• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Approaches to Compute Spectra of Non-Self Adjoint Operators and Quadratic Pencils

    2020-04-10 06:27:34FatimaAboudFranoisJauberteauGuyMoebsandDidierRobert
    Journal of Mathematical Study 2020年1期

    Fatima Aboud,Fran?ois Jauberteau,Guy Moebs and Didier Robert

    1 Mathematics Department,College of Science,University of Diyala,Baquba,Iraq

    2 Laboratoire de Mathématiques Jean Leray,CNRS-UMR 6629,Université de Nantes,France.

    Abstract.In this article we are interested in the numerical computation of spectra of non-self adjoint quadratic operators.This leads to solve nonlinear eigenvalue problems.We begin with a review of theoretical results for the spectra of quadratic operators,especially for the Schr?dinger pencils.Then we present the numerical methods developed to compute the spectra:spectral methods and finite difference discretization,in infinite or in bounded domains.The numerical results obtained are analyzed and compared with the theoretical results.The main difficulty here is that we have to compute eigenvalues of strongly non-self-adjoint operators which are very unstable.

    Key words:Nonlinear eigenvalue problems,spectra,pseudospectra,finite difference methods,Galerkin spectral method,Hermite functions.

    1 Introduction

    We are interested here in equations likeL(λ)u=0 whereL(λ)is a linear operator on some linear spaceE,depending on a complex parameterλ.WhenL(λ)=L0?λI,this is the usual eigenvalue problem:findλ ∈C andu ∈E,0 such thatL(λ)u=0. In many applications,in particular for dissipative problems in mechanics,it is necessary to consider more general dependence in the complex parameterλ.A particular interesting case is a quadratic family of operators:L(λ)=λ2L2+λL1+L0,whereL2,L1andL0are linear operators inE.We shall say thatL(λ)is a quadratic pencil.

    Let us consider the second order differential equation:

    Eq. (1.1)is a model in mechanics for small oscillations of a continuum system in the presence of an impedance force[26].Now by looking for stationary solutions of(1.1),u(t)=u0eλt,we have the following equation:

    So Eq.(1.2)is a non-linear eigenvalue problem in the spectral parameterλ ∈C.We say thatλis a non-linear eigenvalue if there existsu00 satisfying(1.2).

    The operatorL1represents a damping term as we see in the following simple example.Let us consider the perturbed wave equation(see[5]):

    wheret∈R andx∈T:=R/2πZ.Here we haveL2=IE(identity operator),L1=?2aandL0=??2/?x2.The damping terma <0 is here constant.So we have to solve(1.3)with periodical boundary conditions.The stationary problem is reduced to the equation:

    Then we have fork2≥a2the damped solutions of(1.3):

    Whenais a function ofxwe have no explicit formula so we need numerical approximations to compute the damping modes.It is the main goal of this work.

    Such generalized eigenvalue problems have appeared in a completely different way.The question was to decide if a class of P.D.E with analytic coefficients preserves or not the analyticity property.To be more explicit,let us consider a P.D.E:Pu=f.Assume thatfis analytic in some open set Ω,is-it true thatuis analytic in Ω?This is true for elliptic operators.For some example,this question can be reduced to the following(see[23]for more details):does there exist(R)such that

    Existence of non null solutions for(1.2)and(1.4)is a non trivial problem.For(1.4)it was solved in[33]where it is proved that the generalized eigenfunctions span the Hilbert spaceL2(R).

    On the other side we can prove that the equation:

    has only the trivial solution0 inL2(R),?λ∈C.

    Our aim in this work is to present several numerical approaches concerning this kind of non-linear eigenvalue problems.For simplicity we only consider quadratic pencil such thatL0=I.We can reduce to this case ifL0orL2are invertible in the linear spaceE.To every quadratic pencilL(λ)we can associate a linear operatorALinE×Esuch thatλis a non-linear eigenvalue forLif and only ifλis a usual eigenvalue forAL.The operatorALis called a linearization ofL(λ).It is easy to see that we can choose:

    So non-linear eigenvalue problems(for polynomial operator pencils)can be reduced to usual eigenvalue problems but it is useful to take care of their particular structure.There exists infinitely many linearizations.

    We are mainly interested here in the case called Schr?dinger pencils:

    whereVandaare real smooth functions from IRminto IR(see Section 2.2 for more details).The main questions we want to discuss is the localization of the eigenvalues ofLV,ain the complex plane C.

    In Section 3 we discuss several numerical approaches for the computation of the spectra of quadratic pencil,in infinite and in bounded domain.Using spectral methods or finite difference discretization to approximate the operatorsL0,L1andL2,we obtain a nonlinear eigenvalue problem.Then,after linearization we obtain an eigenvalue problem to solve.The numerical results obtained are analyzed and comparisons with theoretical results are done.The main difficulty is that we have to compute eigenvalues of strongly non self-adjoint operators,which leads after discretization to strongly unstable nonlinear eigenvalue problems.Finally,in Section 4 we give conclusions and future works.

    2 A review of results obtained by functional analysis methods

    In this paper our main goal is to locate,in the complex plane,the generalized spectrum of pencils of differential operators.These generalized eigenvalues are very unstable and the theorem of existence of eigenvalues may be difficult to prove.Moreover for numerical results it is difficult to make the difference between the eigenvalues and pseudoeigenvalues.

    Of course there exists a huge number of papers concerning computations of eigenvalues.Here we only notice some references directly connected with our paper.

    For estimation of the spectra of linear differential operators we can refer to[3,7,8,11,12,22,28,32].For numerical methods to solve nonlinear eigenvalue problems(finite dimensional case)and for linearization of such nonlinear eigenvalue problems we can refer to[5,6,9,19,21,31,36,39].

    2.1 Quadratic family operators

    For more details on the results presented in this section we refer to the book[30].

