賈海燕,宋麗云,徐翔,解屹,張超群,劉天波,趙存孝,申莉莉, 王杰,李瑩,王鳳龍,楊金廣
不同溫度下TMV侵染枯斑三生煙的lncRNA差異表達(dá)
賈海燕1,宋麗云1,徐翔1,解屹1,張超群2,劉天波3,趙存孝4,申莉莉1, 王杰1,李瑩1,王鳳龍1,楊金廣1
(1中國農(nóng)業(yè)科學(xué)院煙草研究所/煙草行業(yè)病蟲害監(jiān)測與綜合治理重點開放實驗室,山東青島 266101;2江西省煙葉科學(xué)研究所,南昌 330029;3中國煙草總公司中南農(nóng)業(yè)試驗站,長沙 410128;4甘肅省煙草公司慶陽市公司,甘肅慶陽 745099)
【】篩選不同溫度下煙草花葉病毒(,TMV)侵染后枯斑三生煙(var. Samsun NN)差異表達(dá)的長鏈非編碼RNA(long non-coding RNA,lncRNA),研究lncRNA在枯斑三生煙抗性反應(yīng)中的作用。N基因的溫度敏感性使枯斑三生煙在25℃時具備對TMV的抗性、在31℃抗性喪失,在這兩個溫度條件下對枯斑三生煙接種TMV和磷酸鹽緩沖鹽水(phosphate buffered saline,PBS),48 h后提取系統(tǒng)葉總RNA,構(gòu)建鏈特異性文庫后進行深度測序。對測序結(jié)果進行過濾后利用HTSeq將有效數(shù)據(jù)與近緣品種TN90(var. TN90)基因組比對,篩選得到lncRNA后利用FPKM法估計lncRNA的表達(dá)水平。通過edgeR篩選差異表達(dá)lncRNA(differentially expressed lncRNA,DElncRNA),并利用qRT-PCR技術(shù)對這一結(jié)果進行驗證。通過共定位及共表達(dá)分析預(yù)測DElncRNA的靶基因,通過參考基因組注釋、GO和KEGG富集分析研究靶基因的功能。4個處理共12個樣本經(jīng)lncRNA-seq各測得約8 000萬條clean reads,共獲得4 737條已知lncRNA、40 169條新lncRNA。其中64個lncRNA在不同溫度條件下TMV侵染后存在差異表達(dá),qRT-PCR測定結(jié)果顯示這些lncRNA的測序正確率在80%左右,表明本研究所得測序數(shù)據(jù)具備較高的可信度。對DElncRNA進行靶基因預(yù)測,發(fā)現(xiàn)一些基因同時被25℃下調(diào)和31℃上調(diào)的DElncRNA靶向。靶基因注釋功能豐富,主要參與植物抗病、激素和代謝等生理過程。部分可能與激素通路相關(guān)的lncRNA,在25℃下TMV侵染時呈現(xiàn)下調(diào)趨勢,而在31℃下TMV侵染則呈現(xiàn)上調(diào)趨勢。GO富集分析顯示靶基因主要參與構(gòu)成膜、囊泡等組分,具備鈣、鉀離子通道抑制劑活性等分子功能,使相應(yīng)離子得以轉(zhuǎn)運引發(fā)隨后的反應(yīng),同時也參與發(fā)病、抗原加工和呈現(xiàn)、細(xì)胞分裂素代謝等生理過程。KEGG分析發(fā)現(xiàn)靶基因顯著富集在植物激素信號轉(zhuǎn)導(dǎo)通路,25℃下調(diào)和31℃上調(diào)的DElncRNA靶基因同時富集在激素信號傳導(dǎo)、ABC運輸?shù)鞍?、苯丙烷類生物合成等通路。不同溫度?5℃和31℃)條件下TMV侵染枯斑三生煙后,長鏈非編碼RNA差異表達(dá),DElncRNA通過作用于激素信號傳導(dǎo)、物質(zhì)轉(zhuǎn)運等過程參與寄主系統(tǒng)獲得性抗性反應(yīng)。研究結(jié)果可為揭示植物系統(tǒng)獲得性抗性中l(wèi)ncRNA的調(diào)控功能以及新型抗病毒技術(shù)開發(fā)提供依據(jù)。
煙草花葉病毒;N基因;枯斑三生煙;長鏈非編碼RNA;系統(tǒng)獲得性抗性;深度測序;基因富集分析
【研究意義】煙草花葉病毒(,TMV)對主要經(jīng)濟作物生產(chǎn)造成極大危害且難以防治,來源于野生種黏煙草()的N基因?qū)MV具有抗性[1]。研究長鏈非編碼RNA(long non-coding RNA,lncRNA)在-TMV互作引起的枯斑三生煙(var. Samsun NN)抗性反應(yīng)中的作用,揭示lncRNA在植物系統(tǒng)獲得性抗性中的調(diào)控功能,可為新型抗病毒技術(shù)開發(fā)打下基礎(chǔ)?!厩叭搜芯窟M展】非編碼RNA即不編碼蛋白質(zhì)的RNA,在RNA水平上行使調(diào)控功能。LncRNA是長度超過200 nt的非編碼RNA,按其與蛋白質(zhì)編碼基因在基因組上的位置,分為基因間長鏈非編碼RNA(long intergenetic ncRNA,lincRNA)、內(nèi)含子長鏈非編碼RNA(intronic long ncRNA,incRNA)、反義長非編碼RNA(antisense lncRNA)等[2]。LncRNA具有同源性較低、組織特異性高等特點[3]。N基因介導(dǎo)的TMV抗性具備溫度敏感性,環(huán)境溫度低于28℃時含有N基因的煙草在TMV侵染后發(fā)生過敏反應(yīng)(hypersensitive reaction,HR)、建立系統(tǒng)獲得性抗性(systemic acquired resistance,SAR),環(huán)境溫度高于28℃時,N基因?qū)MV的抗性喪失,TMV在植株體內(nèi)系統(tǒng)侵染[4-5]。SAR的建立依賴多種激素相互協(xié)作或拮抗[6-8],進而引發(fā)一系列信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng)[9-10],其建立標(biāo)志是病程相關(guān)(pathogenicity-related,PR)基因的大量表達(dá)[11]。肖萬福對感染TMV后煙草差異表達(dá)的基因與蛋白質(zhì)展開研究,發(fā)現(xiàn)它們主要富集在光合作用、能量代謝、植物免疫以及與病原物互作等途徑[12]。與此同時非編碼RNA的調(diào)控作用已得到諸多揭示,最近的研究表明許多l(xiāng)ncRNA與植物同病原物的互作相關(guān)。番茄黃化曲葉病毒(,TYLCV)侵染易感番茄后,2 056個lncRNA參與到植株內(nèi)的激素信號傳導(dǎo)、內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)加工和植物-病原物互作等多種生物過程中;利用病毒誘導(dǎo)的基因沉默技術(shù)降低lncRNA S-slylnc0957的表達(dá)后,易感番茄增強了對TYLCV的抗性[13]。此外,寄主lncRNA與病毒產(chǎn)生的小干擾RNA(viral small- interfering RNA,vsRNA)也可能發(fā)生相互作用。番茄長鏈非編碼RNA SlLNR1可以通過與TYLCV產(chǎn)生的vsRNA互作來控制病害發(fā)展。VsRNA可以誘導(dǎo)易感番茄的沉默,表達(dá)下調(diào)時番茄葉片呈現(xiàn)發(fā)育遲緩和卷曲,而的過表達(dá)使TYLCV積累減少[14]。Seo等研究發(fā)現(xiàn),敲除擬南芥長鏈非編碼RNA后表達(dá)降低,對丁香假單胞菌(pv.)入侵更敏感;過表達(dá)的植物表達(dá)也升高,對丁香假單胞菌產(chǎn)生抗性[15]。