• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduction of wave impact on seashore as well as seawall by floating structure and bottom topography *

    2020-04-02 03:46:24AmandeepKaurMartha

    Amandeep Kaur, S. C. Martha

    Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab, India

    Abstract: The three-dimensional problem involving diffraction of water wave by a finite floating rigid dock over an arbitrary bottom is studied for two cases (1) in the absence of wall (2) in the presence of wall. The problem is handled for its solution with the aid of step method. Here both asymmetric and symmetric arbitrary bottom profile is approximated using successive steps. Step approximation helps to apply the matched eigenfunction expansion method, in result, system of algebraic equations are obtained which are solved to determine the hydrodynamic quantities, namely, force experienced by rigid floating dock as well as rigid seawall, free surface elevation,transmission and reflection coefficients associated with transmission and reflected waves respectively. The effects of various structural and system parameters are examined on these hydrodynamics quantities. The appropriate values of length and thickness of dock, water depth and angle of incidence provide the salient information to marine and coastal engineers to design the offshore structures and creation of parabolic trench on the bottom. The present results are compared with known results in special case of bottom topography.The energy balance relation is derived and checked.

    Key words: Arbitrary bottom, step approximation, hydrodynamic quantities

    Introduction

    The floating structures having different geometries have been studied due to their significant applications in the field of coastal and ocean engineering.For instance, floating structures are used to implement various marine and coastal management activities such as wave energy device, breakwater, offshore platforms (for oil recovery), ship navigation and sea shore protection etc.. The problems involving scattering of surface waves by floating rigid dock over finite or infinite depth of water have been studied by many researchers using different solution techniques(see Linton[1], Chakrabarti et al.[2]and the references therein). The interaction of oblique incident waves with a horizontal flexible membrane, in finite depth of water was investigated by Cho and Kim[3]and they found that a properly designed horizontal flexible membrane can be an effective wave barrier. These structures are constructed along the shoreline with the assumption that seabed is of uniform flat type. But it is often difficult to find flat bed around the shoreline,hence sudden change in the bottom topography needs to be considered which plays significant role in designing and construction of coastal structures. In this context, the problems of wave scattering in the presence of a small undulation on seabed have been studied by many researchers: Martha and Bora[4]and many others. They used the perturbation technique due to the smallness of the bottom undulations. When the undulation is not small, such problems can be handled using mild-slope approximation[5]. Further,the problem involving linear long-wave reflection by an obstacle of general trapezoidal shape was explored by Lin and Liu[6]. They found the closed-form expression in terms of first and second kinds of Bessel functions for the wave reflection coefficient. The problem of linear long-wave reflection by a rectangular obstacle with two scour trenches has been explored by Xie et al.[7]. They found that zero reflection exists for a rectangular obstacle as long as the bathymetry is symmetrical. Moreover, Wang and Meylan[8]used boundary element method to study the problem involving scattering phenomenon of water waves by a floating thin elastic plate over variable depth of water. Xu and Lu[9]provided a method involving an optimization of eigenfunction expansion to study the problem of water wave interaction with a semi-infinite elastic plate.

    Further, the problems of wave structure interaction over step type bottom topography have been studied by many researchers. For example, Karmakar and Sahoo[10]studied the problem of water wave scattering for two cases (1) semi-infinite membrane,(2) finite floating membrane in the presence of single step of finite depth. They also considered the case of infinite depth. Dhillon et al.[11]studied the problem of surface water wave interaction with a rigid thin dock in the presence of a single stepped bottom topography using matched eigenfunction expansion method. The problem of wave scattering by a semi elastic plate in the presence of step was studied by Guo et al.[12]. The problem of diffraction of obliquely incident water waves by a vertical porous structure placed over stepped bottom topography was studied by Das and Bora[13]. Meng and Lu[14]investigated the reflection and transmission coefficients for scattering of freesurface gravity wave by a porous rectangular barrier mounted on seabed by using inner product method. In the recent experimental study by Zhao et al.[15], it is found that the surface elevation at the front face of an offshore structure can reach up to four times the incident wave amplitude even in random sea state.Based on the above studies, to protect the seashore, it is important to consider the problem involving diffraction of obliquely incident water waves by thick floating structure over arbitrary bottom, which have been studied in this paper.