    Let us consider the quadratic family of operatorsL(λ)=L0+λL1+λ2whereL0,L1are operators in an Hilbert spaceH.IfHif of dimensionN <+∞the eigenvalues are the solutions of the polynomial equation det(L(λ))=0.WhenNis large this could be a difficult problem at least for numerical computations.In applications involving PDE,His aL2space or a Sobolev space,which is infinite dimensional and there is no explicit equation for the generalized eigenvalues.Moreover,as we shall see later,the non linear eigenvalue problem is equivalent to a linear eigenvalue problem which,in general,is non self-adjoint hence unstable.

    Theorem 2.1.L(λ)is a family of closed operators in is meromorphic in the complex plane.The poles λj of L?1(λ),with multiplicity mj,coincide with the eigenvalues withthe same multiplicities,of the matrix operator AL in the Hilbert space ,with domainwhereLV,a(λ)satisfies the above theorem for

    IfL0is positive and non degenerate we have the symmetric linearization:

    Let us denote Sp[L]the eigenvalues ofAL(which coincide with the poles ofL?1(z)).

    Ifλ0∈Sp[L]we denote byEL(λ0)the linear space of the solutions{u0,u1,···,uk,···}of the equations:

    The dimension ofEL(λ0)is the multiplicity ofλ0(for details see[33]).

    Assume thatL0,L1are self-adjoint,L0is positive non degenerate and that there existκ≥0 andδ≥0 such thatis a bounded operator onHandAssume thatis in the Schatten classCp,p≥1.

    Theorem 2.2.If0<δ≤1/2then the spectra of L is the domain:

    =0dense in H.

    Forδ>0 we get that the eigenvalues are localized in a vertical parabolic domain in the imaginary direction.Forδ=0 endκsmall the eigenvalues are localized in a small sector around the imaginary axis.Notice that forκof order 1 the above theorem does not give any information on the location of Sp[L];we only know that it is a discrete and infinite subset of C.

    Moreover ifL1has a sign we have:

    Proposition 2.1.If L1≥0thenSp[L]?{λ∈C,?λ≤0}.If L1≤0thenSp[L]?{λ∈C,?λ≥0}.

    The above result applies for example to:

    For this example we havehence the spectra is localized inside the parabolic region

    For Schr?dinger pencilsLV,awe can say more.

    2.2 More results for Schr?dinger pencils

    Let us recall our definition of Schr?dinger pencilsLV,a(λ)=?△+V?2aλ+λ2.

    We assume that the pair of functions(V,a)satisfies the following technical conditions that we refer as[cond(V,a)](we do not try here to discuss the optimality of these conditions):

    V,aare smoothC∞functions on Rdand there existsk>0 such that

    Under these conditions we know thatL0=?△+Vis an unbounded self-adjoint operator inL2(Rd)and for everyλ∈CLV,a(λ)is a closed and Fredholm operator with the following weighted Sobolev space domain:

    Moreover the set Sp[LV,a]of eigenvalues ofLV,ais a discrete set(empty or not),each eigenvalue having a finite multiplicity and the only possible accumulation point in the complex plane is ∞.

    Notice that ifλis an eigenvalue then its complex conjugateis also an eigenvalue.We have the following result:

    Proposition 2.2.Assume that(V,a)satisfies[cond(V,a)]and that a ≤0,a(x0)<0for some x0∈Rd.ThenSp[LV,a]is in the open sector

    Proof.Letu ∈L2(Rd),such thatLV,a(λ)u=0.Setλ=r+is.We know thatr ≥0.Assume thatr=0.Reasoning by contradiction we first prove thats=0.Ifwe get thatvanishes in an non empty open set of Rdand applying the uniqueness Calderon theorem for second order elliptic equation we getu=0 on Rdand a contradiction.Ifs=0 we get:

    So again we get thatuvanishes on a non empty open set and a contradiction like above.

    Let us remark that the general results given in Theorem 2.2 apply if there existsδ≥0 such that|a|(x)≤CV(x)1/2?δor|a(x)|≤κV(x)1/2withκsmall enough.

    For 1D Sch?dinger pencils accurate results were obtained by M.Christ[14,15]and by[13].Let us recall here some of their results.They consider the pencils

    withk∈N.Here we shall only considerkeven.The above assumptions are satisfied.We have:

    Theorem 2.3([13],Theorem 1).Sp[Lk]such that|λ1|<···<|λn|<|λn+1|<···.Then we have for n→+∞:

    Theorem 2.4([33],[1]).The linear space spanned by the generalized eigenfunctions associated with the eigenvalues{λn}is dense in L2(R).

    In[33]the proof was given forL2(λ)and forLk(λ),k>2 andkeven in[1],[2].

    In the following result we shall see that the spectral set Sp(Lk)is very unstable under perturbations.M.Christ[15]has considered the following model:

    We also have

    wherePis a polynomial.Assume that the degreekofPis even,+a1x+a0.We have:

    Proposition 2.4.SpIn other words for every λ∈C??it is known that every solution in is in the Schwartz space S(R)(see[33])in the Schwartz space S(R).

    3 Spectra approximation with spectral methods and FDM

    The aim of this section is to present different numerical methods to analyze the localization in the complex plane of generalized spectrum of operator pencils like(2.1).More precisely we compare our numerical results with the theoretical results recalled in Section 2.Proposition 2.6 gives two sectors where one can find eigenvalues;Theorem 2.7 gives more accurate results on the localization for the eigenvalues with large modulus(when the modulus increases the eigenvalues are near the imaginary axis).The theoretical results of Section 2 are given in an infinite domain.But for numerical computations it is often needed to truncate the domain(for example for the finite difference method)for working in a finite domain.Then the question is to optimize the size of the domain to reduce the error term.This may be a delicate problem.Indeed the size of the domain can change dramatically the spectrum of the considered operator.For example takingk=1 in(2.1)we can see that the spectrum is empty in the infinite domain R.But considering any finite interval and homogeneous Dirichlet conditions one can prove that the spectrum of(2.1)is discrete and infinite.

