李小華,程靜峰,岳廣照
柴油機顆粒捕集器不規(guī)則六邊形孔道結(jié)構(gòu)壓降特性研究
李小華1,程靜峰1,岳廣照2
(1. 江蘇大學汽車與交通工程學院,鎮(zhèn)江 212013;2. 北京理工大學機械與車輛學院,北京 100081)
為了提高柴油機顆粒捕集器(diesel particulate filter,DPF)的壓降特性和碳煙承載量,該文提出了一種不規(guī)則六邊形孔道結(jié)構(gòu),并利用AVL-Fire軟件建立其三維模型,針對不同排氣流量,排氣溫度,碳煙負載以及灰分堆積情況對DPF壓降特性進行數(shù)值分析,并與四邊形孔道結(jié)構(gòu)進行對比。結(jié)果表明:在不同排氣流量條件下,建立的數(shù)學模型模擬值與實際試驗值相對誤差處于2.54%~5.69%之間,計算值和試驗值的數(shù)值差異較小,變化趨勢一致;在同等排氣流量和排氣溫度條件下,不規(guī)則六邊形孔道結(jié)構(gòu)DPF的壓降特性優(yōu)于四邊形孔道結(jié)構(gòu);不同碳煙加載方式會影響DPF壓降特性,遞減分布壓降最高,遞增分布壓降最低,且不同分布方式下不規(guī)則六邊形孔道結(jié)構(gòu)具有更低的壓降;灰分在DPF內(nèi)部以層狀方式分布對壓降影響較大,以尾端方式分布對壓降影響較??;不規(guī)則六邊形孔道DPF具有更陡峭的碳煙過濾效率曲線和更低的壓降曲線,表明其能有效地提高碳煙及灰分承載能力,其中碳煙捕集效率上升時間同比降低34%;不同灰分堆積方式下,不規(guī)則六邊形孔道結(jié)構(gòu)有更小的DPF壓降和更高的碳煙承載量,該文可為優(yōu)化DPF結(jié)構(gòu),降低DPF壓降,減小DPF再生頻率提供參考。
數(shù)值分析;顆粒;壓降;柴油機顆粒捕集器;孔道結(jié)構(gòu);灰分堆積方式
柴油機因其高熱效率、良好的燃油經(jīng)濟性而具有吸引力[1]。然而過高的顆粒物(particulate matter,PM)排放已經(jīng)成為制約柴油機發(fā)展的重要因素[2]。柴油機顆粒捕集器(diesel particulate filter,DPF)是最有效的降低柴油機顆粒物排放的后處理裝置[3],捕集效率超過90%[4-5]。DPF通過將排氣中的顆粒物捕集在壁面上來實現(xiàn)清除顆粒的目的[6],但顆粒物累積會引起排氣背壓過高、發(fā)動機燃油經(jīng)濟性變差等問題,因此需要對充滿顆粒物的DPF進行周期性再生。由于排氣中灰分等不可燃成分會隨著周期性再生積累在DPF內(nèi)部,造成排氣背壓上升速率加快、顆粒物承載能力下降[7]。探尋在高碳煙負載、高灰分比例條件下降低DPF壓降和提高顆粒物承載量是目前研究的重點之一。
改變DPF孔道結(jié)構(gòu)是降低DPF壓降和提高顆粒物承載量的有效方式。國內(nèi)外學者針對不同孔道結(jié)構(gòu)DPF的壓降特性進行了廣泛研究,但多集中于非對稱孔道和對稱孔道對DPF壓降的影響規(guī)律,關(guān)于新孔道結(jié)構(gòu)的研究較少。李志軍等[8]探究了孔道結(jié)構(gòu)參數(shù)對非對稱孔道和對稱孔道壓降交點的影響,結(jié)果表明壓降交點隨孔密度、壁厚和長徑比的增加而增加。彭美春等[9]運用建模仿真方法進行DPF孔道流場分析,以壓降優(yōu)化為目標進行DPF孔道結(jié)構(gòu)優(yōu)化。Ogyu等[10-11]研究了不同孔道形狀DPF的壓降特性,發(fā)現(xiàn)提高DPF進口孔道開口率可以降低高負載情況的壓降。本文基于上述研究成果,運用數(shù)值計算方法建立不規(guī)則六邊形孔道DPF模型,結(jié)合排氣流量、排氣溫度、碳煙加載量及分布方式、灰分沉積量及分布方式等參數(shù)探究不規(guī)則六邊形孔道結(jié)構(gòu)DPF的壓降特性,進而為優(yōu)化DPF結(jié)構(gòu)、降低DPF壓降、減小DPF再生頻率提供參考。
基于壁流式DPF的流動特性,建立DPF壓降的數(shù)學模型,在進行數(shù)值分析前需要進行如下條件設(shè)置:1)假設(shè)顆粒物成分中僅包含碳煙;2)將氣體在DPF內(nèi)的流動視作層流;3)假設(shè)DPF內(nèi)部壁面滲透率和傳熱系數(shù)無差異。進行條件限制后,分別從進出口孔道氣相守恒、動量守恒和壓降守恒3個方面對DPF壓降特性進行建模分析。
DPF進出口氣體流動模型基于一維穩(wěn)態(tài)連續(xù)性方程和動量方程建立,其中入口和出口孔道中氣相的穩(wěn)態(tài)連續(xù)性方程為[12]
式中ρ,1為入口孔道氣相密度,kg/m3;ρ,2為出口孔道氣相密度,kg/m3;為軸向坐標,m;v,1為入口孔道氣體速度,m/s;v,2為出口孔道氣體速度,m/s;A,1為入口孔道橫截面積,m2;A,2為出口孔道橫截面積,m2;v,1為入口孔道壁流速度,m/s;v,2為出口孔道壁流速度,m/s;P,1為入口孔道橫截面的濕周周長,m;P,2為出口孔道橫截面的濕周周長,m。
入口和出口孔道中氣相的穩(wěn)態(tài)動量守恒方程為