    Moreover, it has been seen that the rigid vertical seawall is constructed near the shoreline to protect the back-land. In some locations, potential hazard happens due to shore erosion, for example, the road or buildings near the shoreline are about to fall into water due to shore erosion. Hence, the construction of seawall provides an alternative approach for coastal protection. Further, it may be noted that due to high wave impact, the sea wall may collapse. These high waves will not only affect the seawall but also move the sand away from the base of the seawall. Hence,the structural safety and stability of the seawall should be considered while designing the offshore structures.In this direction, Liu et al.[16]studied the problem of wave interaction with a perforated breakwater for reduction of wave reflection and wave force on seawall. Further, they studied the problem involving interaction between obliquely incident waves and an infinite array of multi-chamber perforated caissons and developed an analytical solution by using matched eigenfunction expansion method[17]. The problem of wave trapping by different structures over flat or step type bottom has been studied by many authors. For example, Bhattacharjee and Soares[18]studied the problem of wave-structure interaction in the presence of wall over a single step bottom topography using matched eigenfunction expansion method. The problem of wave trapping by porous barrier in the presence of step type bottom is examined by Behera et al.[19]by using modified mild-slope equation and eigenfunction expansion method. Further, the problem of wave trapping by permeable membrane located near a wall was studied by Koley et al.[20]. In most of these studies, the seawall is protected by considering thin vertical structure over flat bed or step type bottom.Hence, by placing a floating structure at a finite distance from the seawall and constructing submarine parabolic trench at the bottom bed, will create a calm zone by reducing the transmission of wave energy and this will provide an alternate solution in reduction of high wave impact on seawall as well as on seashore.To the authors’ knowledge, the literature related to thick rigid floating structure over arbitrary bottom is very limited. In the present paper, we have made an effort to study the way to protect sea shore and/or seawall by placing a rigid floating thick structure over an arbitrary bottom. The arbitrary bottom asymmetric or symmetric in nature can be approximated by successive flat shelves by which the method of eigenfunction expansion is well applicable (rather than applying a numerical method). This process yields a system of equations which is solved to determine the numerical values of transmission and reflection coefficients associated with the original boundary value problem for a few arbitrary profiles such as parabolic, triangular, trapezoidal and rectangular bottom. In addition to this, free surface elevation profiles, vertical and horizontal components of the force experienced by the floating rigid dock as well as rigid wall are examined for various values of structural and system parameters in the case of arbitrary bottom, especially for the parabolic profile.Present results are validated by comparing with the known results, which reveals an excellent agreement with the results for particular case of bottom topography. The energy identity is derived and verified.

    1. Mathematical formulation of the problem

    The three-dimensional problem of water wave interaction with a floating rigid dock over arbitrary bottom topography is considered for two cases: (1) in the absence of wall, (2) in the presence of wall. The dock situated at the free surface has finite length and thickness. The arbitrary bottom topography is approximated by a series of steps. Here y-axis is chosen vertically downward and xy-horizontal plane is taken to be an undisturbed free surface of water in the Cartesian coordinate system.

    1.1 In the absence of wall

    It is assumed that the floating rigid dock has length 2l and thickness d and it is situated at the free surface with position y=0, -l≤x≤l It is assumed that the floating structure is infinitely long in the z-direction and hence the characteristic behavior remains the same in the z-direction. Here, an asymmetric arbitrary bottom topography is taken (see Fig. 1) and is described by y=H(x), where H(x)=h(x), -a≤x≤a with a<l and H(x)=h0, x≤-a and H(x)=, x≥a.

    Fig. 1 Schematic of physical problem

    1.2 Method of solution

    1.3 In the presence of wall

    In this section, the problem of wave-structure interaction over arbitrary bottom topography is considered when a vertical rigid wall is situated at x=L as shown in Fig. 2. The regions from R1to R2m+3are same as defined in Section 1.1 “In absence of wall” and the last region R2m+4is l≤x≤L,0≤y≤Here, the associated mixed boundary value problem (BVP) will remain same as discussed in section “In absence of wall”. In addition to this, we will have a condition on the wall. Due to the rigidity of the vertical wall, the boundary condition at x=L will be