進一步研究揭示可以解離FIB2/MED19a復(fù)合物,從啟動子上的激活因子(MED19a)中釋放阻遏物FIB2,最終導(dǎo)致的表達(dá)增加[16]。LncRNA在寄主植物與病原物互作中發(fā)揮著不可或缺的作用,但對于lncRNA在煙草響應(yīng)病原物脅迫中的作用少有揭示?!颈狙芯壳腥朦c】-TMV互作引發(fā)寄主抗性反應(yīng),此過程中差異表達(dá)基因和蛋白的功能已有研究,而關(guān)于lncRNA在其中的作用鮮見報道?!緮M解決的關(guān)鍵問題】利用長鏈非編碼核糖核酸測序(long non-coding RNA sequencing,lncRNA-seq)技術(shù),分析不同溫度(25℃和31℃)TMV侵染后枯斑三生煙系統(tǒng)葉lncRNA的表達(dá)情況。確定差異表達(dá)lncRNA,注釋其功能及富集的相關(guān)途徑,通過對比預(yù)測在抗性反應(yīng)中起作用的lncRNA及作用途徑,探究lncRNA在植物系統(tǒng)獲得性抗性中的調(diào)控功能。
試驗于2018年在中國農(nóng)業(yè)科學(xué)院煙草研究所煙草行業(yè)病蟲害監(jiān)測與綜合治理重點開放實驗室完成。
供試煙草品種枯斑三生煙,由中國煙草種質(zhì)資源平臺提供;煙草花葉病毒為普通株系(TMV-C),由中國農(nóng)業(yè)科學(xué)院煙草研究所植物保護研究中心提供。三生煙生長在晝夜周期為16 h/8 h、25℃或31℃、光合有效輻射為100 μmol·m-2·s-1和相對濕度約為80%的人工氣候室中。
以磷酸鹽緩沖鹽水(phosphate buffered saline,PBS)處理為對照,10 mg·mL-1TMV接種六葉期枯斑三生煙上部第3葉片(圖1)。設(shè)置4個處理,每個處理包含3個生物學(xué)重復(fù),其中處理Ⅰ:TMV+25℃;處理Ⅱ:TMV+31℃;處理Ⅲ:PBS+25℃;處理Ⅳ:PBS+31℃;TMV和PBS處理48 h后,分別將12個樣本的上部第2葉片送于北京諾禾致源科技股份有限公司進行l(wèi)ncRNA-seq。
利用TRIzol regent(Invitrogen,美國)對4個處理的12個樣品進行總RNA提取,分析樣品RNA完整性及是否存在DNA污染,每個樣本使用3 μg左右RNA,除去rRNA(ribosome RNA)后逆轉(zhuǎn)錄合成cDNA第一條鏈。鏈特異性文庫與普通建庫方法的區(qū)別在于將第二鏈cDNA合成反應(yīng)緩沖液中的dTTP替換為dUTP,對cDNA末端進行修飾后,利用USER(Uracil-Specific Excision Reagent)酶(New England Biolabs,英國)降解含U的cDNA第二鏈,從而保留第一條cDNA信息進行PCR擴增并獲得文庫。LncRNA的來源具備鏈特異性[3],通過與參考基因組比對,鏈特異性建庫可以明確lncRNA正負(fù)鏈來源,獲得的基因信息更準(zhǔn)確。
使用Illumina NovaSeq6000 sequencer(Illumina,美國)按讀取長度150 bp進行測序,獲得原始序列數(shù)據(jù)(raw reads)后,經(jīng)測序錯誤率分布檢查、測序數(shù)據(jù)過濾,得到有效讀段(clean reads)用于隨后的比對分析。將測序數(shù)據(jù)上傳至NCBI SRA數(shù)據(jù)庫,BioProject號:PRJNA588726。
由于枯斑三生煙未進行基因組測序,而近緣品種TN90的基因組信息與枯斑三生煙測序數(shù)據(jù)比對率高、符合要求,故將其作為參考基因組。參考基因組和基因模型注釋文件下載自NCBI(ftp://ftp.ncbi.nlm.nih. gov/genomes/all/GCF/000/715/135/GCF_000715135.1_ Ntab-TN90/)。為得到樣品各類型基因的表達(dá)情況,利用HTSeq(V2.0.4)將clean reads與參考基因組比對、覆蓋度分析已知類型基因[17]。使用StringTie(V1.3.1)將各樣本比對到參考基因組的reads拼接成轉(zhuǎn)錄本[18]。
A:25℃條件下TMV接種前的枯斑三生煙Samsun NN before TMV inoculation at 25℃;B:25℃條件下TMV接種48 h后的枯斑三生煙Samsun NN after 48 hours of TMV inoculation at 25℃;C:31℃條件下TMV接種前的枯斑三生煙Samsun NN before inoculation of TMV at 31℃;D:31℃條件下TMV接種48 h后的枯斑三生煙Samsun NN after 48 hours of TMV inoculation at 31℃。標(biāo)注為小寫字母的圖片展示相應(yīng)枯斑三生煙的接種葉The pictures marked in lowercase letters show the inoculated leaves of the corresponding tobacco
利用Cuffmerge(V2.0.2)對拼接得到的轉(zhuǎn)錄本進行合并,去除其中鏈方向不確定的轉(zhuǎn)錄本后得到完整轉(zhuǎn)錄組信息。從轉(zhuǎn)錄組中篩選出外顯子數(shù)量≥1且長度>200 bp的轉(zhuǎn)錄本,用于已知lncRNA(annotated lncRNA,即與數(shù)據(jù)庫注釋exon區(qū)域有重疊的轉(zhuǎn)錄本)的識別和新lncRNA(novel lncRNA)的篩選。
利用Cuffcompare將這些轉(zhuǎn)錄本與數(shù)據(jù)庫比對,得到已知lncRNA。對剩余轉(zhuǎn)錄本,通過Cuffquant篩選出FPKM(expected number of Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced,每百萬fragments中來自某一基因每千堿基長度的fragments數(shù)目)≥2的轉(zhuǎn)錄本后[19],利用CNCI(coding-non-coding index,V2.0.0)、CPC2(coding potential calculator)、Pfam-scan(V1.3.0)預(yù)測其中沒有編碼潛能的轉(zhuǎn)錄本[20-22],取3種工具預(yù)測結(jié)果的交集作為新lncRNA,而至少被一種軟件預(yù)測能編碼蛋白的轉(zhuǎn)錄本作為TUCP(transcripts of uncertain coding potential,編碼潛力不確定的轉(zhuǎn)錄本)[23]。
通過計算某一lncRNA在不同處理后的FPKM值是否存在差異,判定該lncRNA是否為差異表達(dá)lncRNA(differentially-expressed lncRNA,DElncRNA)。通過 StringTie-eB(V1.3.1)定量lncRNA在12個樣本中的FPKM值[18],對同一處理的3個重復(fù)樣本取均值得到lncRNA在該處理下的FPKM信息。