式中P,1為入口壓力,kPa;P,2為出口壓力,kPa;1為入口孔道摩擦系數(shù);2為出口孔道摩擦系數(shù);為流體動力學黏度,kg/(m·s)。
DPF總壓降由載體壁面壓降、碳煙深度過濾壓降和碳煙濾餅層壓降構(gòu)成。進行再生操作時,灰分等不可燃成分隨周期性再生沉積在DPF孔道,對DPF整體壓降產(chǎn)生較大影響,因此模型需要考慮灰分濾餅層壓降。由達西定律可知,進出口的總壓降守恒方程為[13-14]
式中F,1為載體入口孔道幾何因子;F,2為載體出口孔道幾何因子;1為進口孔道直徑,m;2為出口孔道直徑,m;δ為壁面厚度,m;δ為碳煙深度過濾層厚度,m;δ為灰分濾餅層厚度,m;δ為碳煙濾餅層厚度,m;k、k、k、k為壁面、碳煙深度過濾層、灰分濾餅層和碳煙濾餅層滲透率,m2;?為壓降,下標、、、分別代表壁面、碳煙深度過濾層、灰分濾餅層和碳煙濾餅層,kPa。
DPF為前后交替封堵的孔道結(jié)構(gòu)[15],氣流由入口孔道流入,經(jīng)DPF壁面從出口孔道流出,孔道結(jié)構(gòu)決定DPF的捕集效率。本文建立不規(guī)則六邊形孔道結(jié)構(gòu)DPF,并與四邊形孔道結(jié)構(gòu)DPF進行對比,圖1為四邊形孔道與不規(guī)則六邊形孔道結(jié)構(gòu)對比。表1為DPF的結(jié)構(gòu)參數(shù)。圖2為建立的DPF一維模型,為保證計算精度使用六面體網(wǎng)格,數(shù)量為103 662,使用AVL-Fire軟件對整個模型進行區(qū)域劃分并設(shè)置邊界條件。
圖1 四邊形孔道與不規(guī)則六邊形孔道對比
表1 DPF結(jié)構(gòu)參數(shù)
圖2 DPF網(wǎng)格模型
為保證模型的準確性,需要對DPF數(shù)值計算模型進行驗證。驗證試驗選用的柴油機為6缸,渦輪增壓中冷發(fā)動機,設(shè)定的排氣流量范圍為0.1~0.3 kg/s,排氣溫度為500 K。由于DPF壁面滲透率等部分結(jié)構(gòu)參數(shù)無法直接測量,模擬中根據(jù)相關(guān)文獻選取壁面滲透率5×10-13m2,碳煙堆積密度為100 kg/m3,碳煙滲透率5×10-14m2[16-17],設(shè)定碳煙及灰分沉積量均為0。試驗數(shù)據(jù)通過安裝在DPF出入口位置的壓差傳感器采集。
圖3顯示了驗證試驗期間DPF壓降模擬值與試驗值對比。由圖可知,在0.1和0.3 kg/s工況下模擬值和試驗值數(shù)據(jù)誤差相對較大,分別為5.69%和4.32%;在0.15~0.25 kg/s工況下數(shù)據(jù)誤差較小,處于2.54%~3.64%之間。這是由于在怠速工況和全負荷工況下,發(fā)動機燃燒不充分,顆粒物排放增多,排氣中微粒對壓降影響作用增大,導致數(shù)據(jù)誤差增加。經(jīng)分析對比,模擬值和試驗值的最大誤差為5.69%,考慮到試驗用DPF經(jīng)多次再生后灰分沉積的原因,認為建立的壓降模型準確可靠,可以反映DPF壓降的實際情況。
圖3 驗證試驗下DPF壓降模擬值與試驗值對比
發(fā)動機運行過程中,運行工況復雜多變,需要探究不同工況下DPF的壓降特性,在此以改變排氣流量和排氣溫度表示工況變化。進行試驗時,用A表示四邊形孔道結(jié)構(gòu)DPF,用B表示不規(guī)則六邊形孔道結(jié)構(gòu)DPF。
3.2.1 不同排氣流量下壓降特性對比
研究不同排氣流量下不規(guī)則六邊形孔道結(jié)構(gòu)與四邊形孔道結(jié)構(gòu)的壓降特性,設(shè)定排氣流量分別為0.15、0.2、0.25和0.3 kg/s,排氣溫度為600 K,由于溫度未達到DPF內(nèi)碳煙的起燃溫度[18-20],因此不考慮DPF內(nèi)部碳煙的氧化反應。圖4為碳煙量分別為0、3、6 g/L時,2種孔道結(jié)構(gòu)的壓降隨排氣流量的變化。在碳煙量為0時,隨著排氣流量增加,四邊形孔道DPF由1 860 Pa上升至3 960 Pa,不規(guī)則六邊形孔道DPF由1 230 Pa上升至2 750 Pa,2種孔道結(jié)構(gòu)的DPF壓降均線性增加。原因是隨著排氣流量增加,單位時間內(nèi)進入DPF內(nèi)部的氣體體積增加,流速上升增加了孔道內(nèi)的沿程壓降,導致總體壓降增加。不規(guī)則六邊形孔道結(jié)構(gòu)壓降低于四邊形孔道結(jié)構(gòu),且隨著排氣流量增加,2種孔道結(jié)構(gòu)的壓降差值增大。這是由于排氣流量增加,氣流流速增加,較大的開孔率對流速的減緩效果更加明顯。
