Science Foundation of China (41574181)

    March 15, 2020

    E-mail: chenyh@nssc.ac.cn

    av天堂在线播放| 1024视频免费在线观看| 色婷婷av一区二区三区视频| 免费在线观看日本一区| 久久精品久久久久久久性| 男人添女人高潮全过程视频| 天天添夜夜摸| 国产欧美日韩综合在线一区二区| 久久青草综合色| 国产精品99久久99久久久不卡| 日本五十路高清| 久久精品国产亚洲av涩爱| 老鸭窝网址在线观看| 在线观看免费午夜福利视频| 亚洲色图综合在线观看| 少妇粗大呻吟视频| 看免费成人av毛片| 国产成人av教育| av天堂久久9| 日本av手机在线免费观看| 久久99热这里只频精品6学生| 好男人视频免费观看在线| 又黄又粗又硬又大视频| 成年av动漫网址| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲中文av在线| 免费人妻精品一区二区三区视频| 欧美精品av麻豆av| 狂野欧美激情性bbbbbb| 赤兔流量卡办理| 日本a在线网址| 国产一区二区在线观看av| av国产精品久久久久影院| 国产亚洲av高清不卡| av欧美777| 男女之事视频高清在线观看 | 精品一区二区三区av网在线观看 | 777米奇影视久久| 看免费av毛片| 日韩制服丝袜自拍偷拍| 国产三级黄色录像| 极品人妻少妇av视频| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 99精品久久久久人妻精品| 少妇的丰满在线观看| 校园人妻丝袜中文字幕| 91九色精品人成在线观看| 午夜激情av网站| 别揉我奶头~嗯~啊~动态视频 | 久久久久久亚洲精品国产蜜桃av| 欧美乱码精品一区二区三区| 国产精品久久久久久精品古装| 一级黄片播放器| 91九色精品人成在线观看| 色播在线永久视频| 老熟女久久久| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 午夜91福利影院| 中文字幕制服av| 午夜福利,免费看| 久久人妻熟女aⅴ| 久久久国产精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 欧美在线黄色| 另类亚洲欧美激情| 精品久久久久久久毛片微露脸 | 中文字幕人妻丝袜一区二区| a级片在线免费高清观看视频| 久久久久久久国产电影| 亚洲,欧美,日韩| 大型av网站在线播放| 肉色欧美久久久久久久蜜桃| 成在线人永久免费视频| 日韩熟女老妇一区二区性免费视频| 美女脱内裤让男人舔精品视频| 亚洲欧美精品自产自拍| 满18在线观看网站| 大片电影免费在线观看免费| 欧美国产精品va在线观看不卡| 免费黄频网站在线观看国产| 永久免费av网站大全| 一本色道久久久久久精品综合| 啦啦啦视频在线资源免费观看| 免费看av在线观看网站| 国产欧美亚洲国产| 国产有黄有色有爽视频| 午夜福利视频精品| 黄色片一级片一级黄色片| 国产成人精品久久久久久| 国产亚洲精品久久久久5区| 亚洲精品日韩在线中文字幕| 中国国产av一级| 亚洲一区中文字幕在线| 欧美精品啪啪一区二区三区 | 女人精品久久久久毛片| 一级毛片女人18水好多 | 久久人妻福利社区极品人妻图片 | 激情视频va一区二区三区| 97在线人人人人妻| 国产不卡av网站在线观看| 国产av精品麻豆| 国产免费福利视频在线观看| 美女大奶头黄色视频| 大陆偷拍与自拍| 日本a在线网址| 一级片免费观看大全| 成人亚洲精品一区在线观看| 亚洲精品久久久久久婷婷小说| 久久这里只有精品19| 国产成人啪精品午夜网站| 2021少妇久久久久久久久久久| 欧美精品亚洲一区二区| 高清视频免费观看一区二区| 亚洲国产av新网站| 美国免费a级毛片| 亚洲国产精品国产精品| 大型av网站在线播放| 国产亚洲午夜精品一区二区久久| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| 最新在线观看一区二区三区 | 亚洲久久久国产精品| 一区在线观看完整版| 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 最新的欧美精品一区二区| 成人影院久久| 黑人巨大精品欧美一区二区蜜桃| 欧美精品一区二区大全| 人人澡人人妻人| 飞空精品影院首页| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 精品人妻1区二区| 欧美日韩综合久久久久久| 国产97色在线日韩免费| 精品少妇一区二区三区视频日本电影| 女人久久www免费人成看片| 性少妇av在线| 亚洲精品一卡2卡三卡4卡5卡 | 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 国产av一区二区精品久久| 麻豆av在线久日| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 