    For the kind of pencils of differential operators considered in this paper the eigenfunctions are fast decreasing at infinity. But an eigenfunctionφλassociated with the complex eigenvalueλis small only if|x|≥f(?λ)for some increasing functionfsuch that limr→∞f(r)=∞.So we have to consider larger and larger domain to capture eigenvalues with large imaginary part.

    In a first step we are staying with an infinite domain and we develop a spectral method using Hermite functions.This method is very accurate for our problem because the eigenfunctions are in the Schwartz spaceS(R).

    In a second step we consider the finite domain approximation(with homogeneous Dirichlet conditions)and apply a finite difference method or a spectral Legendre-Galerkin method.As already said we have to optimize the size of the domain.This is solved by using properties of the zeros of Hermite functions.

    Notice that the spectrum of the considered operator pencils is the spectrum of nonself-adjoint operators which are far from self-adjoint or normal operators.So the spectrum is very instable and it seems useful and important to compare different numerical methods.We also compare for our models the numerical computations of the spectrum with computations of the pseudo-spectrum.

    Hereafter we present numerical methods for the computation of the spectra of linear operators with quadratic dependence of the spectral parameterλ(quadratic pencil),see(1.2):

    whereL0andL1are operators on some Hilbert spaceHand I is the identity operator.

    3.1 A first quadratic pencil

    In this section we consider the following operator:

    whereais a real parameter.We want to solve the following nonlinear eigenvalue problem:

    Fora=1 we recover the problem(1.4).Notice that ifusatisfies(3.2)then we know thatu∈S(R)(see[33]).

    The problem(3.2)can be reformulated as an eigenvalue problem after linearization ofLa(λ)(see Section 1).Indeed,if we setv=λuwe can rewrite(3.2)as:

    where

    3.1.1 Eigenvalue computations with Hermite spectral method(unbounded domain)

    We look for an approximationuNofusuch thatLa(λ)uN=0,with:

    In order to computeuN,we use a method of weighted residuals(MWR,see,e.g.,([10,20]):

    where(.,.)is the scalar product inL2(R). SettingvN=λuN,using the orthogonality properties of the Hermite function inL2(R)and the relations(A.2),we obtain after linearization ofL(λ)the following eigenvalue problem:

    which is an approximation of the eigenvalue problem(3.3).UN(resp.VN)is the vector containing the coefficients(resp.ofu(resp.v),k=0,...,N.The matrixAa,Nis the square matrix of order(2N+2):

    whereand=0,...,N,with

    Note thatL0Nis a pentadiagonal symmetric matrix such that

    forj=0,...,N,where

    Moreover,is a tridiagonal symmetric matrix such that

    For the numerical computation of the spectrum ofAa,Nwe use the function DGEEV of the LAPack library which is based on the Schur factorization.

    Fora=1,in order to analyze the spectrum of the continuous operator(1.4),we consider a simplified operator,deduced from the operator(3.1)fora=1,wherexis replaced with a real constantb.We obtain the following problem:

    We look for a solutionu(x)of the problem(3.6)of the form=0,...,N.Substituting in(3.6)and using the relations(A.2),we obtain:

    Using the scalar product inL2(R)of(3.7)withφkgives

    Figure 1:Spectrum of the matrix Aa,N(3.5)(Hermite spectral method)for N=50 and a=1.

    So the size of the containment area is

    and we can retainb=Las value forbin the estimation(3.9).Here,forN=50 following(3.10)we deduce that the size of the containment domain is 2Lwith.In Figure 1,we can see that effectively we have 0≤λN,r ≤L2.

    3.1.2 Eigenvalue computations with finite difference method(bounded domain)

    The operatorLa(λ)(see(3.1))is defined on the domainD(A)={u∈H2(IR),x4u∈L2(IR)}.Souis decreasing asO(1/x4)when|x|is increasing(see(A.6))and we want to consider the nonlinear eigenvalue problem(3.2)in a bounded domain with homogeneous Dirichlet boundary conditions:fnidsuch that

    As before,the problem(3.11)can be reformulated as an eigenvalue problem

    where

    To obtain an approximation of the continuous problem(3.12)in a finite dimensional space,we consider on the domain Ω a mesh-grid with a mesh Δx=2L/Non Ω and we notexj=?L+jΔx,j=0,...Nthe points of the grid.We have retained homogeneous Dirichlet boundary conditions forx=±L,sou(x0)=u(xN)=0.We look for an approximationuN,vNofuandv=λusuch that:

    withUNandVNtwo vectors containing respectively the approximationsuN(xj),vN(xj)ofu(xj),v(xj)andAa,Nis the square matrix of order 2N?2:

    where

    is the discretization of the operatorL0with a second order centered finite difference scheme and

    L0Nis a tridiagonal symmetric matrix such that

    andis a diagonal matrix such that

    For the numerical computation of the spectrum of the matrixAa,Nwe use the function DGEEV of the LAPack library.

    Now,we are interested to analyze the dependence of the spectrum of the operator(3.1)in function of the real parametera.For this,we consider an approximation of the infinite dimensional domain as a bounded domain with periodic boundary conditions.We look for eigenfunctionuk(x)=?kexp(ik′x),withk′=kπ/L,of the continuous operator(3.1).ComputingLa(λ)uk(x)we obtain the following equation:

    Whenais increased from 0 to 1 the ratio of the imaginary part over the real part ofλ,

    is decreased and it is infinite fora=0.We can observed this on the numerical simulations corresponding toa=0,a=0.5,a=0.9 anda=1.0 obtained with the finite difference scheme forN=50 andL=10(see Figure 2).

    We are now interested with the operatorLa(λ)fora=1.We look for the spectrum of the discretized operator,using finite difference method,wherexis replaced with a real constantbas in(3.6). Indeed,when we discretize with a finite difference scheme,we consider thatxis constant over one spatial step Δx=2L/N.So,in a first approximation,we consider an operator deduced fromLa(λ)in whichxis chosen constant equal tobover all the domain Ω.We have:

    If we consider periodic boundary conditions,we look for a solution of(3.14)of the formwithk′=kπ/L.Substituting in(3.14)and supposing thatwe obtain

    Figure 2:Spectrum obtained with the finite difference scheme for a=0,a=0.5,a=0.9,a=1.0,N=50 and L=10.