當碳煙量為3 g/L時,四邊形孔道DPF由2 673 Pa上升至5 540 Pa,不規(guī)則六邊形孔道DPF由2 040 Pa上升至4 335 Pa,當碳煙量為6 g/L時,四邊形孔道DPF由3 827 Pa上升至7 749 Pa,不規(guī)則六邊形孔道DPF由3 090 Pa上升至6 392 Pa。2種結(jié)構(gòu)DPF的壓降變化趨勢與潔凈狀態(tài)一致,但壓降差值增加。DPF壓降的產(chǎn)生可能歸功于2個因素,分別是氣體軸向流動和達西流動,氣體軸向流動由孔道尺寸和長度決定;達西流動由滲流面積和壁厚決定[21]。當碳煙量小于3 g/L時,由于碳煙加載量小,此時氣體軸向流動產(chǎn)生的壓降起主導作用。不規(guī)則六邊形孔道結(jié)構(gòu)DPF在與四邊形孔道結(jié)構(gòu)總流通面積一致的前提下進口孔道開孔率同比提升33%,更大的開孔率降低了氣體的流速,造成氣體軸向流動的沿程壓降降低,且隨著排氣流量增加,較大開孔率帶來的壓降降低效果更加明顯。當碳煙量為6 g/L時,不規(guī)則六邊形孔道結(jié)構(gòu)具有更大的濕周周長,在相同碳煙捕集量下濾餅層更薄,能夠有效降低達西流動造成的壓降,進一步降低總體壓降,使得與四邊形孔道DPF的壓降差值增加。結(jié)合以上分析,不規(guī)則六邊形孔道結(jié)構(gòu)DPF壓降小于四邊形孔道結(jié)構(gòu)的變化趨勢不受影響,因此,在不同排氣流量下不規(guī)則六邊形孔道結(jié)構(gòu)的壓降性能優(yōu)于四邊形孔道結(jié)構(gòu)。
注:A為四邊形孔道結(jié)構(gòu)DPF;B為不規(guī)則六邊形孔道結(jié)構(gòu)DPF;0、3、6為碳煙量,g·L-1;排氣溫度為600 K,下同。
3.2.2 不同排氣溫度下壓降特性對比
研究不同排氣溫度下不規(guī)則六邊形孔道結(jié)構(gòu)與四邊形孔道結(jié)構(gòu)的壓降特性,設(shè)定入口排氣溫度分別為400、500、600和700 K,排氣流量為0.2 kg/s。圖5為碳煙量分別為0、3、6 g/L時,2種孔道結(jié)構(gòu)的壓降隨排氣溫度的變化。由圖5可知,在碳煙量為0時,隨入口排氣溫度增加,四邊形孔道DPF由1 324 Pa上升至3 239 Pa,不規(guī)則六邊形孔道DPF由906 Pa上升至2 169 Pa,壓降和壓降升高速率均增加。這可能是由于溫度上升,氣體蘊含能量增加,氣體運動加劇增加了氣體的黏度,流動阻力增加;同時,溫度升高使得氣體密度減小,氣體體積流量增加,流速加快導致DPF孔道內(nèi)沿程壓降升高。不規(guī)則六邊形孔道擁有更小壓降,且隨著排氣溫度增加,2種孔道結(jié)構(gòu)的壓降差值增大。
注:排氣流量為0.2 kg·s-1。
當碳煙加載量為3和6 g/L時,壓降隨排氣溫度的升高而增加,且不規(guī)則六邊形孔道結(jié)構(gòu)擁有更小的壓降,說明不規(guī)則六邊形孔道結(jié)構(gòu)具較小壓降的特性不受的影響,進一步證明不規(guī)則六邊形孔道結(jié)構(gòu)比四邊形孔道結(jié)構(gòu)具有更優(yōu)的壓降性能。
通過以上分析,可知排氣流量或排氣溫度增加均會造成氣體流速升高,導致沿程壓降升高。在發(fā)動機實際運行時,發(fā)動機工況變化復雜,排氣流量、排氣溫度頻繁改變,在同等條件下不規(guī)則六邊形孔道結(jié)構(gòu)能夠顯著降低DPF壓降,提升發(fā)動機排氣性能。
3.2.3 不同碳煙加載量下壓降特性對比
DPF的工作原理為碳煙物理沉積,本文探究2種孔道結(jié)構(gòu)的碳煙沉積特性和壓降特性。在模擬時,設(shè)定排氣流量為0.2 kg/s,排氣溫度為600 K,顆粒物濃度為0.000 5 kg/kg廢氣,碳煙過濾效率參照文獻[22-23]所建立的過濾體捕集模型進行計算。
圖6為2種孔道結(jié)構(gòu)的碳煙過濾效率隨時間的變化。由圖6可知,0~200 s范圍內(nèi),不規(guī)則六邊形孔道相比于四邊形孔道具有更大的顆粒捕集效率和曲線斜率;200 s之后,2種孔道結(jié)構(gòu)的碳煙捕集效率均達到100%。為比較2種孔道結(jié)構(gòu)的碳煙捕集能力,本文以碳煙過濾效率達到90%所消耗時間為評價參數(shù)[24]。不規(guī)則六邊形孔道結(jié)構(gòu)碳煙過濾效率達到90%所用的時間為46 s,四邊形孔道結(jié)構(gòu)所用時間為68 s。不規(guī)則六邊形孔道結(jié)構(gòu)的過濾效率曲線斜率更大,同時間內(nèi)可以捕集更多的碳煙。
圖6 2種孔道結(jié)構(gòu)的碳煙過濾效率
圖7為2種孔道結(jié)構(gòu)的壓降隨碳煙加載量的變化,從圖7可知,DPF的壓降上升過程由2部分構(gòu)成[25],臨界值為3 g/L左右。當碳煙加載量小于3 g/L時,碳煙捕集處于深床過濾階段,DPF壓降迅速上升且上升速率放緩。這是因為在深床過濾階段碳煙量增加使得氣體過濾孔徑變小,壁面孔隙率和滲透性下降,流動阻力增大。當深床過濾接近飽和時,碳煙捕集向濾餅過濾過渡,壁面孔隙率和滲透性趨于穩(wěn)定,使得DPF壓降上升速率趨于平穩(wěn)。當碳煙加載量大于3 g/L時,碳煙捕集處于濾餅過濾階段,在此階段內(nèi)濾餅層厚度持續(xù)增加且過濾壓降占主導地位,但壁面滲透率幾乎不變,壓降呈線性增加。對圖7中2種孔道結(jié)構(gòu)的壓降曲線進行對比,發(fā)現(xiàn)不規(guī)則六邊形孔道結(jié)構(gòu)壓降低于四邊形孔道結(jié)構(gòu),且壓降差值隨碳煙加載量增加而增大。