    Now, we will follow the eigenfunction expansion procedure as discussed in Section 1.2 to solve the bvp involving Eqs. (1)-(14) and (39). Once φj,j=1,2,…,2m+4 are obtained, the force on the wall in the presence of rigid dock, towards the reduction of high wave load on the wall, can be calculated which is the main concern here. The expressions for velocity potentials φj, j=1,2,…,2m+3 remain the same as defined in Eqs. (15)-(30), but the velocity potential φ2m+4becomes

    1.4 Force exercised by the floating dock and wall

    The force components involving horizontal force Fxand vertical force Fyexercised by the floating dock (with and without wall) for unit amplitude incident wave are of the forms:

    The force namely the horizontal force Fwallexperienced by the wall is derived as

    Fig. 2 Physical problem in the presence of wall

    2. Results and discussion

    2.1 In the absence of wall

    Fig. 3 Finite rigid dock over flat bottom

    Fig. 4 (Color online)R andT versus K1 for fixed Hj =1, j=0,1,…,2m+1

    2.1.2 Convergence study on m and N

    Fig. 5 (Color online)R andT versus K1 for fixed value of m=240 and different values of N

    Fig. 6(a) Finite rigid dock over asymmetric parabolic bottom

    Table 1 Numerical values of Rand T versus K1 for N=10 and different values of m

    2.1.3 Energy conservation principle

    2.1.4 Reflection and transmission by a rigid dock over different bottom

    In this section, we consider four kinds of asymmetric bottom topography namely parabolic type(Fig. 6(a)), trapezoidal trench (Fig. 6(b)), rectangular trench (Fig. 7(a)), triangular trench (Fig. 7(b)). The equations for parabolic trench, trapezoidal trench and triangular trench are given by Eqs. (46)-(48)respectively:

    (1) Effect due to absence and presence of dock over rectangular bottom

    Fig. 6(b) Finite rigid dock over asymmetric trapezoidal bottom

    Fig. 7(a) Finite rigid dock over asymmetric rectangular bottom

    Fig. 7(b) Finite rigid dock over asymmetric triangular bottom

    Fig. 8(a) (Color online)RandTin absence and presence of dock over rectangular bottom

    Fig. 8(b) (Color online)RandT in presence of dock over flat and parabolic bottom

    Fig. 9(a) (Color online) The effect of dock length on Rand T

    Fig. 9(b) (Color online) The effect of angle of incidence on RandT

    Fig. 10(a) (Color online) Effect of dock length on horizontal force () against K1

    Fig. 10(b) (Color online) Effect of dock length on vertical force() against K1

    Fig. 11(a) (Color online) Effect of dock length on horizontal force against θ

    Fig. 11(b) (Color online) Effect of dock length on vertical force against θ

    Fig. 12(a) (Color online) Effect of dock thickness on vertical force

    Fig. 12(b) (Color online) Effect of dock thickness on horizontal force

    Fig. 13(a) (Color online) Effect of angle of incidence on vertical force

    Fig. 13(b) (Color online) Effect of angle of incidence on horizontal force

    (2) Effect of parabolic bottom profile and 60°, 75°, 88° are considered to examine the effect.It is observed that the global maximum of the force component is very small for θ=88° as compared to other angles of incidence. This happens due to the fact that for θ=88° the incident waves are almost perpendicular to the dock.

    (4) Wave elevation profile in last region R2m+4

    Fig. 14(a) (Color online) Effect of dock length on wave elevation Re(η2m+4) in last region for fixed K1=0.5

    Fig. 14(b) (Color online) Effect of angle of incidence θ on wave elevation Re(η2m+4) in last region for fixed K1=0.5

    2.2 In the presence of wall

    fixed throughout this section unless otherwise stated.

    Here our aim is to analysis how much force will be experienced by the seawall for different values of system parameters so that the seawall can be protected.It is natural that there will be full reflection and no transmission due to the presence of seawall.