    Finally we haveλN=λN,r+iλN,iwithλN,r=b2is wavenumber independent and

    is wavenumber dependent.So the spectrum of the discretized operator is located in the part of the complex plane such that

    Figure 3:Spectrum of the matrix Aa,N(3.13)(finite difference scheme)for N=50,L=10 and a=1.

    in agreement with|λ|≤L2.

    Numerical instability

    In order to study the numerical instability of the finite difference scheme in function of the mesh-gridxj,j=0,...N,we consider a small perturbation on each point of the grid,xj+ε,j=0,...N,whereεis a small parameter.The matrixAa,N(see(3.13))is replaced with the matrix:

    whereENis a perturbation matrix.If we compare the eigenvaluesλNof the matrixAa,Nwith the eigenvaluesλN,εofAa,N,εwe have:

    Figure 4:Condition number of the eigenvalues λN in function of the modulus|λN|for N=50,L=10 and a=1.

    whereUN,εis a right eigenvector ofAa,N,ε.So we deduce(see[35]):

    Forε=0 we obtain:

    If we multiply on the left the previous equality withVNa left eigenvector ofAa,Nwe obtain:

    whereandUNis a right eigenvector ofAa,N.The equality(3.15)measures the sensitivity of the eigenvalueλNof the matrixAa,Nin function of a perturbationεon the mesh-grid(condition number of the eigenvalueλN).

    Here the matrixENis the matrix of order 2N?2:

    whereE0,N(resp.E1,N)is the diagonal matrix with the elements(resp.4axj)on the diagonal,j=1,...,N?1(we have neglected inENthe terms inεn,withn>1).

    Figure 5:Average on the eigenvalues computed with the finite difference scheme using 11 staggered grids for a=1,N=1000 and L=10.

    Figure 4 presents the condition number of the eigenvaluesλNin function of the modulus|λN|forN=50,L=10 anda=1.We can see that eigenvalues are ill conditioned,excepted for the eigenvalues with small modulus.This can explain the convergence problem whenNis increased.If we compare with the rotated harmonic oscillator the condition numbers of the eigenvalues are much greater for the operator(3.1)(around 108)than for the rotated harmonic oscillator(around 10).A small perturbation on the grid points induces large perturbations on the eigenvalue computations.

    For the use of staggered meshes to avoid spectral pollution,we may mentioned the following reference[29].

    Pseudospectra

    Now we consider the pseudospectra since it is known that the numerical computation of the pseudospectra is more stable than for the spectra(see Appendix B).To obtain the pseudospectra,following Defniition B.2 we look forsuch thatis large,i.e.:

    Figure 6:Computation of the pseudospectra(3.16)of the matrix Aa,N(3.13)(finite difference scheme),for N=1000,L=10 and a=1. The different colors correspond to different size of the small parameter ε. The smallest parameter ε corresponds to orange snowflakes.

    When the mesh-grid retained in the complex plane is fine,the pseudospectra computation is expensive since it requires to compute the minimal singular valueat each pointzof the mesh.So we use parallel computation in order to accelerate the computation.The numerical solution is done thanks to the linear algebra library LAPack which contains specialized algorithms for singular values problems,especially the one called ZGESVD for complex matrices in double precision(ZGESVD is based on bidiagonal QR iteration).As the matrix(3.13)is quite huge,and computing time a bit long,a parallelization by MPI(Message Passing Interface)is implemented with the client/server model.One process(the server)distributes values of the complex parameterz(see(3.16))to the other processes(the clients)which sample the domain.The server renews their data as the work progresses. Each client builds the matrix to be study and sends to the server,at the end of the computation,the smallest value.This system has the advantage of being dynamically balanced.As there is no communication(in MPI sense)between the clients,the efficiency of the parallelization is complete. As an example,the simulation corresponding to the parametersN=5000,L=1000,a=1 and to an area of the complex plane[0,150]×[0,150]with a mesh stepdx=1 anddy=1 in the real and imaginary directions has needed 40 cores(Intel Xeon E5-2670 at 2.5GHz)during quite 40 days.

    3.1.3 Eigenvalue computations with Legendre spectral Galerkin method

    In order to obtain a higher accurate numerical scheme in bounded domain,we propose a spectral numerical scheme using Legendre Galerkin basis.

    We consider the problem(3.11).This problem is reformulated as an eigenvalue problem(3.12).But instead of using a finite difference scheme to obtain an approximationuN,vNofuandv=λu,we use a spectral method with Legendre Galerkin basis Φl.Such basis is obtained as a linear combination of Legendre polynomials:

    and

    Moreover,we need the expressions ofx2Φlandx4Φlas linear combination of the Legendre polynomials.We have:

    with

    In order to adapt the previous basis Φlto the Dirichlet boundary conditions Φl(±L)=0,we multiply the previous polynomials by a scale factor. As for the Hermite spectral method(see Section 3.2.1),we use a method of weighted residuals(MWR,see,e.g.,[10,20])and relations(3.17)-(3.20)to obtain the following generalized eigenvalue problem:

    whereUNandVNare the vectors containing respectively the coefficientsandl=0,...,N,ofandis the square matrix of order(2N+2):

    andBNis the square matrix of order(2N+2):

    Hereand=0,...,N,with

    As forB0NuN=(uN,Φl′).Note thatis a symmetric matrix with seven diagonal andis a pentadiagonal symmetric matrix.As forB0N=(Φl,Φl′)forlandl′=0,...N(see(3.17)).

    To obtain the eigenvalues of the generalized eigenvalue problem(3.21)we use the function DGGEV of the LAPack library which is based on the generalized Schur factorization.

    Figure 7: Computation of the eigenvalues for N=50,L=10 and a=1 with the Legendre spectral method.Comparison with the spectral Hermite method and the finite difference method is done.