圖7 2種孔道結(jié)構(gòu)的壓降隨碳煙加載量的變化
圖8為2種孔道結(jié)構(gòu)的碳煙厚度隨碳煙加載量的變化。由圖8可知,深床過濾階段2種孔道結(jié)構(gòu)的碳煙厚度幾乎相同,但不規(guī)則六邊形孔道具有較大的入口面積,對排氣速度具有降低作用,使得其壓降較小。隨著碳煙加載量增加,濾餅層開始形成,過濾壓降占據(jù)主要地位,不規(guī)則六邊形孔道結(jié)構(gòu)由于具有更大的承載面積,碳煙濾餅層更薄,濾餅層厚度的增加速率更小,且進一步降低DPF壓降,因此壓降差值增大。結(jié)合以上分析,在不同碳煙加載量下,不規(guī)則六邊形孔道結(jié)構(gòu)保持較小的壓降和壓降上升速率,證明不規(guī)則六邊形孔道結(jié)構(gòu)具有更優(yōu)的碳煙捕集性能和壓降特性,能有效降低再生頻率。
圖8 2種孔道結(jié)構(gòu)的碳煙厚度隨碳煙加載量變化
3.2.4 不同碳煙加載方式下壓降特性對比
國內(nèi)外研究通常假設(shè)碳煙在DPF孔道均勻平鋪[26-27],但實際應用中運行工況和再生不均勻等因素會導致碳煙在孔道中分布不均勻[28]。本文建立3種碳煙加載方式來研究2種孔道結(jié)構(gòu)在不同碳煙負載方式下的壓降性能,圖9為碳煙加載方式的結(jié)構(gòu)圖。
圖10為碳煙量為3 g/L時不同碳煙負載方式下2種孔道結(jié)構(gòu)的壓降隨時間的變化。由圖10可知,0~90 s內(nèi)不同碳煙加載方式下壓降快速增長且增長速率下降,2種孔道結(jié)構(gòu)壓降差值較小;90 s之后壓降呈線性增長,不規(guī)則六邊形孔道結(jié)構(gòu)的壓降和壓降增長速率低于四邊形結(jié)構(gòu),壓降差值逐漸增加。不同碳煙加載方式壓降的大小關(guān)系為:遞減分布>均勻分布>遞增分布。為了探究不同碳煙加載方式影響DPF壓降的原因,本文提取入口孔道速度來分析。
圖9 碳煙加載方式
圖10 不同碳煙加載方式下2種孔道結(jié)構(gòu)壓降隨時間變化
圖11為不同碳煙加載方式下2種孔道結(jié)構(gòu)的入口孔道速度隨時間變化。隨著軸向位置增加,2種孔道結(jié)構(gòu)的入口孔道速度均下降,然而不同的碳煙加載方式導致速度曲線形態(tài)不同。當碳煙以均勻方式加載時,入口孔道橫截面恒定,氣體流動過程中僅受孔道壁面的摩擦力,入口孔道速度均勻減小。當碳煙以遞增分布方式加載時,入口孔道橫截面隨軸向距離減小,氣體流動受到沿程摩擦阻力速度逐漸下降,但橫截面積減小對氣體有加速作用,導致入口孔道速度曲線下降斜率逐漸減小。當碳煙以遞減方式加載時,入口孔道橫截面隨軸向距離增大,氣體速度曲線在沿程阻力和擴口效應影響下下降斜率逐漸增加。DPF的沿程壓降與氣體速度有關(guān),3種分布方式速度下降過程的不同導致同時刻同位置的速度關(guān)系為:遞減分布>均勻分布>遞增分布。由于碳層厚度較薄,對入口孔道速度的影響有限,速度差異較小導致3種分布方式的壓降差值較小。此外,不規(guī)則六邊形孔道結(jié)構(gòu)DPF的入口孔道速度要明顯小于四邊形孔道,原因是其更高的開孔率降低了氣體速度。結(jié)合以上分析,碳煙的不同分布方式對DPF的壓降特性有一定影響,其中遞減分布壓降最高,遞增分布壓降最低,均勻分布居中,且不規(guī)則六邊形孔道結(jié)構(gòu)壓降性能在不同分布方式下均優(yōu)于四邊形孔道結(jié)構(gòu)。
圖11 不同碳煙加載方式下2種孔道結(jié)構(gòu)的入口孔道速度隨軸向位置變化
3.2.5 不同灰分沉積下壓降特性對比
柴油機的排氣中含有灰分,灰分在孔道中沉積會影響DPF的壓降特性。研究顯示當車輛總行駛里程達到50 000 km時,DPF內(nèi)灰分占總顆粒質(zhì)量的50%;當車輛總行駛里程達到240 000 km時,DPF內(nèi)灰分占總顆粒質(zhì)量的80%[29]。探究灰分存在情況下2種孔道結(jié)構(gòu)的壓降特性,有利于準確地調(diào)整DPF再生時刻,降低再生頻率。
不同的發(fā)動機運行狀態(tài)會導致灰分沉積不均勻進而引起DPF壓降和再生溫度的變化。灰分的負載方式有2種:第1種是由入口孔道尾端軸向堆積,多發(fā)生于周期性再生過程;第2種是在入口孔道壁面層狀堆積,多發(fā)生于高負荷連續(xù)再生過程[30]。Sappok等[29]研究了DPF入口孔道灰分分布的形成機制,結(jié)果表明在碳煙沉積初期孔道內(nèi)氣流通暢,灰分更多堆積在壁面;隨著壁面灰分負載量增加孔徑減小,氣流速度增加使得灰分更多堆積在尾端。為探究不同灰分堆積方式下2種孔道結(jié)構(gòu)的壓降特性,本文引用Zhao等[31]建立的灰分分布比例因子來定義灰分堆程方式,比例因子的定義為