天天操日日干夜夜撸| svipshipincom国产片| 亚洲熟女毛片儿| 在线天堂中文资源库| 国产成人av教育| 美国免费a级毛片| 久久狼人影院| 观看av在线不卡| av国产久精品久网站免费入址| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 天堂8中文在线网| 国产亚洲欧美精品永久| 一区福利在线观看| 亚洲国产看品久久| 国产三级黄色录像| 丝袜美腿诱惑在线| 男女边摸边吃奶| 日韩一卡2卡3卡4卡2021年| 我的亚洲天堂| 亚洲精品成人av观看孕妇| 欧美精品高潮呻吟av久久| 国产亚洲欧美在线一区二区| 最新的欧美精品一区二区| 色综合欧美亚洲国产小说| 热re99久久国产66热| 老汉色∧v一级毛片| 久久久欧美国产精品| 男女下面插进去视频免费观看| 国产一区二区在线观看av| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 亚洲精品国产一区二区精华液| 天堂俺去俺来也www色官网| 黄色视频不卡| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 亚洲熟女毛片儿| 色94色欧美一区二区| 精品欧美一区二区三区在线| 精品国产超薄肉色丝袜足j| videosex国产| av天堂久久9| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 日日爽夜夜爽网站| 人妻 亚洲 视频| 久久九九热精品免费| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 中文字幕色久视频| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲色图综合在线观看| 成人午夜精彩视频在线观看| 久久这里只有精品19| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸 | 亚洲伊人久久精品综合| 亚洲欧美精品综合一区二区三区| 夫妻性生交免费视频一级片| 两个人看的免费小视频| 亚洲欧美色中文字幕在线| 超色免费av| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 亚洲精品av麻豆狂野| 国产又爽黄色视频| 99热国产这里只有精品6| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 免费女性裸体啪啪无遮挡网站| 午夜免费鲁丝| 蜜桃在线观看..| 女人精品久久久久毛片| 国产高清视频在线播放一区 | 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 国产一区二区激情短视频 | 老司机在亚洲福利影院| 99国产综合亚洲精品| 欧美国产精品一级二级三级| av在线app专区| 只有这里有精品99| av不卡在线播放| 国产在线视频一区二区| 久久热在线av| av视频免费观看在线观看| 亚洲av男天堂| 中文字幕制服av| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 男女国产视频网站| 欧美在线黄色| 亚洲成国产人片在线观看| 黄色 视频免费看| 精品福利永久在线观看| 热99国产精品久久久久久7| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 午夜免费成人在线视频| 免费高清在线观看视频在线观看| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 18在线观看网站| 91九色精品人成在线观看| avwww免费| 欧美xxⅹ黑人| 高清不卡的av网站| 日韩精品免费视频一区二区三区| 丝袜人妻中文字幕| 99九九在线精品视频| 午夜影院在线不卡| 91国产中文字幕| 国产视频首页在线观看| 少妇精品久久久久久久| 大香蕉久久成人网| 美国免费a级毛片| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 久热爱精品视频在线9| 亚洲成av片中文字幕在线观看| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 久久毛片免费看一区二区三区| 看十八女毛片水多多多| av又黄又爽大尺度在线免费看| 久久国产精品影院| 捣出白浆h1v1| 久久国产精品人妻蜜桃| 丁香六月天网| 丝袜人妻中文字幕| 一级黄色大片毛片| 最近中文字幕2019免费版| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| av网站免费在线观看视频| 欧美久久黑人一区二区| 欧美在线黄色| 婷婷丁香在线五月| 999精品在线视频| 香蕉丝袜av| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三区在线| 