篩選枯斑三生煙在25℃環(huán)境中差異表達(dá)的lncRNA時,將處理Ⅰ設(shè)為試驗組、將處理Ⅲ設(shè)為對照組(TMV_25_vs_PBS_25),利用edgeR(V3.0.8)[24]篩選DElncRNA:當(dāng)某一lncRNA對應(yīng)的|log2(TMV_25_FPKM / PBS_25_FPKM)|>2、且 校正后的值(-adjust)<0.05時,認(rèn)為該lncRNA在25℃、TMV處理后差異表達(dá)。31℃條件下DElncRNA的篩選依據(jù)同樣方法,以處理Ⅱ為試驗組、以處理Ⅳ為對照組(TMV_31_vs_PBS_31)。
為判斷不同處理DElncRNA的表達(dá)模式,根據(jù)DElncRNA在4個處理中的FPKM值,進行表達(dá)量層次聚類(hierarchical clustering)分析。
使用Primer Premier(V6.0.0)對各處理DElncRNA進行熒光定量引物設(shè)計(表1、表2)。使用ChamQ Universal SYBR qPCR Master Mix(Vazyme,中國)實時熒光定量試劑盒,利用Applied Biosystems 7500 Fast Real-Time PCR System(ABI,美國)進行qRT-PCR反應(yīng)??偡磻?yīng)體系為20 μL:SYBR qPCR Master Mix 10 μL,PCR正反向引物各0.4 μL,作為模板的逆轉(zhuǎn)錄所得cDNA 2 μL,RNase-free water 7.2 μL。擴增條件為95℃預(yù)變性30 s;95℃反應(yīng)10 s和60℃反應(yīng)30 s,循環(huán)40次;95℃反應(yīng)15 s和60℃反應(yīng)1 min,95℃反應(yīng)15 s分析融解曲線。依據(jù)融解曲線分析引物的特異性。根據(jù)紅花煙草肌動蛋白()序列(序列號:GQ339768),設(shè)計熒光定量引物(正向引物:5′-TGAGACATTCAACGTTCCGGC-3′,反向引物:5′-GTTAGGTCACGGCCAGCAAG-3′)。以為內(nèi)參,根據(jù)2-ΔΔCt法[25]計算基因相對定量的表達(dá),借助SPSS(V24.0.0)進行數(shù)據(jù)分析,利用Excel 2016繪制圖表,得到DElncRNA表達(dá)情況,對測序結(jié)果進行驗證。
表1 25℃下差異表達(dá)lncRNA引物序列
表2 31℃下差異表達(dá)lncRNA引物序列
LncRNA的調(diào)控方式分為作用于相鄰靶基因的順式作用模式,以及在其表達(dá)水平上識別其他基因的反式作用模式[26]。DElncRNA順式作用靶基因通過共定位(co-location)分析預(yù)測得到,篩選條件為mRNA位于lncRNA上下游100 kb以內(nèi)。通過共表達(dá)(co-expression)分析預(yù)測反式作用靶基因[27],采用Pearson相關(guān)系數(shù)法研究DElncRNA與mRNA的相關(guān)性,相關(guān)系數(shù)絕對值>0.95(<0.05)時作為反式作用靶基因。研究參考基因組對靶基因的注釋,分析其生物學(xué)功能。
對DElncRNA的靶基因分別進行GO(Gene Ontology,基因本體論)和KEGG(Kyoto Encyclopedia of Genes and Genomes,京都基因和基因組百科全書)途經(jīng)分析,GO富集分析通過GOseq(V3.3.2)實現(xiàn)[28],使用KOBAS(V2.0.0)進行KEGG途徑分析[29-30],當(dāng)<0.05時認(rèn)為鑒定的GO條目或者KEGG途徑被顯著富集。
4個處理12個樣本獲得clean reads均為8 000萬條左右(表3),堿基測序錯誤率(error rate)最高為0.02%。與參考基因組(total mapped)比對發(fā)現(xiàn),95%以上的clean reads被比對到參考基因組,約46%在參考序列上有多個比對位置(multiple mapped),有唯一比對位置的clean reads(uniquely mapped)占49%左右。
為研究樣本基因表達(dá)情況,進行已知類型基因定量分析,約36%的clean reads為protein_coding,lncRNA約占1.4%。經(jīng)過篩選共獲得4 737條已知lncRNA,40 169條新lncRNA;其中l(wèi)incRNA占47.7%,antisense lncRNA較少,為14.8%,剩余37.5%的lncRNA為intronic lncRNA。
密度分布顯示已知lncRNA、新lncRNA及mRNA之間存在一定差異。如圖2-A所示,已知lncRNA、新lncRNA相對mRNA長度偏短,已知lncRNA長度集中在600 bp,而新lncRNA在300 bp左右。多數(shù)新lncRNA有2個外顯子,而已知lncRNA多有3個外顯子(圖2-B)。兩種lncRNA的開放閱讀框(open reading frame,ORF)長度都在250 bp以下,新lncRNA相對更短(圖2-C)。
3種轉(zhuǎn)錄本表達(dá)水平差異明顯(圖2-D),mRNA表達(dá)量顯著高于TUCP和lncRNA,lncRNA較TUCP更低。對同一處理的重復(fù)樣品取平均值獲得該處理FPKM,圖2-E顯示4種處理表達(dá)水平稍有不同,31℃兩個處理轉(zhuǎn)錄本表達(dá)量高于25℃的兩個處理,同一溫度條件下TMV和PBS處理間基因表達(dá)水平差異不大。
表3 測序數(shù)據(jù)概覽
A:lncRNA和mRNA序列長度的密度分布density distribution of sequence lengths of lncRNA and mRNA;B:lncRNA和mRNA外顯子個數(shù)的密度分布density distribution of exon number of lncRNA and mRNA;C:lncRNA和mRNA ORF長度的密度分布density distribution of ORF length of lncRNA and mRNA;D:不同類型轉(zhuǎn)錄本表達(dá)水平比較comparison of expression levels of different types of transcripts;E:不同處理轉(zhuǎn)錄本表達(dá)水平比較comparison of expression levels of different treatments of transcripts;F:25℃和31℃比較組中差異表達(dá)lncRNA數(shù)目統(tǒng)計The numbers of differentially expressed lncRNAs in the comparison groups of 25℃ and 31℃
為確定系統(tǒng)獲得性抗性中相關(guān)的lncRNA,以25℃和31℃兩個溫度條件下PBS處理的枯斑三生煙系統(tǒng)葉為對照,篩選TMV處理后差異表達(dá)lncRNA,共測得64個DElncRNA(圖2-F)。25℃下TMV處理后15個lncRNA上調(diào)表達(dá),20個lncRNA下調(diào)表達(dá)(TMV_25_vs_PBS_25);18個lncRNA在31℃及TMV侵染的情況下表達(dá)上調(diào),12個lncRNA下調(diào)(TMV_31_vs_PBS_31)。其中LNC_036321在25℃條件下接種TMV后表達(dá)下調(diào),在31℃表達(dá)上調(diào)。