式中Ash,layer為壁面層狀堆積灰分量,g/L;Ash,total為DPF內(nèi)部灰分總負載量,g/L。=0表示灰分全部堆積在入口孔道尾端;=1表示灰分全部堆積在孔道壁面;介于0和1之間表示同時包含2種堆積方式。為了降低數(shù)據(jù)點密度,增加圖像可讀性,本文選取=0、0.5、1共3種分布因子。進行模擬時,根據(jù)Sappok等[32]的相關(guān)研究設(shè)定排氣流量為0.2 kg/s,排氣溫度為600 K,灰分堆積密度為500 kg/m3,灰分滲透率為m2。圖12顯示了不同灰分堆積方式下2種孔道結(jié)構(gòu)的壓降隨碳煙加載量變化。由圖12可知當灰分全部以尾端方式堆積時,壓降曲線與無灰分裝填曲線趨勢一致,但是壓降上升斜率較高,原因是灰分在尾端形成堵塞段降低了入口孔道的有效長度,使得碳煙沉積厚度增加。當灰分全部以層狀方式堆積時,由于灰分形成濾餅層阻礙深床過濾進行,碳煙捕集將直接由濾餅過濾開始,導致壓降曲線線性上升。當同時包含2種負載方式時,壓降變化介于二者之間。因此,在相同灰分負載量下,不同分布方式的壓降大小關(guān)系為:層狀分布>層狀+尾端分布>尾端分布。
注:為灰分分布比例因子。
Note:is ash distribution scale factor.
圖12 灰分量為10 g·L-1時,不同灰分堆積方式下2種孔道結(jié)構(gòu)的DPF壓降隨碳煙加載量變化
Fig.12 DPF pressure drop of 2 channel structures variation with soot loading at 10 g·L-1ash deposition
從圖12可知,在同樣灰分堆積方式下,得益于更大的開孔率和更優(yōu)的碳煙承載能力,不規(guī)則六邊形孔道結(jié)構(gòu)壓降明顯小于四邊形孔道結(jié)構(gòu)。為了更加直觀地對比不同孔道結(jié)構(gòu)的碳煙承載量,本文以潔凈DPF再生壓降作為壓降閾值衡量不同灰分堆積方式的碳煙承載量。假設(shè)潔凈DPF在碳煙加載量為6.5 g/L時進行再生,將對應的壓降值5 400 Pa設(shè)為壓降閾值并做水平線,其與各壓降曲線交點對應的橫坐標即為碳煙承載量。當DPF內(nèi)無灰分沉積時,不規(guī)則六邊形孔道結(jié)構(gòu)的碳煙承載量為8.5 g/L,比四邊形孔道結(jié)構(gòu)提高31%。當=0時,四邊形孔道結(jié)構(gòu)的碳煙承載量為5.67 g/L,不規(guī)則六邊形孔道結(jié)構(gòu)的碳煙承載量為7.71 g/L,2種孔道結(jié)構(gòu)的碳煙承載量相較于潔凈狀態(tài)分別降低12.8%和9.2%,且不規(guī)則六邊形孔道碳煙承載量比四邊形孔道結(jié)構(gòu)高36%。當=1時,四邊形孔道結(jié)構(gòu)的碳煙承載量為2.33 g/L,不規(guī)則六邊形孔道結(jié)構(gòu)的碳煙承載量為4.66 g/L,降低幅度分別為64.1%和45.2%,不規(guī)則六邊形孔道碳煙承載量比四邊形孔道結(jié)構(gòu)高100%。當=0.5時,四邊形孔道結(jié)構(gòu)的碳煙承載量為3.86 g/L,不規(guī)則六邊形孔道結(jié)構(gòu)的碳煙承載量為6.14 g/L,降低幅度分別為40.6%和27.8%,不規(guī)則六邊形孔道結(jié)構(gòu)碳煙承載量比四邊形孔道結(jié)構(gòu)高59%。灰分以層狀方式分布對壓降影響最大,導致碳煙承載量大幅降低;以尾端方式分布對DPF壓降影響最小。不規(guī)則六邊形孔道結(jié)構(gòu)在有灰分殘留情況下比四邊形孔道結(jié)構(gòu)擁有更高的碳煙承載量。
圖13表示碳煙量為0,=1時,2種孔道結(jié)構(gòu)的壓降隨灰分量的變化,從上文分析中可知當灰分以層狀方式堆積時對DPF壓降影響最大,因此本文僅考慮=1情況下DPF的壓降變化。由圖13可知,DPF壓降隨著灰分量的增加呈線性增加,原因是當灰分以層狀方式堆積時,負載量增加使得灰分厚度線性增加。在同一灰分負載量下,不規(guī)則六邊形孔道結(jié)構(gòu)的壓降明顯低于四邊形孔道結(jié)構(gòu),且壓降上升更慢。原因是不規(guī)則六邊形孔道結(jié)構(gòu)孔道濕周面積更大,增加同等灰分負載量,灰分層厚度增加較小,壓差增加較慢。通過以上分析,在高灰分堆積的情況下,不規(guī)則六邊形孔道結(jié)構(gòu)能夠降低排氣背壓,提高DPF的碳煙承載量。在實際應用中,應當優(yōu)化再生策略和發(fā)動機工況排放,盡可能減少灰分的排放,對確定再生時刻,延長DPF使用壽命有重要意義。
注:灰分分布比例因子為1;碳煙加載量為0。
1)排氣流量升高會導致柴油機顆粒捕集器(diesel particulate filter,DPF)壓降升高;壓降隨排氣溫度變化具有相似特性,溫度越高,DPF壓降越高。同等排氣流量和排氣溫度條件下,不規(guī)則六邊形孔道結(jié)構(gòu)DPF壓降特性優(yōu)于四邊形孔道結(jié)構(gòu)。
2)不規(guī)則六邊形孔道結(jié)構(gòu)具有更優(yōu)的碳煙捕集性能,主要體現(xiàn)在碳煙過濾效率升高較快,碳煙過濾效率達到90%所用時間低于四邊形孔道結(jié)構(gòu)。在濾餅過濾階段,不規(guī)則六邊形孔道結(jié)構(gòu)的碳煙厚度增長率明顯小于四邊形結(jié)構(gòu),表明不規(guī)則六邊形孔道結(jié)構(gòu)碳煙承載能力較強。