    In Figure 7 we present the solutionsλNof(3.21),computed withN=50,L=10 anda=1.Comparison with the spectral Hermite method(Figure 1)and the finite difference method(Figure 3)is done.We can see that the numerical results are quite similar.

    3.2 Another quadratic operator

    In this section we consider the following operator:

    Fork=2 we retrieve the operator(1.4)studied in the previous section.

    We discretize the problemLu=0 using some techniques similar to finite difference methods,with a spatial step equal to one.For simplicity reasons we need to add either periodic boundary conditions or homogeneous Dirichlet boundary conditions.Also we replace Δu(n)byδδ?where:

    i.e.

    So we have:

    3.2.1 Finite difference method with periodic boundary conditions

    In this section we are interested to study the problem(3.23)with periodic boundary conditions.So for someN ∈N,we study the following problem:

    This gives the following quadratic eigenvalue problem:

    where I is theN×Nidentity matrix andA1,A0are given as follows:

    with

    We start by computing the eigenvalues for different values ofNand for the operatorL.Then,we compute the eigenvalues for some perturbations of the operatorL,i.e.we study the discrete operator:

    Figure 8:Eigenvalues of the matrix Ac for N=100,c=1 and k=2.This figure represents a zoom for the case c=1.

    for 0≤c≤1 with the same previous periodic boundary conditions.For this we consider the linearization system problem in place of the non-linear problem,so we study the spectrum of the linear systemAcU=λUwith:

    wherewithvi=λui,i=1,···,N.A0andA1are given in(3.25)and(3.24)respectively.For the computation of the eigenvalues,we use Matlab.

    The results obtained forN=100k=2 andc=1 are presented in Figure 8.The associated domain is[0,N].This figure represents a zoom for the casec=1.We note that the imaginary part of the eigenvaluesλilies between 1.38 and 1.42 in the positive part and between?1.42 and?1.38 in the negative part. Starting from a real partλr=576 all the eigenvalues are aligned on a straight parallel to thex?axiswithλi=1.4141 andλi=?1.4141.The results obtained forN=1000k=2 andc=1 are similar.

    In Figure 9 we present the numerical results obtained forN=1000,k=4 and 0≤c ≤1. For the casec=0 we have pure imaginary eigenvalues(since in this case we have just a selfadjoint matrix).The positions of eigenvalues for the casesc=0.2,0.4 confirm the theoretical results.For the casesc=0.6,0.8,1,eigenvalues are localized in a sector delimited by an angle with thex?axissmaller than 2π/6.This is not coherent with the theoretical results.

    Figure 9:Eigenvalues of the matrix Ac for N=1000,k=4 and c=0,0.2,0.4,0.6,0.8,1. In the first three figures we can see the cases c=0,0.2,0.4.In the last three figures we can see the cases c=0.6,0.8,1.

    3.2.2 Finite difference method with homogeneous Dirichlet boundary conditions

    Now we consider the problem(3.23)with homogeneous Dirichlet boundary conditions.So we study the following problem:

    We obtain the following nonlinear eigenvalue problem:

    where I is theN×Nidentity matrix andA1,A0are given as follows:

    Figure 10:Eigenvalues of the matrix Ac for N=2000,k=4,L=10,c=1.

    Figure 11:Eigenvalues of the matrix Ac for N=10000,k=4,L=20,c=1.

    where

    We start by computing the eigenvalues for different values ofNand for the operatorL.Then we compute the eigenvalues for some perturbations of the operatorL,i.e.we consider the discrete operator:

    with 0≤c ≤1 and the same previous homogeneous Dirichlet boundary conditions.We do this considering the linearization system problem in place of the non-linear problem.So we study the spectrum of the linear systemAcU=λUwith:

    wherewithvi=λui,i=1,···,N.A0andA1are given in(3.28)and(3.27)respectively.We compute the eigenvalues using Matlab.

    For the numerical simulations we have considered a domain[?L,+L]and a spatial step Δx=2L/N.For the casek=4,the results obtained forL=10,N=2000(resp.L=20,N=10000)andc=1 are presented in Figures 10 and 11 respectively.For the casek=6,the numerical results obtained for the example(3.26b)withN=10000,c=1 andL=20(resp.L=10)are presented in Figure 12 and 13 respectively.

    Figure 12:Eigenvalues of the matrix Ac for N=10000,k=6,L=20,c=1.The figure on the left corresponds to 0≤?λ≤10000 and ?10000≤?λ≤10000.The two figures on the right correspond,up to 0≤?λ≤10000 and 0≤?λ≤10000,down to 0≤?λ≤10000 and ?10000≤?λ≤0.

    Figure 13:Eigenvalues of the matrix Ac for N=10000,k=6,L=10,c=1.The figure on the left corresponds to 0≤?λ≤1500 and ?1500≤?λ≤1500.The two figures on the right correspond,up to 0≤?λ≤1500 and 0≤?λ≤1500,down to 0≤?λ≤1500 and ?1500≤?λ≤0.

    4 Conclusions and open problems

    In this work we have presented a review of some theoretical results obtained for quadratic family of operators:

    whereL0andL1are operators in an Hilbert space.

    Then we have presented numerical methods to compute the spectrum of such operators.We reduce it to a non self-adjoint linear eigenvalue problem.The numerical methods proposed are based on spectral methods and finite difference methods,in bounded and unbounded domains.For bounded domain we consider homogeneous Dirichlet boundary conditions and periodic boundary conditions.Comparison of the results obtained in unbounded and bounded domains are done.They are based on the size of the containment domain,deduces from the zeros of the Hermite functions.

    The numerical results obtained are presented.In particular the numerical instabilities are highlighted. Comparisons of the numerical results obtained in Section 2,with the theoretical results presented in Section 2,are done.These comparisons show the difficulties for the numerical computation of the spectra of such operators.Elimination of the spectral pollution,using staggered grids,and the computation of pseudospectra allow to obtain numerical results in agreement with theoretical results.