結(jié)合差異表達(dá)lncRNA整體分布情況(圖3-A、3-B),DElncRNA的表達(dá)在不同處理下存在差異。聚類分析(圖3-C)將表達(dá)模式相同或相近的lncRNA聚成一組,它們可能具有相同功能或參與同一生物學(xué)過程。
為驗證lncRNA-seq結(jié)果的可靠性,利用qRT-PCR對不同溫度(25℃和31℃)TMV接種后三生煙的DElncRNA進行相對表達(dá)量測定。如圖4-A所示,25℃的15個uDElncRNA(up-regulated DElncRNA)中有11個上調(diào)表達(dá),其中LNC_000799、XR_001643621.1顯著高表達(dá)(<0.05)。對25℃的20個dDElncRNA(down-regulated DElncRNA)定量發(fā)現(xiàn)(圖4-B)LNC_004594、LNC_038081、XR_001651797.1、XR_001657217.1表達(dá)顯著下調(diào),共17個與測序結(jié)果一致。18個31℃的uDElncRNA中14個表達(dá)上調(diào)(圖5-A),LNC_016042、LNC_024626、LNC_033085、XR_001648128.1顯著上調(diào)。定量驗證的31℃ 12個dDElncRNA中10個lncRNA與lncRNA-seq結(jié)果一致(圖5-B),XR_001647999.1、XR_001656939.1、XR_001658441.1表達(dá)顯著降低。80%的DElncRNA的定量結(jié)果與lncRNA-seq結(jié)果一致,對于不一致的定量結(jié)果,除了表達(dá)量過低lncRNA(FPKM<1)的測序錯誤率較高外,與引物設(shè)置不合理或者相反鏈上的基因轉(zhuǎn)錄干擾結(jié)果也有一定關(guān)系[31-32]。
A:25℃差異表達(dá)lncRNA火山圖,橫坐標(biāo)代表轉(zhuǎn)錄本在不同樣本中表達(dá)倍數(shù)變化,縱坐標(biāo)代表轉(zhuǎn)錄本表達(dá)量變化差異的統(tǒng)計學(xué)顯著性,q-value即p-adjust;圖中紅色點表示有顯著性差異表達(dá)的上調(diào)轉(zhuǎn)錄本,藍(lán)色點表示有顯著性差異表達(dá)的下調(diào)轉(zhuǎn)錄本volcano plot of differentially expressed lncRNAs at 25℃. The abscissa represents expression fold change in different samples, the ordinate represents the statistical significance of difference in transcript expression, and the q-value is p-adjust. The red dot in the figure indicates the up-regulated transcript with significant differential expression, and the blue dot indicates the down-regulated transcript with significant differential expression;B:31℃差異表達(dá)lncRNA火山圖volcano plot of differentially expressed lncRNAs at 31℃。C:差異表達(dá)lncRNA表達(dá)量層次聚類,以 lg(FPKM+1) 值進行聚類,紅色代表基因高表達(dá),藍(lán)色表示低表達(dá)基因,顏色從紅到藍(lán)表示lg(FPKM+1)從大到小DElncRNA expression level hierarchical clustering, clustering was performed with lg(FPKM+1) values, with red representing high expression of genes and blue indicating low expressed genes, colors from red to blue indicate lg(FPKM+1) from large to small
通過共定位和共表達(dá)分析預(yù)測DElncRNA靶基因,lncRNA可能有多個靶基因,同一基因也可能被不同lncRNA靶向。預(yù)測得到的DElncRNA靶基因注釋功能豐富,除了與光合作用、植物抗性相關(guān)外,還與多種植物激素通路密切聯(lián)系,也作用于TMV侵染、寄主代謝過程等。例如LNC_037710的靶基因LOC107811086,預(yù)測編碼抗病性蛋白RPP13(resistance pathogen protein 13);XR_001658459.1靶向的LOC107761822,預(yù)測編碼絲裂原活化蛋白激酶2(mitogen-activated protein kinase 2)[33];XR_001648910.1的靶基因LOC107789767預(yù)測編碼過氧化物酶9(peroxidase 9)。LNC_006130靶向的LOC107793779預(yù)測編碼TMV抗性蛋白N(TMV resistance protein N),另一個靶基因LOC107821288預(yù)測編碼煙草花葉病毒增殖蛋白3(tobamovirus multiplication protein 3)。
值得關(guān)注的是,部分可能與激素通路相關(guān)的lncRNA在25℃和TMV侵染條件下呈現(xiàn)下調(diào)趨勢,而在31℃和TMV侵染條件下呈現(xiàn)上調(diào)趨勢。例如XR_001648910.1(TMV_25_vs_PBS_25)和LNC_008815(TMV_31_vs_PBS_31)同時靶向的LOC107800521,預(yù)測編碼乙烯響應(yīng)轉(zhuǎn)錄因子ERF003(ethylene-responsive transcription factor ERF003)。兩個溫度lncRNA的差異表達(dá)可能引起靶蛋白相反的積累,進而在25℃的植物抗性建立中發(fā)揮作用,而在31℃喪失對TMV的抗性,后續(xù)研究中需進一步驗證靶基因在不同處理中的表達(dá)變化。
A:25℃和TMV處理下uDElncRNA的相對表達(dá)量relative expression of up-regulated DElncRNAs after TMV treatment at 25℃;B:25℃和TMV處理下dDElncRNA的相對表達(dá)量relative expression of down-regulated DElncRNAs after TMV treatment at 25℃
誤差線表示3組生物學(xué)重復(fù)的正負(fù)標(biāo)準(zhǔn)差,采用檢驗分析差異顯著性Error bars indicate the ±SD of three biological replicates. Student’s-test.