3)不同的碳煙加載方式對DPF入口孔道氣體速度和壓降有一定影響;其中遞減分布方式壓降最高,遞增分布方式壓降最低,均勻分布方式壓降介于二者之間。在不同碳煙加載方式下,不規(guī)則六邊形孔道結(jié)構(gòu)壓降值均小于四邊形結(jié)構(gòu)。
4)不同的灰分堆積方式影響DPF的壓降變化,其中灰分以層狀方式分布時對DPF壓降增長最大;以尾端方式分布時對DPF壓降增長較小。當灰分分布因子為0、0.5、1時,不規(guī)則六邊形孔道壓降性能和碳煙承載性能明顯優(yōu)于四邊形孔道結(jié)構(gòu)。
[1]Fayyazbakhsh A, Pirouzfar V. Investigating the influence of additives-fuel on diesel engine performance and emissions: Analytical modeling and experimental validation[J]. Fuel, 2016, 171: 167-177.
[2]E J Q, Zuo Q S, Liu H L, et al. Endpoint forecasting on composite regeneration by coupling cerium-based additive and microwave for diesel particulate filter[J]. Journal of Central South University, 2016, 23(8): 2118-2128.
[3]Cozzolini A, Mulone V, Abeyratne P, et al. Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop[C]// 10th International Conference on Engines & Vehicles. 2011: 25437-25457.
[4]Gao J B, Ma C C, Xing S K, et al. A review of fundamental factors affecting diesel PM oxidation behaviors[J]. Science China: Technological Sciences, 2018, 61(3): 330-345.
[5]Di Sarli V, Di Benedetto A. Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter[J]. Chemical Engineering Science, 2015, 137: 69-78.
[6]唐蛟,李國祥,郭圣剛,等. 基于怠速提升的DPF再生溫度控制方法研究[J]. 車用發(fā)動機,2015(2):66-69.
Tang Jiao, Li Guoxiang, Guo Shenggang, et al. Temperature control method of DPF regeneration based on idle speed enhancement[J]. Vehicle Engine, 2015(2): 66-69. (in Chinese with English abstract)
[7]龔金科,江俊豪,陳韜,等. 柴油機壁流式過濾體灰燼濾餅沉積流動阻力特性[J]. 內(nèi)燃機學報,2014,32(6):534-540.
Gong Jinke, Jiang Junhao, Chen Tao, et al. Analysis on flow resistance characteristics of diesel wall-flow filter for ash deposition in cake[J]. Transactions of CSICE, 2014, 32(6): 534-540. (in Chinese with English abstract)
[8]李志軍,姜瑞,史春濤,等. 非對稱孔道與對稱孔道的 DPF 載體壓降交點研究[J]. 中南大學學報:自然科學版,2018,49(3):732-740.
Li Zhijun, Jiang Rui, Shi Chuntao, et al. Intersection of pressure drop between asymmetrical and symmetrical channel DPF carrier[J]. Journal of Central South University Science and Technology, 2018, 49(3): 732-740. (in Chinese with English abstract)
[9]彭美春,林俊彥,謝煥寧,等. DPF孔道結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計[J]. 車用發(fā)動機,2019(1):41-46.