    A future step in this work is the extension to higher dimension(two and three dimensional case).Indeed,in the multidimensional case very few results are known on the location of the eigenvalues.Numerical simulations,using numerical approaches developed and validate in this article,and completed with parallel computing,should allow to locate eigenvalues.This work is in progress and will be presented elsewhere.

    Acknowledgments

    This work was initiated during the visit of Fatima Aboud,at the Laboratoire de Mathématiques Jean Leray,Université de Nantes(France),CNRS UMR 6629.This visit was supported by the research projectDéfiMathsof the Fédération de Mathématiques des Pays de la Loire,CNRS FR 2962.F.A.was also supported by the CIMPA(International Center of Pure ans Applied Mathematics).Computations are done thanks to the computer of the CCIPL(Centre de Calcul Intensif des Pays de la Loire).

    Appendix A Hermite spectral approximation

    The basis{φk}k∈Nof Hermite functions is obtained as an orthonormal basis ofL2(R)of the eigenfunctions of the harmonic oscillator:

    We recall briefly its construction(see the basic books of quantum mechanics).Define the creation operatora?and the annihilation operatora:

    We satisfy:

    Starting by the normalized Gaussian:

    verifiedaφ0=0 and thenone define by induction for integerkthe sequence

    We verify the following relation by using an algebraic calculation:

    where〈,〉denoted the scalar product in the(complex)Hilbert spaceL2(R).We then show thatis a Hilbertian basis ofL2(R).

    We have used the following convention:when any integer becomes negative then we replace it by 0.

    Bmis equal to the domain ofand the scalar product is equivalent to:

    We deduce the following characterization ofBmwith the Hermite coefficient ofu,αk(u):=〈φk,u〉.

    Proposition A.1.u∈Bm if and only if

    In addition,the scalar product is expressed as the following:

    The proposition can be summarized by saying thatBmis identical to the domain of the operatorBy complex interpolation we deduce the intermediate spacesBsfor allspositive reals hence by the duality forsnegative reals.The arguments are identical to the case of usual Sobolev spaces.Fors<0 theBsare the spaces of temperate distribution.

    Hence ifu∈Bmwe have:

    More generally we can estimate the error in the spacesBs:

    It may be useful to have such Sobolev inequalities explaining the regularity and decay at infinity ofu∈Bsas soon assis large enough:

    Proposition A.2.Let m∈N.There exists constants Cm >0,Cs,m(m<2s?2)such that

    In particular if m is known and if s >m+2then all u in Bs are of class Cm onRand verify the inequality(A.6).

    Thus we see that the functionsu ∈Bmare both regular and decreasing to 0 at the infinity more rapidly whenmis big(positive).

    Appendix B Pseudospectra

    The eigenvalues of Schr?dinger pencils are very unstable(see Section 2).As proposed some times ago by Trefethen[37]it is useful to replace the spectra of non-self adjoint operators by something more stable which is called the pseudospectra.

    LetAbe closed operator in the Hilbert spaceHwith domainD(A)dense inH.Recall thatD(A)is an Hilbert space for the graph norm

    Definition B.1.The complex number z is in resolvent set ρ(A)of A if and only if A?zIis invertible from D(A)into H and(A?zI)?1∈L(H)where L(H)is the Banach space of linear and continuous maps in H.The spectrum σ(A)

    Definition B.2.Consider ε >0.The ε-spectrum σε(A)of A is defined as follows.A complex number z∈σε(A)if and only if z∈σ(A)=A?zI.

    Proposition B.1.For any matrix A,z ∈σε(A)if and only if smin(A?z)<ε,where we have denoted smin(A):=min[s(A)].