*:<0.1; **:<0.01; ***:<0.001。圖5同 The same as Fig. 5
圖4 25℃條件下差異表達(dá)lncRNA 的qRT-PCR驗證
Fig. 4 Validation of differentially expressed lncRNAs at 25℃by qRT-PCR
A:31℃和TMV處理下uDElncRNA的相對表達(dá)量relative expression of up-regulated DElncRNAs after TMV treatment at 31℃;B:31℃和TMV處理下dDElncRNA的相對表達(dá)量relative expression of down-regulated DElncRNAs after TMV treatment at 31℃
如表4所示,為進一步研究差異表達(dá)lncRNA的功能,對其靶基因進行了GO富集分析(<0.05)。結(jié)果顯示,膜結(jié)合的細(xì)胞器(GO:0043227)、質(zhì)膜部分(GO:0044459)等細(xì)胞組分被富集,表明膜組織在枯斑三生煙抗病毒應(yīng)激反應(yīng)中具有重要作用。分子功能方面,一些靶基因具備轉(zhuǎn)移酶活性、離子通道抑制劑活性等分子功能,使相應(yīng)物質(zhì)得以轉(zhuǎn)運,參與后續(xù)應(yīng)激過程。靶基因也參與到化合物代謝、抗原加工代謝等過程。
25℃條件下DElncRNA靶基因富集在色素沉積(GO:0043473)、參與凋亡過程的半胱氨酸型內(nèi)肽酶活性激活(GO:0006919)等過程,可能與HR形成有關(guān);同時這些靶基因參與蛋白質(zhì)解聚(GO:0051261)、細(xì)胞骨架組織的負(fù)調(diào)節(jié)(GO:0051494)等過程,使細(xì)胞膜透性增加、信號分子得以釋放。25℃下DElncRNA靶向的基因參與對生長素刺激的反應(yīng)(GO:0009733),而細(xì)胞分裂素代謝過程(GO:00096909)被31℃的靶基因富集。LOC107764060預(yù)測被31℃條件下差異表達(dá)的lncRNA靶向,其富集在肌醇磷酸代謝過程(GO: 0043647)參與信號轉(zhuǎn)導(dǎo)[34]。兩個溫度uDElncRNA靶基因都參與到鐵載體的合成(GO:0019290)、轉(zhuǎn)運(GO:0015343)、代謝(GO:0009237)等過程,表明鐵載體可能在植物應(yīng)激過程中發(fā)揮作用[35]。
表4 GO條目富集的 DElncRNA靶基因數(shù)目
KEGG分析(表5)發(fā)現(xiàn),除22條25℃ dDElncRNA靶基因極顯著富集(-adjust<0.05)到植物激素信號傳導(dǎo)通路(sly04075)外,31℃ uDElncRNA的15條靶基因也富集(<0.05)到該通路;分析發(fā)現(xiàn)除赤霉素外,水楊酸、乙烯、茉莉酸等激素信號通路均得到富集。進一步研究發(fā)現(xiàn)植物病原PAMP(pathogen- associated molecular patterns,病原體相關(guān)分子模式)觸發(fā)免疫通路上的CDPK(sly:101261579)節(jié)點,同時被這兩個分組lncRNA靶向的基因富集,引起HR反應(yīng)和細(xì)胞壁加固?;?5℃ dDElncRNA和31℃ uDElncRNA存在較多相同靶基因,對比分析發(fā)現(xiàn)它們共同富集在ABC運輸?shù)鞍?,纈氨酸、亮氨酸和異亮氨酸降解,苯丙烷類生物合成,以及mRNA監(jiān)測途徑、嘧啶代謝通路。此外,DElncRNA靶基因也參與到二萜生物合成(sly00904)、磷脂酰肌醇信號系統(tǒng)(sly04070)、水泡運輸中的SNARE相互作用(sly04130)、酮體的合成和降解(sly00072)等過程。
表5 KEGG 通路富集的DElncRNA靶基因數(shù)目比較
LncRNA已被證明參與植物對病毒、細(xì)菌、真菌、根結(jié)線蟲[36-39]等多種病原物的抗性反應(yīng),作用于植物激素信號轉(zhuǎn)導(dǎo)、系統(tǒng)抗性誘導(dǎo)、過敏反應(yīng)等多個過程。系統(tǒng)獲得性抗性使植物對多種病原物的入侵具備廣譜抗性,是系統(tǒng)獲得性抗性的標(biāo)志基因[11],一定程度上的表達(dá)變化揭示系統(tǒng)獲得性抗性的建立過程[40]。珊西煙(cv. Xanthi NN)為枯斑三生煙的近緣品種,接種TMV后,珊西煙系統(tǒng)葉SA含量在48 hpi(hours post infection)開始增加、PR1a蛋白在72 hpi開始積累[41]?;贜基因的溫度敏感性選定25℃和31℃兩個溫度條件,在TMV侵染枯斑三生煙48 h后,對其系統(tǒng)葉進行長鏈非編碼RNA測序。