Peng Meichun, Lin Junyan, Xie Huanning, et al. Optimal and design of DPF channel structure parameters[J]. Vehicle Engine, 2019(1): 41-46. (in Chinese with English abstract)
[10]Ogyu K, Ohno K, Hong S. Ash storage capacity enhancement of diesel particulate filter[J]. Journal of Fuels and Lubricants, 2004, 113(4): 466-473.
[11]Ogyu K, Oya T, Ohno K, et al. Improving of The Filtration and Regeneration Performance by the Sic-DPF with the Layer Coating of PM Oxidation Catalyst[M]. Michigan, USA: SAE International, 2008.
[12]E J Q, Xie L F, Zuo Q S, et al. Effect analysis on regeneration speed of continuous regeneration-diesel particulate filter based on NO2-assisted regeneration[J]. Atmospheric Pollution Research, 2016, 7(1): 9-17.
[13]Piscaglia F, Ferrari G. A novel 1D approach for the simulation of unsteady reacting flows in diesel exhaust after-treatment systems[J]. Energy, 2009, 34(12): 2051-2062.
[14]Wurzenberger J C, Kutschi S. Advanced Simulation Technologies for Diesel Particulate Filters, A Fundamental Study on Asymmetric Channel Geometrics[M]. Michigan, USA: SAE International, 2007.
[15]Dardiotis C K , Haralampous O A , Koltsakis G C . Catalytic oxidation in wall-flow reactors with zoned coating[J]. Chemical Engineering Science, 2008, 63(4): 1142-1153.
[16]薛惠文. 柴油機顆粒物捕集器設(shè)計與仿真分析[D]. 秦皇島:燕山大學,2016.
Xue Huiwen. Design and Analysis Simulation of Diesel Particulate Filter[D]. Qinhuangdao: Yanshan University, 2016. (in Chinese with English abstract)
[17]Torregrosa A J, Serrano J R, Arnau F J, et al. A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters[J]. Energy, 2011, 36(1): 671-684.
[18]王建,曹政,張多軍,等. 基于DPF主動再生溫度需求的柴油機進氣節(jié)流控制策略[J]. 農(nóng)業(yè)工程學報,2018,34(2):32-39.
Wang Jian, Cao Zheng, Zhang Duojun, et al. Intake throttling control strategy based on DPF active regeneration temperature for diesel[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(2): 32-39. (in Chinese with English abstract)
[19]劉少康,孫平,劉軍恒,等. 鈰基燃油催化劑改善柴油機顆粒物捕集器再生效果[J]. 農(nóng)業(yè)工程學報,2016,32(1):112-117.
Liu Shaokang, Sun Ping, Liu Junheng, et al. Ce-based fuel borne catalyst enhancing regenerative effect of diesel particulate filter[J], Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(1): 112-117. (in Chinese with English abstract)
[20]韋雄,冒曉建,祝軻卿,等. 基于機內(nèi)技術(shù)的DPF再生控制策略研究[J]. 農(nóng)業(yè)機械學報,2013,44(11):1-5.
Wei Xiong, Mao Xiaojian, Zhu Keqing, et al. Control strategy of DPF regeneration based on machine technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 1-5. (in Chinese with English abstract)
[21]Zhang X, Tennison P, Yi J. 3-D Numerical Study of Fluid Flow and Pressure Loss Characteristics Through A DPF with Asymmetrical Channel Size[M]. Michigan, USA: SAE International, 2011.
[22]杜家益,張俊超,張登攀,等. 柴油機微粒捕集器流阻性能優(yōu)化仿真[J]. 重慶理工大學學報:自然科學版,2015,29(6):1-6.
Du Jiayi, Zhang Junchao, Zhang Dengpan, et al. Simulation of flow resistance performance optimization of diesel particulate filter[J]. Journal of Chongqing University of Technology: Natural Science, 2015, 29(6): 1-6. (in Chinese with English abstract)
[23]譚丕強,胡志遠,樓狄明,等. 柴油機捕集器結(jié)構(gòu)參數(shù)對不同粒徑微粒過濾特性的影響[J]. 機械工程學報,2008,44(2):175-181.
Tan Piqiang, Hu Zhiyuan, Lou Diming, et al. Effects of diesel particulate filter structural parameters on filtration performance of different size particles[J]. Chinese Journal of Mechanical Engineering, 2008, 44(2): 175-181. (in Chinese with English abstract)
[24]朱亞永,趙昌普,孫雅坤,等. 孔道結(jié)構(gòu)對柴油機DPF壓降及再生特性的影響[J]. 環(huán)境工程學報,2017,11(10):5471-5482.
Zhu Yayong, Zhao Changpu, Sun Yakun, et al. Pressure drop and soot regeneration characteristics through DPF with different cell structures[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5471-5482. (in Chinese with English abstract)
[25]宗全利,楊洪飛,劉貞姬,等. 網(wǎng)式過濾器濾網(wǎng)堵塞成因分析與壓降計算[J]. 農(nóng)業(yè)機械學報,2017,48(9):220-227.
Zong Quanli, Yang Hongfei, Liu Zhenji, et al. Clogging reason analysis and pressure drop calculation of screen filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 220-227. (in Chinese with English abstract)
[26]E J Q, Zhao X, Xie L F, et al. Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory[J]. Energy, 2019, 169: 719-729.
[27]Depcik C, Assanis D. Simulating area conservation and the gas-wall interface for one-dimensional based diesel particulate filter models[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6): 163-180.