    成人国产麻豆网| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 欧美日韩综合久久久久久| 国产精品无大码| 亚洲精品国产成人久久av| 日本一二三区视频观看| 久久人妻av系列| 婷婷精品国产亚洲av| 美女免费视频网站| 一区二区三区四区激情视频 | 亚洲天堂国产精品一区在线| 国产黄片美女视频| 国产精品久久久久久精品电影| 一级毛片久久久久久久久女| 国产69精品久久久久777片| 99热精品在线国产| 大型黄色视频在线免费观看| 国产一区二区三区在线臀色熟女| 桃色一区二区三区在线观看| av在线亚洲专区| 亚洲精品日韩在线中文字幕 | 给我免费播放毛片高清在线观看| 久久久精品大字幕| 日本免费一区二区三区高清不卡| 床上黄色一级片| 日本欧美国产在线视频| 日日摸夜夜添夜夜添小说| 身体一侧抽搐| 久久久久久国产a免费观看| 国内精品宾馆在线| 又黄又爽又刺激的免费视频.| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 一夜夜www| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 亚洲精品在线观看二区| 在线观看美女被高潮喷水网站| 久久人人爽人人片av| a级一级毛片免费在线观看| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 性色avwww在线观看| 99久久成人亚洲精品观看| 亚洲经典国产精华液单| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 99热这里只有是精品50| 成人毛片a级毛片在线播放| 国产男人的电影天堂91| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 国产男靠女视频免费网站| 久久久久久大精品| 老司机午夜福利在线观看视频| 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| av卡一久久| 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| 久久人人爽人人爽人人片va| 韩国av在线不卡| 日韩在线高清观看一区二区三区| 村上凉子中文字幕在线| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 国产精品国产高清国产av| 一a级毛片在线观看| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影 | 久久精品91蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 久久久久九九精品影院| 亚洲三级黄色毛片| 亚洲av电影不卡..在线观看| 国产又黄又爽又无遮挡在线| 久久久久久久久中文| 亚洲av二区三区四区| 99久久久亚洲精品蜜臀av| 亚洲成人精品中文字幕电影| 久久久久久久久久黄片| 美女xxoo啪啪120秒动态图| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 身体一侧抽搐| 深爱激情五月婷婷| 欧美丝袜亚洲另类| 久久久久国产网址| 亚洲一级一片aⅴ在线观看| 久久久色成人| 亚洲欧美成人精品一区二区| 午夜a级毛片| 国产探花在线观看一区二区| 高清午夜精品一区二区三区 | 亚洲av熟女| 亚洲人成网站在线播| 波野结衣二区三区在线| 床上黄色一级片| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片| 亚洲美女视频黄频| 在线免费十八禁| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 亚洲av一区综合| 老司机福利观看| h日本视频在线播放| 亚洲av.av天堂| 亚洲av免费高清在线观看| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 免费观看人在逋| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 国产单亲对白刺激| 日本黄色视频三级网站网址| 嫩草影院精品99| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| 舔av片在线| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女| 男女边吃奶边做爰视频| 久久99热6这里只有精品| 国产毛片a区久久久久| 久久久成人免费电影| 毛片女人毛片| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看| 综合色丁香网| 亚洲天堂国产精品一区在线| 亚洲精品在线观看二区| 最后的刺客免费高清国语| 99精品在免费线老司机午夜| 3wmmmm亚洲av在线观看| 老司机影院成人| 少妇的逼水好多| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 久久国内精品自在自线图片| 色5月婷婷丁香| 久久这里只有精品中国| 成人性生交大片免费视频hd| 搡老熟女国产l中国老女人| 精品人妻视频免费看| 午夜福利在线观看吧| 亚洲三级黄色毛片| 午夜a级毛片| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 日韩中字成人| 久99久视频精品免费| 国产精品99久久久久久久久| 亚洲国产欧洲综合997久久,| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看| а√天堂www在线а√下载| 精品久久久久久久久久久久久| 国产高清视频在线播放一区| 国产黄色小视频在线观看| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 丝袜美腿在线中文| 日韩欧美在线乱码| 色吧在线观看| 如何舔出高潮| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| 少妇的逼水好多| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 国产伦一二天堂av在线观看| 免费高清视频大片| 91精品国产九色| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 日本一本二区三区精品| 深夜a级毛片| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 99热这里只有是精品在线观看| 国产伦一二天堂av在线观看| 色在线成人网| 久久国产乱子免费精品| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 国产91av在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 18禁黄网站禁片免费观看直播| 亚洲最大成人手机在线| 亚洲经典国产精华液单| 日本免费a在线| 最近最新中文字幕大全电影3| 日本五十路高清| 六月丁香七月| 欧美激情国产日韩精品一区| 在线免费观看的www视频| 麻豆乱淫一区二区| 免费看美女性在线毛片视频| 国产色爽女视频免费观看| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 我的女老师完整版在线观看| 中出人妻视频一区二区| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 国产激情偷乱视频一区二区| 国产精品av视频在线免费观看| 乱系列少妇在线播放| 亚洲av五月六月丁香网| 国产精品爽爽va在线观看网站| 亚洲图色成人| 精品久久久久久久久亚洲| 日韩亚洲欧美综合| 国产高清不卡午夜福利| 欧美激情在线99| 十八禁国产超污无遮挡网站| av国产免费在线观看| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 日韩 亚洲 欧美在线| 亚洲专区国产一区二区| 日日摸夜夜添夜夜爱| 精品久久久久久久人妻蜜臀av| 丰满的人妻完整版| 老司机福利观看| 男女啪啪激烈高潮av片| 老司机影院成人| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 联通29元200g的流量卡| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 成人av一区二区三区在线看| 久久九九热精品免费| 国产精品国产高清国产av| 亚洲精品国产成人久久av| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| a级毛色黄片| 亚洲一区二区三区色噜噜| 少妇猛男粗大的猛烈进出视频 | 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| 国产蜜桃级精品一区二区三区| 99热这里只有是精品在线观看| 日本黄大片高清| 嫩草影院入口| 又黄又爽又免费观看的视频| 亚洲精品国产成人久久av| 99热这里只有是精品50| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 天天躁夜夜躁狠狠久久av| 一本久久中文字幕| 国产精品一区二区三区四区免费观看 | 亚洲精品456在线播放app| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 日韩精品中文字幕看吧| 免费大片18禁| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| 亚洲美女视频黄频| 内地一区二区视频在线| 久久精品国产自在天天线| aaaaa片日本免费| 国产成人精品久久久久久| 一个人观看的视频www高清免费观看| 搡老熟女国产l中国老女人| 国产成人福利小说| 亚洲丝袜综合中文字幕| 亚洲av成人av| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 