肉色欧美久久久久久久蜜桃| xxxhd国产人妻xxx| 捣出白浆h1v1| 午夜久久久在线观看| 97人妻天天添夜夜摸| 精品国产国语对白av| 午夜福利一区二区在线看| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区| 日日夜夜操网爽| 搡老岳熟女国产| 一级毛片 在线播放| 亚洲精品第二区| 交换朋友夫妻互换小说| 午夜日韩欧美国产| 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 久久人人97超碰香蕉20202| 久久人妻熟女aⅴ| 制服人妻中文乱码| 超碰97精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 国产在线观看jvid| 久久99精品国语久久久| 一区二区三区激情视频| 人妻一区二区av| 日本色播在线视频| 男男h啪啪无遮挡| 80岁老熟妇乱子伦牲交| 首页视频小说图片口味搜索 | 51午夜福利影视在线观看| 中文字幕高清在线视频| 国产伦理片在线播放av一区| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 老司机影院毛片| 国产成人欧美在线观看 | 久久精品国产亚洲av高清一级| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 日韩av免费高清视频| 18禁观看日本| 只有这里有精品99| 亚洲中文字幕日韩| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| 一本一本久久a久久精品综合妖精| 激情五月婷婷亚洲| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 亚洲av综合色区一区| 男女边摸边吃奶| 操美女的视频在线观看| 亚洲成人手机| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 亚洲三区欧美一区| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区久久| 尾随美女入室| 成人国语在线视频| 波多野结衣av一区二区av| 亚洲人成电影观看| 女性被躁到高潮视频| 在线精品无人区一区二区三| av网站在线播放免费| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| 精品一区二区三区av网在线观看 | 青草久久国产| 手机成人av网站| 90打野战视频偷拍视频| www.熟女人妻精品国产| 国产欧美日韩一区二区三 | 后天国语完整版免费观看| 最近手机中文字幕大全| 啦啦啦 在线观看视频| 久久久国产一区二区| 国产高清视频在线播放一区 | 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 精品久久蜜臀av无| 好男人电影高清在线观看| 日韩制服骚丝袜av| 超碰97精品在线观看| 欧美xxⅹ黑人| 91麻豆av在线| 美女中出高潮动态图| 99香蕉大伊视频| 秋霞在线观看毛片| 亚洲国产欧美一区二区综合| 黄网站色视频无遮挡免费观看| 香蕉丝袜av| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 亚洲精品日韩在线中文字幕| 我要看黄色一级片免费的| 欧美黄色片欧美黄色片| 国产高清videossex| 免费看不卡的av| 国产一区亚洲一区在线观看| 丝袜在线中文字幕| 国产成人av教育| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲,欧美,日韩| 日韩中文字幕视频在线看片| 久久狼人影院| 国产一区二区在线观看av| 妹子高潮喷水视频| 日韩伦理黄色片| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 成人国产av品久久久| 美女视频免费永久观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 少妇裸体淫交视频免费看高清 | 亚洲熟女毛片儿| 国产精品二区激情视频| 国产成人av教育| 成年人午夜在线观看视频| 成年动漫av网址| 久久精品亚洲av国产电影网| 免费在线观看日本一区| 乱人伦中国视频| 老鸭窝网址在线观看| 无限看片的www在线观看| 国产91精品成人一区二区三区 | 久久中文字幕一级| 国产99久久九九免费精品| 1024香蕉在线观看| 一区二区av电影网| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 精品亚洲乱码少妇综合久久| 操出白浆在线播放| av在线老鸭窝| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网 | 日韩人妻精品一区2区三区| 亚洲欧美一区二区三区久久| 