[28]Gaiser G, Mucha P. Prediction of Pressure Drop in Diesel Particulate Filters Considering Ash Deposit and Partial Regenerations[M]. Michigan: SAE International, 2004.
[29]Sappok A, Wong V W. Lubricant-derived ash properties and their effects on diesel particulate filter pressure-drop performance[J]. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2011, 133(3): 145-156.
[30]龔金科,陳韜,鄂加強,等. 基于灰燼沉積的微粒捕集器熱再生特性[J]. 內(nèi)燃機學報,2014,32(3):242-248.
Gong Jinke, Chen Tao, E Jiaqiang, et al. Regeneration characteristics of diesel particulate filter considering ash deposition[J]. Transactions of CSICE, 2014, 32(3): 242-248. (in Chinese with English abstract)
[31]Zhao C P, Bai M, Yang J, et al. Pressure Drop Characteristics Through DPF with Various Inlet to Outlet Channel Width Ratios[M]. Michigan, USA:SAE International, 2015.
[32]Sappok A, Wong V. Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control[J]. SAE International Journal of Fuels and Lubricants, 2010, 3(1): 380-396.
Pressure drop characteristics of irregular hexagonal channel diesel particulate filter
Li Xiaohua1, Cheng Jingfeng1, Yue Guangzhao2
(1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)
Diesel engines are widely used because of their high thermal efficiency and reasonable fuel economy. However, excessive particulate emissions (PM) of diesel engines have caused huge pollution to the environment. The diesel particulate filter (DPF) is the most efficient post-treatment device for reducing PM emissions. However, during the use of DPF, the increased soot loading or increased ash deposition after frequent regeneration might cause problems such as excessive exhaust back pressure. Therefore, reducing the DPF pressure drop and increasing the soot loading capacity under high ash ratio is important. In order to improve the DPF overall pressure drop characteristics and increase the soot loading capacity, this study proposed an irregular hexagonal channel diesel particulate filter (DPF) and established the mathematical model of DPF pressure drop. And the 3D computational models of irregular hexagonal channel DPF and quadrilateral channel DPF were built by AVL-Fire software. First, the DPF pressure-drop characteristic simulation test and bench test were carried out under different working conditions. The accuracy and effectiveness of the model were verified by comparing the experimental data. The diesel engine used in this study was a six-cylinder, turbocharged intercooled diesel engine equipped with a cordierite diesel particulate filter. The DPF used in the test had an outer diameter of 260 mm, a length of 270 mm, cells per single inch of 200, and a volume of 14.3 L. Then, different numerically analyzed tests were carried out to study the influence of exhaust flow rate, exhaust gas temperature, soot loading, and ash deposition on the pressure drop. At the same time, the results of the irregular hexagonal channel DPF were compared to those of quadrilateral channel DPF. The results showed that under different exhaust flow rate, the relative error between the simulated value and the experimental value was between 2.54% and 5.69%. The difference between the simulated value and the experimental value was small, and the change trend was consistent. The pressure drop of both channel structures increased with the increase of exhaust flow rate and exhaust gas temperature. Under the same exhaust flow rate and exhaust gas temperature conditions the irregular hexagonal channel DPF had lower pressure-drop value and smaller pressure drop rise rate, and the overall pressure-drop characteristics were better than the quadrilateral channel DPF. The irregular hexagonal channel structure DPF had a steeper soot filtration efficiency curve than quadrilateral channel during soot loading. The time taken for the soot filtration efficiency to reach 90% was shorter than that of the quadrilateral channel DPF. Different soot loading modes affected the DPF pressure-drop characteristics. The pressure drop of decreasing distribution was the highest, and the pressure drop of the incremental distribution was the lowest, the pressure drop of the uniform distribution was between the above two. Besides the irregular hexagonal channel DPF had a lower pressure drop in different distribution modes, which means it has a better soot loading mode adaptability. The ash deposited on inlet channel walls had a great influence on the pressure drop, and that deposited on the channel ends had less influence on the pressure drop. The irregular hexagonal channel DPF had a lower pressure drop curve under different ash distribution modes, which can effectively improve the soot and ash loading capacity. When the ash deposition was 10 g/L-1and the ash distribution factor was 0, 0.5, 1, the maximum pressure drop of the irregular hexagonal channel structure DPF were all decreased. Under the regeneration pressure threshold the soot loading capacity increased by 36%, 59% and 100%. When the ash deposition gradually increased, the pressure drop of DPF of both structures increased linearly. In a word, the proposed irregular hexagonal channel structure DPF significantly reduced the DPF pressure drop and increased the soot loading capacity, thus improving the DPF working efficiency, reducing the regeneration frequency and prolonging the DPF service life.
numerical analysis; particulates; pressure-drop; channel structure; ash deposition mode
李小華,程靜峰,岳廣照. 柴油機顆粒捕集器不規(guī)則六邊形孔道結(jié)構(gòu)壓降特性研究[J]. 農(nóng)業(yè)工程學報,2020,36(3):63-70.doi:10.11975/j.issn.1002-6819.2020.03.008 http://www.tcsae.org
Li Xiaohua, Cheng Jingfeng, Yue Guangzhao. Pressure drop characteristics of irregular hexagonal channel diesel particulate filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 63-70. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.008 http://www.tcsae.org
2019-08-08
2019-12-10
移動源污染排放控制技術(shù)國家工程實驗室開放基金項目(NELMS2018B04)
李小華,教授,博士,主要從事清潔生物質(zhì)能源以及排氣后處理研究。Email:lixiaohua@ujs.edu.cn.
10.11975/j.issn.1002-6819.2020.03.008
TK42
A
1002-6819(2020)-03-0063-08