高清毛片免费看| 国产午夜精品久久久久久一区二区三区 | 精品久久久噜噜| 日韩欧美一区二区三区在线观看| 亚洲人成网站在线播| 国产午夜精品久久久久久一区二区三区 | 99久久精品一区二区三区| 国产精品免费一区二区三区在线| 久久久久精品国产欧美久久久| 黄片wwwwww| 成人鲁丝片一二三区免费| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 精品熟女少妇av免费看| 国内精品宾馆在线| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 寂寞人妻少妇视频99o| 97热精品久久久久久| 伦理电影大哥的女人| 日韩欧美免费精品| 伦精品一区二区三区| or卡值多少钱| 中文字幕av在线有码专区| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 亚洲一级一片aⅴ在线观看| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 五月伊人婷婷丁香| 女人被狂操c到高潮| 欧美又色又爽又黄视频| 国产视频内射| 此物有八面人人有两片| 在线看三级毛片| 22中文网久久字幕| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站 | 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 久久久久国产网址| 夜夜爽天天搞| 黄色日韩在线| 一级毛片我不卡| 亚洲成人av在线免费| 亚洲高清免费不卡视频| 国产精品亚洲一级av第二区| 最近手机中文字幕大全| 身体一侧抽搐| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩高清专用| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 不卡一级毛片| 简卡轻食公司| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 最好的美女福利视频网| 性欧美人与动物交配| 最好的美女福利视频网| 亚洲精品456在线播放app| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 在线播放国产精品三级| 黑人高潮一二区| 精品久久久久久久久久免费视频| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 亚洲无线在线观看| 成人永久免费在线观看视频| 精品免费久久久久久久清纯| 看十八女毛片水多多多| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 成人av在线播放网站| 久久热精品热| 麻豆av噜噜一区二区三区| 国产三级在线视频| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩| 色哟哟·www| 免费一级毛片在线播放高清视频| 亚洲精品国产成人久久av| 日韩在线高清观看一区二区三区| 日本免费a在线| 亚洲最大成人中文| 夜夜爽天天搞| av.在线天堂| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 久久久久久久久久黄片| a级一级毛片免费在线观看| 日韩强制内射视频| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 成年女人看的毛片在线观看| 国产黄色视频一区二区在线观看 | 精品不卡国产一区二区三区| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 神马国产精品三级电影在线观看| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| av在线老鸭窝| 成年女人永久免费观看视频| 久久久欧美国产精品| 免费大片18禁| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 悠悠久久av| 午夜激情欧美在线| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 黑人高潮一二区| 99久久精品一区二区三区| 黄色视频,在线免费观看| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 美女免费视频网站| 蜜桃久久精品国产亚洲av| 一进一出好大好爽视频| 联通29元200g的流量卡| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 男人的好看免费观看在线视频| 国产成人精品久久久久久| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 一个人免费在线观看电影| 亚洲av二区三区四区| 国产亚洲精品久久久com| 国产精品综合久久久久久久免费| 性欧美人与动物交配| 搡女人真爽免费视频火全软件 | 亚洲美女视频黄频| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 国产精品一区二区三区四区免费观看 | 欧美激情国产日韩精品一区| 中国美女看黄片| 亚洲成人久久性| 97超级碰碰碰精品色视频在线观看| av国产免费在线观看| 天堂影院成人在线观看| 欧美一区二区国产精品久久精品| 少妇熟女aⅴ在线视频| 亚洲va在线va天堂va国产| 91久久精品电影网| 成人鲁丝片一二三区免费| 男女做爰动态图高潮gif福利片| 丝袜喷水一区| 我要看日韩黄色一级片| 色综合色国产| 最近在线观看免费完整版| 蜜臀久久99精品久久宅男| 成人亚洲精品av一区二区| 亚洲综合色惰| 看黄色毛片网站| 久久6这里有精品| 免费观看在线日韩| 夜夜夜夜夜久久久久| 草草在线视频免费看| 精品久久久久久久久久免费视频| 成人漫画全彩无遮挡| 三级经典国产精品| 成人av在线播放网站| 深夜a级毛片| 乱码一卡2卡4卡精品| 久久久精品94久久精品| 亚洲色图av天堂| 久久久色成人| 成人三级黄色视频| 亚洲人成网站高清观看| 免费大片18禁| 欧美日韩一区二区视频在线观看视频在线 | 最近手机中文字幕大全| 人人妻,人人澡人人爽秒播| 精品99又大又爽又粗少妇毛片| 国产男人的电影天堂91| 内射极品少妇av片p| 午夜免费激情av| 91午夜精品亚洲一区二区三区| 老司机福利观看| 天堂动漫精品| 特级一级黄色大片| 午夜福利视频1000在线观看| 自拍偷自拍亚洲精品老妇| 久久久久精品国产欧美久久久| 亚洲国产欧美人成| 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看| 国产午夜精品久久久久久一区二区三区 | av天堂中文字幕网| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 啦啦啦观看免费观看视频高清| 一个人免费在线观看电影| 成人特级黄色片久久久久久久| 久久人人爽人人片av| 久久精品国产亚洲av香蕉五月| 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看| 97超级碰碰碰精品色视频在线观看| 色综合亚洲欧美另类图片| 中文字幕av在线有码专区| 嫩草影院入口| 国产三级中文精品| 99久久成人亚洲精品观看| a级毛片a级免费在线| av福利片在线观看| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| av在线观看视频网站免费| 国产亚洲欧美98| 美女黄网站色视频| 国产成人一区二区在线| 久久久久九九精品影院| 无遮挡黄片免费观看| av在线老鸭窝| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 一级av片app| 欧美精品国产亚洲| 大香蕉久久网| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄 | 成人鲁丝片一二三区免费| 亚洲av免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 好男人在线观看高清免费视频| 欧美日韩精品成人综合77777| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 国产乱人视频| 国产在视频线在精品| 噜噜噜噜噜久久久久久91| 九九在线视频观看精品| 久久99热6这里只有精品| 久久久久久久久久黄片| 天天一区二区日本电影三级| 午夜爱爱视频在线播放| 日韩制服骚丝袜av| av在线亚洲专区| 午夜精品在线福利| 少妇丰满av| 久久久久久久久中文| 午夜免费激情av| 搡老岳熟女国产| 美女被艹到高潮喷水动态| 18禁在线无遮挡免费观看视频 | 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 九九在线视频观看精品| 国产精品伦人一区二区| 亚洲精品粉嫩美女一区| 在线a可以看的网站| 欧美丝袜亚洲另类| 亚洲自偷自拍三级| 伦理电影大哥的女人| 韩国av在线不卡| 深夜精品福利| 白带黄色成豆腐渣| 久久人人爽人人片av| 美女黄网站色视频| 国内精品一区二区在线观看| 51国产日韩欧美| 久久中文看片网| 日本熟妇午夜| 一进一出抽搐动态| 丰满人妻一区二区三区视频av| 国产成人freesex在线 | 黄片wwwwww| 国产在线男女| 久久久久九九精品影院| 日韩中字成人| 97超碰精品成人国产| 午夜精品在线福利| 草草在线视频免费看| 欧美日韩国产亚洲二区| av女优亚洲男人天堂| 国产成人91sexporn| 国产探花极品一区二区| 午夜爱爱视频在线播放| 亚洲av.av天堂| 国产精品乱码一区二三区的特点| 国产麻豆成人av免费视频| 最新在线观看一区二区三区| 九色成人免费人妻av| 小说图片视频综合网站| 99热这里只有是精品在线观看| 国产国拍精品亚洲av在线观看| 在线a可以看的网站| 亚洲欧美精品综合久久99| or卡值多少钱|