亚洲专区国产一区二区| 母亲3免费完整高清在线观看| www日本在线高清视频| 婷婷色麻豆天堂久久| 不卡av一区二区三区| 精品国产一区二区三区久久久樱花| 丁香六月欧美| www.999成人在线观看| 国产精品一区二区免费欧美 | 精品少妇黑人巨大在线播放| 老汉色∧v一级毛片| 日韩人妻精品一区2区三区| 免费在线观看视频国产中文字幕亚洲 | 国产精品麻豆人妻色哟哟久久| 欧美日韩福利视频一区二区| 亚洲成人免费av在线播放| 操出白浆在线播放| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 在线观看一区二区三区激情| 国产精品成人在线| 又黄又粗又硬又大视频| 狠狠婷婷综合久久久久久88av| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 亚洲伊人色综图| 国产男人的电影天堂91| 免费少妇av软件| 最新在线观看一区二区三区 | 国产成人欧美| 啦啦啦 在线观看视频| 久久久亚洲精品成人影院| 国产1区2区3区精品| 免费少妇av软件| 亚洲精品乱久久久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美一区二区综合| 精品福利观看| 黑人巨大精品欧美一区二区蜜桃| 久久精品成人免费网站| 美女福利国产在线| 国产日韩欧美亚洲二区| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 国产免费福利视频在线观看| 女性被躁到高潮视频| 中文字幕人妻丝袜制服| 又紧又爽又黄一区二区| 久久免费观看电影| 成年人午夜在线观看视频| 国产精品成人在线| 老汉色∧v一级毛片| 国产精品偷伦视频观看了| 国产亚洲av高清不卡| av网站免费在线观看视频| 国产精品熟女久久久久浪| 只有这里有精品99| 丰满饥渴人妻一区二区三| 国产成人91sexporn| 嫩草影视91久久| 午夜老司机福利片| 两个人免费观看高清视频| 欧美另类一区| 久久天堂一区二区三区四区| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 99国产精品免费福利视频| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看| 色综合欧美亚洲国产小说| 男女床上黄色一级片免费看| 一级毛片女人18水好多 | 成年美女黄网站色视频大全免费| 国产亚洲av高清不卡| 汤姆久久久久久久影院中文字幕| 精品福利观看| 1024视频免费在线观看| 亚洲熟女毛片儿| 亚洲免费av在线视频| 老熟女久久久| 女人精品久久久久毛片| 久久av网站| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 制服诱惑二区| 青春草视频在线免费观看| 午夜激情久久久久久久| h视频一区二区三区| 久久精品久久精品一区二区三区| 国产亚洲欧美在线一区二区| 国产精品免费视频内射| 香蕉国产在线看| 亚洲精品国产区一区二| 一区在线观看完整版| 欧美+亚洲+日韩+国产| 日韩av免费高清视频| 久久久欧美国产精品| 亚洲成人手机| 成年美女黄网站色视频大全免费| 一本久久精品| 日本av免费视频播放| 飞空精品影院首页| 国产精品三级大全| 黄片小视频在线播放| 国产人伦9x9x在线观看| 亚洲九九香蕉| 成年人午夜在线观看视频| 只有这里有精品99| 欧美精品啪啪一区二区三区 | 国产亚洲av高清不卡| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 日韩中文字幕欧美一区二区 | 国产色视频综合| 中文字幕精品免费在线观看视频| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 午夜两性在线视频| 欧美成狂野欧美在线观看| 天堂俺去俺来也www色官网| 可以免费在线观看a视频的电影网站| 在线观看人妻少妇| 精品熟女少妇八av免费久了| 久热这里只有精品99| 一级片'在线观看视频| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 99re6热这里在线精品视频| 国产成人精品久久二区二区免费| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 这个男人来自地球电影免费观看| www.自偷自拍.com| av片东京热男人的天堂| 久久狼人影院| 国产高清videossex| 国产不卡av网站在线观看| av不卡在线播放| 亚洲国产欧美一区二区综合| 涩涩av久久男人的天堂| 在线av久久热| 乱人伦中国视频| 国产成人av激情在线播放| av有码第一页| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 国产又爽黄色视频| 国产精品免费大片| 男女午夜视频在线观看| 中文字幕最新亚洲高清| 久久av网站| 97人妻天天添夜夜摸|