LncRNA-seq發(fā)現(xiàn)4 737條已知lncRNA、40 169條新lncRNA表達(dá),其中l(wèi)incRNA和antisense lncRNA占多數(shù)。64個lncRNA在不同溫度(25℃和31℃)TMV處理后差異表達(dá),qRT-PCR顯示這些DElncRNA上調(diào)/下調(diào)情況與高通量測序結(jié)果基本一致。本研究發(fā)現(xiàn)的DElncRNA數(shù)目相對于測得的新lncRNA總量而言較少,可能與此時抗性反應(yīng)較弱有關(guān)。DElncRNA在4種處理下的表達(dá)模式不同,25℃ TMV處理后15個lncRNA上調(diào)表達(dá),20個lncRNA下調(diào)表達(dá);18個lncRNA在31℃ TMV處理后高表達(dá),同時12個lncRNA表達(dá)降低。對比較得到的DElncRNA順式作用和反式作用的靶基因展開研究,預(yù)測它們編碼抗性蛋白、激素信號通路相關(guān)蛋白等。部分基因被25℃差異下調(diào)lncRNA和31℃差異上調(diào)lncRNA同時靶向??紤]到兩個溫度下枯斑三生煙抗性的差異,認(rèn)為這些靶基因通過相應(yīng)lncRNA的調(diào)控在煙草抗性反應(yīng)中發(fā)揮作用。靶基因富集的GO條目符合植物感知到病原入侵而啟動的一系列應(yīng)激過程,包括啟動離子轉(zhuǎn)運、細(xì)胞膜透性改變、激素合成轉(zhuǎn)運等[42]。KEGG途徑分析顯示兩組靶基因都富集到植物激素信號傳導(dǎo),ABC運輸?shù)鞍?,纈氨酸、亮氨酸和異亮氨酸降解,苯丙烷類生物合成等通路。
DElncRNA富集到水楊酸、茉莉酸、乙烯等多個激素信號通路,水楊酸與HR的形成密切相關(guān)[6-7],是重要的內(nèi)源信號分子,茉莉酸、乙烯也作用于SAR的建立[43-44]。DElncRNA參與調(diào)控多種激素通路,使煙草得以建立多重抗性機制,抵御多種病原物的再次入侵[11]。ABC運輸?shù)鞍着c分子運輸過膜有關(guān)[45],亮氨酸、異亮氨酸、纈氨酸響應(yīng)脫落酸介導(dǎo)的滲透脅迫[46],苯丙烷類化合物也被證明與煙草抗病性相關(guān)[47],這些通路在兩個溫度條件下同時富集表明它們可能在枯斑三生煙的抗性反應(yīng)中發(fā)揮作用。
LNC036321在25℃及31℃條件下同時差異表達(dá),它共定位的靶基因LOC107805368預(yù)測編碼溫度誘導(dǎo)的載脂蛋白(temperature-induced lipocalin-1,TIL1),同樣富集在激素信號傳導(dǎo)通路。進一步的研究發(fā)現(xiàn)接種TMV 6 d內(nèi)LNC_036321與TIL1 mRNA的相對含量呈現(xiàn)此消彼長的趨勢,表明二者可能存在負(fù)調(diào)控關(guān)系。LncRNA調(diào)控方式多樣,依照功能可將其分為4種:吸附RNA或蛋白與之結(jié)合的誘餌分子(decoys)、通過改變自身轉(zhuǎn)錄調(diào)節(jié)相關(guān)基因表達(dá)的信號分子(signals)、結(jié)合蛋白形成復(fù)合物指導(dǎo)其移動到特定位置的導(dǎo)向分子(guides)以及作為RNA及蛋白等分子結(jié)合平臺的骨架分子(scaffolds)[27]。LncRNA16397在致病疫霉抗/感番茄品種間差異表達(dá),是它的共定位靶基因,lncRNA16397作為反義轉(zhuǎn)錄物調(diào)節(jié)其表達(dá),使活性氧積累減少、細(xì)胞膜損傷減輕,增強番茄對致病疫霉的抗性[38]。正義轉(zhuǎn)錄本(sense transcript)的表達(dá)水平隨正義和反義對之間重疊的增加而顯著降低[31]。lncRNA16397作為“信號分子”,對表達(dá)進行順勢調(diào)控。而LNC_036321與LOC107805368序列相似性不高,考慮到LNC_036321為lincRNA,其更有可能以“誘餌分子”或“導(dǎo)向分子”的方式對LOC107805368進行調(diào)控[48]。
載脂蛋白一般在植物對溫度等非生物脅迫的應(yīng)激中發(fā)揮作用[49],但SADE等研究發(fā)現(xiàn)番茄對病毒抗性/易感載脂蛋白(virus resistant/ susceptible lipocalin,SlVRSLip)與TYLCV抗性相關(guān)[50],需要通過進一步的實驗明確TIL1是否參與枯斑三生煙對TMV的抗性反應(yīng)。
本研究僅對接種TMV 48 h的枯斑三生煙系統(tǒng)葉進行了lncRNA測序和分析,此時DElncRNA數(shù)目較少,這些lncRNA通過調(diào)控植物激素信號傳導(dǎo)等過程參與枯斑三生煙抗性反應(yīng)。為找到更多與系統(tǒng)獲得性抗性相關(guān)的lncRNA,需要對TMV侵染更長時間的系統(tǒng)葉進行l(wèi)ncRNA測序分析,配合接種葉的lncRNA表達(dá)情況,對枯斑三生煙抗性反應(yīng)中的lncRNA進行更全面深入的分析。
不同溫度(25℃和31℃)條件下對枯斑三生煙接種TMV后,4 737條已知lncRNA、40 169條新lncRNA在系統(tǒng)葉表達(dá),其中64個lncRNA在不同處理間差異表達(dá)。利用qRT-PCR技術(shù)驗證了DElncRNA的特異性與可靠性,并通過靶基因預(yù)測和功能分析,發(fā)現(xiàn)這些DElncRNA廣泛參與到激素信號傳導(dǎo)、物質(zhì)轉(zhuǎn)運等過程,在枯斑三生煙的抗性反應(yīng)中發(fā)揮作用。研究結(jié)果可為-TMV互作過程中關(guān)鍵 lncRNA的篩選和功能研究提供理論支持。
[1] WHITHAM S, DINESH-KUMAR S P, CHOI D, HEHL R, CORR C, BAKER B. The product of theresistance gene: similarity to toll and the interleukin-1 receptor., 1994, 78(6): 1101-1115.
[2] WANG H V, CHEKANOVA J A. Long noncoding RNAs in plants//RAO M R S.. Singapore: Springer, 2017: 133-154.
[3] QUAN M, CHEN J, ZHANG D. Exploring the secrets of long noncoding RNAs., 2015, 16(3): 5467-5496.
[4] RYALS J A, NEUENSCHWANDER U H, WILLITS M G, MOLINA A, STEINER H Y, HUNT M D. Systemic acquired resistance., 1996, 8(10): 1809-1819.
[5] ERICKSON F L, HOLZBERG S, CALDERON‐URREA A, HANDLEY V, AXTELL M, CORR C, BAKER B. The helicase domain of the TMV replicase proteins induces the‐mediated defence response in tobacco., 1999, 18(1): 67-75.
[6] GAFFNEY T, FRIEDRICH L, VERNOOIJ B, NEGROTTO D, NYE G, UKNES S, WARD E, KESSMANN H, RYALS J. Requirement of salicylic acid for the induction of systemic acquired resistance., 1993, 261(5122): 754-756.
[7] MUR L A, KENTON P, LLOYD A J, OUGHAM H, PRATS E. The hypersensitive response; the centenary is upon us but how much do we know?, 2008, 59(3): 501-520.
[8] YANG Y X, AHAMMED G J, WU C, FAN S Y, ZHOU Y H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses., 2015, 16(5): 450-461.
[9] BAKER B, ZAMBRYSKI P, STASKAWICZ B, DINESH-KUMAR S P. Signaling in plant-microbe interactions., 1997, 276(5313): 726-733.
[10] SMITH H B. Signal transduction in systemic acquired resistance., 2000, 12(2): 179-181.
[11] CUTT J R, KLESSIG D F.:. Vienna: Springer, 1992: 209-243.
[12] 肖萬福. 煙草感染花葉病過程中差異表達(dá)基因與蛋白質(zhì)的篩選及應(yīng)用[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2017.
XIAO W F. Screening and application of differential expressed genes and proteins in tobacco mosaic disease[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[13] WANG J, YANG Y, JIN L, LING X, LIU T, CHEN T, JI Y, YU W, ZHANG B. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection., 2018, 18: 104.
[14] YANG Y, LIU T, SHEN D, WANG J, LING X, HU Z, CHEN T, HU J, HUANG J, YU W, DOU D, WANG M B, ZHANG B. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms., 2019, 15(1): e1007534.
[15] SEO J S, SUN H X, PARK B S, HUANG C H, YEH S D, JUNG C, CHUA N H. ELF18-induced long-noncoding RNA associates with mediator to enhance expression of innate immune response genes in., 2017, 29(5): 1024-1038.
[16] SEO J S, DILOKNAWARIT P, PARK B S, CHUA N H. ELF18- induced long noncoding RNA 1 evicts fibrillarin from mediator subunit to enhance() expression., 2019, 221(4): 2067-2079.
[17] ANDERS S. HTSeq: Analysing high-throughput sequencing data with Python[EB/OL]. https://htseq.readthedocs.io/en/release_0.11.1/.
[18] PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads., 2015, 33(3): 290-295.
[19] TRAPNELL C, WILLIAMS B A, PERTEA G, MORTAZAVI A, KWAN G, VAN BAREN M J, SALZBERG S L, WOLD B J, PACHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., 2010, 28(5): 511-515.
[20] SUN L, LUO H, BU D, ZHAO G, YU K, ZHANG C, LIU Y, CHEN R, ZHAO Y. Utilizing sequence intrinsic composition to classify protein- coding and long non-coding transcripts., 2013, 41(17): e166.
[21] KANG Y J, YANG D C, KONG L, HOU M, MENG Y Q, WEI L, GAO G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features., 2017, 45(Web Server issue): W12-W16.
[22] MISTRY J, BATEMAN A, FINN R D. Predicting active site residue annotations in the Pfam database., 2007, 8: 298.
[23] CABILI M N, TRAPNELL C, GOFF L, KOZIOL M, TAZON-VEGA B, REGEV A, RINN J L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses., 2011, 25(18): 1915-1927.
[24] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data., 2010, 26(1): 139-140.
[25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod., 2001, 25(4): 402-408.
[26] LI T, ZHANG G, WU P, DUAN L, LI G, LIU Q, WANG J. Dissection of myogenic differentiation signatures in chickens by RNA-Seq analysis., 2018, 9(1): 34.
[27] WANG K C, CHANG H Y. Molecular mechanisms of long noncoding RNAs., 2011, 43(6): 904-914.
[28] YOUNG M D, WAKEFIELD M J, SMYTH G K, OSHLACK A. Gene ontology analysis for RNA-seq: accounting for selection bias., 2010, 11(2): R14.
[29] KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSU T, YAMANISHI Y. KEGG for linking genomes to life and the environment., 2007, 36(Database issue): D480-D484.
[30] MAO X, CAI T, OLYARCHUK J G, WEI L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary., 2005, 21(19): 3787-3793.
[31] OSATO N, SUZUKI Y, IKEO K, GOJOBORI T. Transcriptional interferences innatural antisense transcripts of humans and mice., 2007, 176(2): 1299-1306.
[32] FAGHIHI M A, WAHLESTEDT C. Regulatory roles of natural antisense transcripts., 2009, 10(9): 637-643.
[33] BENJAMINS R, SCHERES B. Auxin: the looping star in plant development., 2008, 59: 443-465.
[34] WILSON M S, LIVERMORE T M, SAIARDI A. Inositol pyrophosphates: between signalling and metabolism., 2013, 452(3): 369-379.
[35] SAHA M, SARKAR S, SARKAR B, SHARMA B K, BHATTACHARJEE S, TRIBEDI P. Microbial siderophores and their potential applications: a review., 2016, 23(5): 3984-3999.
[36] ZHENG Y, DING B, FEI Z, WANG Y. Comprehensive transcriptome analyses reveal tomato plant responses to tobacco rattle virus-based gene silencing vectors., 2017, 7: 9771.
[37] KWENDA S, BIRCH P R, MOLELEKI L N. Genome-wide identification of potato long intergenic noncoding RNAs responsive tosubspeciesinfection., 2016, 17(1): 614.
[38] CUI J, LUAN Y, JIANG N, BAO H, MENG J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance toby co-expressing glutaredoxin., 2017, 89(3): 577-589.
[39] LI X, XING X, XU S, ZHANG M, WANG Y, WU H, SUN Z, HUO Z, CHEN F, YANG T. Genome-wide identification and functional prediction of tobacco lncRNAs responsive to root-knot nematode stress., 2018, 13(11): e0204506.
[40] 趙長江. 紋枯病菌侵染后水稻防御反應(yīng)相關(guān)基因的表達(dá)分析[D]. 福州: 福建農(nóng)林大學(xué), 2005.
ZHAO C J. Expression analysis of rice defence-related genes after infected by[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese)
[41] MALAMY J, CARR J P, KLESSIG D F, RASKIN I. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection., 1990, 250(4983): 1002-1004.
[42] 許志剛. 普通植物病理學(xué). 4版. 北京: 高等教育出版社, 2009: 296-315.
XU Z G.. Beijing: Higher Education Press, 2009: 296-315. (in Chinese)
[43] ZHU F, XI D H, YUAN S, XU F, ZHANG D W, LIN H H. Salicylic acid and jasmonic acid are essential for systemic resistance againstin., 2014, 27(6): 567-577.
[44] VERBERNE M C, HOEKSTRA J, BOL J F, LINTHORST H J. Signaling of systemic acquired resistance in tobacco depends on ethylene perception., 2003, 35(1): 27-32.
[45] BEIS K. Structural basis for the mechanism of ABC transporters., 2015, 43(5): 889-893.
[46] HUANG T, JANDER G. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in., 2017, 246(4): 737-747.
[47] SHADLE G L, WESLEY S V, KORTH K L, CHEN F, LAMB C, DIXON R A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase., 2003, 64(1): 153-161.
[48] MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: insights into functions., 2009, 10(3): 155-159.
[49] BERTERAME N M, BERTAGNOLI S, CODAZZI V, PORRO D, BRANDUARDI P. Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in., 2017, 17(6): fox056.
[50] SADE D, EYBISHTZ A, GOROVITS R, SOBOL I, CZOSNEK H. A developmentally regulated lipocalin-like gene is overexpressed in-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance., 2012, 80(3): 273-287.
Differential expression of lncRNAs invar. Samsun NN infected by TMV at different temperatures
JIA HaiYan1, SONG LiYun1, XU Xiang1, XIE Yi1, ZHANG ChaoQun2, LIU TianBo3, ZHAO CunXiao4, SHEN LiLi1, WANG Jie1, LI Ying1, WANG FengLong1, YANG JinGuang1
(1Tobacco Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tobacco Disease and Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong;2Tobacco Science Institute of Jiangxi Province, Nanchang 330029;3Central South Agricultural Experimental Station of China National Tobacco Corporation, Changsha 410128;4Qingyang Tobacco Company of Gansu Provincial Company, Qingyang 745099, Gansu)
【】The objective of this study is to screen out the differentially expressed lncRNAs invar. Samsun NN after(TMV) infection at different temperatures, and to investigate the role of identified lncRNAs in Samsun NN’s resistance response.【】The temperature sensitivity of N gene makesSamsun NN have the resistance to TMV at 25℃, but lose it at 31℃. TMV and phosphate buffered saline(PBS) were mechanically inoculated into Samsun NN at 25℃ and 31℃. Total RNAs were extracted from systemic leaves at 48 hpi (hours post infection). Deep sequencing was performed after strand-specific database construction, and the sequencing results were filtered to get clean reads. Usingvar. TN90 as a reference, HTseq was employed to compare obtained reads. LncRNAs were screened out, and their expression levels were estimated by FPKM method. Differentially expressed lncRNAs (DElncRNAs) were then identified by edgeR and verified by qRT-PCR. The target genes of DElncRNAs were predicted by co-localization and co-expression analyses. Gene annotations, GO and KEGG pathways were analyzed for functional prediction of target genes. 【】Altogether, 80 million clean reads were detected for each of 12 samples from 4 treatments by lncRNA-seq. A total of 4 737 annotated lncRNAs and 40 169 novel lncRNAs were obtained. Among them, 64 lncRNAs were differentially expressed after TMV infection at different temperatures. qRT-PCR results showed that the sequencing accuracy of these DElncRNAs was about 80%, which indicated the sequencing data obtained in this study had high reliability. Importantly, some target genes were simultaneously targeted by DElncRNAs that were down-regulated at 25℃ and up-regulated at 31℃. Gene annotations showed that DElncRNAs’ target genes involved in many functions, such as plant resistance, hormone and metabolic pathways. Particularly, some lncRNAs that may be associated with hormone pathways showed a down-regulation trend after TMV infection at 25℃, while up-regulated at 31℃. Furthermore, GO enrichment analysis showed that target genes were mainly involved in the composition of membranes, vesicles, and acted as calcium and potassium ion channel inhibitor activity, so that consequently the corresponding ions could be transported to their sites of action to trigger subsequent reactions. Moreover, these genes were also involved in pathogenesis, antigen processing and presentation, cytokinin metabolism and other physiological processes. The plant hormone signaling pathway was significantly enriched by target genes during KEGG pathway analysis. DElncRNAs related genes down-regulated at 25℃ and up-regulated at 31℃ were simultaneously enriched in pathways such as hormone signaling, ABC transporters, and phenylpropanoid biosynthesis.【】LncRNAs were differentially expressed in Samsun NN after TMV infection at different temperatures (25℃ and 31℃). DElncRNAs participated in host plant systemic acquired resistance by acting on hormone signaling transduction, substance transport and other processes. Taken together, this study lays a foundation for further research on lncRNA’s regulatory function in plant systemic acquired resistance and the development of new strategies to overcome virus invasion into host plant.
(TMV); N gene;var. Samsun NN; long non-coding RNA (lncRNA); systemic acquired resistance; deep sequencing; affinity enrichment analysis
10.3864/j.issn.0578-1752.2020.07.008
2019-09-16;
2019-11-06
煙草綠色防控重大專項(110101601024(LS-04))煙草綠色防控重大專項(110101601024(LS-04))、甘肅省煙草公司科技項目(201862100020016,201862100020017)、湖南省煙草公司科技項目(201743010020088)、江西省煙草公司科技項目(201701002)
賈海燕,E-mail:jiahaiyan1025@163.com。宋麗云,E-mail:jiayoulily2009@126.com。賈海燕和宋麗云為同等貢獻作者。通信作者王鳳龍,E-mail:wangfenglong@caas.cn。通信作者楊金廣,E-mail:yangjinguang@caas.cn
(責(zé)任編輯 岳梅)