    (1) Effect of dock and parabolic bottom topography on seawall

    Fig. 15 (Color online) Horizontal force over flat and parabolic bottom in presence of dock

    Fig. 16(a) (Color online) Effect of dock length on

    Fig. 16(b) (Color online) Effect of gap between seawall anddock on

    3. Conclusions

    Fig. 17 (Color online) Wave elevation Re(η1) in presence of wall for fixed K1=1.0

    Fig. 18(a) (Color online) Effect of dock length on wave elevation Re(η2m+4) for fixed K1=1.0

    Fig. 18(b) (Color online) Effect of gap onwave elevation Re(η2m+4) for fixed K1=1.0

    The three-dimensional problem involving diffraction of water waves by a finite floating thick rigid dock over an arbitrary bed is studied for two cases (1)in the absence of wall, (2) in the presence of wall. The uneven shape is approximated by a series of steps for which m number of steps are taken in downward direction and m number of steps is taken in upward direction. The step approximation followed by matched eigenfunction expansion method yields a system of equations, which is solved to determine the numerical values of hydrodynamic quantities. The effect of various structural parameters, such as length,thickness of dock and gap between dock and seawall,water depth and angle of incidence on the reflection,transmission and force is examined through different graphs. In the absence of wall the present results have been validated by the known results[1]. The energy identity is checked which verifies the accuracy of numerical results.

    In the presence of wall: (1) Less horizontal force on seawall is experienced when the dock is situated over the parabolic bottom instead of flat bottom for oblique wave incidence. (2) Since more incidents wave energy is reflected back by longer the length as well as the thickness of the dock, hence, less force is experienced by seawall. (3) By placing a floating structure at a finite distance from the seawall, the high wave load on the seawall can be reduced. (4) If the gap between the seawall and dock is least then more force is experienced by the seawall for smaller values of θ whereas reverse behavior of force is observed for larger value of θ. Hence, the length and thickness of the dock, gap between the dock and seawall, angle of incidence and water depth can be modified to optimize the wave load on the rigid seawall. (5) It is observed that wave amplitude in the last region decreases as the length of the dock, the thickness of the dock, gap between the seawall and dock, water depth increases. Moreover, the wave amplitude in the last region (after the dock) is very small as compared to amplitude in the first region (before the dock). This provides a tranquillity zone between the floating dock and the rigid seawall, which is useful for the harbour areas (for example, the calm zone will provide a safe mooring-loading operations and comfortable handling of cargoes and ships). This study will provide an immense support to coastal engineers for the construction of offshore structures so that seashore as well as seawall can be protected.

    Acknowledgment

    The authors thank the reviewers and associate editor of Journal of Hydrodynamics for their comments and suggestions to improve the article in the present form. A. Kaur thanks DST, India for support through inspire fellowship.

    春色校园在线视频观看| 久久久久久久久中文| 亚洲人成网站高清观看| 三级经典国产精品| 男女边摸边吃奶| 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 久久久久久久午夜电影| 99久久中文字幕三级久久日本| 日本色播在线视频| 又大又黄又爽视频免费| 亚洲美女视频黄频| 亚洲国产最新在线播放| 蜜桃久久精品国产亚洲av| 国产淫语在线视频| 亚洲无线观看免费| 少妇的逼水好多| 午夜视频国产福利| 成人综合一区亚洲| 亚洲av中文字字幕乱码综合| 国产av码专区亚洲av| 久久这里只有精品中国| 91精品伊人久久大香线蕉| 成人二区视频| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 一级av片app| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 人妻系列 视频| 久久久久久久久中文| 久久精品人妻少妇| 成人特级av手机在线观看| 禁无遮挡网站| 成人二区视频| 内地一区二区视频在线| 久久人人爽人人片av| 国产精品伦人一区二区| 精品久久久久久成人av| 丝瓜视频免费看黄片| 少妇的逼水好多| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 如何舔出高潮| 精品不卡国产一区二区三区| 日韩大片免费观看网站| 精品欧美国产一区二区三| 国产成人a区在线观看| 午夜福利在线观看免费完整高清在| 一级毛片 在线播放| 丰满少妇做爰视频| 国产色婷婷99| 三级国产精品欧美在线观看| 亚洲伊人久久精品综合| 久久久久久久午夜电影| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 一夜夜www| 嫩草影院入口| 欧美xxxx性猛交bbbb| 亚洲国产色片| 啦啦啦中文免费视频观看日本| 日日干狠狠操夜夜爽| av专区在线播放| 久久午夜福利片| 亚洲av成人av| 国产精品三级大全| 成人午夜高清在线视频| 天堂av国产一区二区熟女人妻| 亚洲精品成人av观看孕妇| 日韩人妻高清精品专区| 亚洲av国产av综合av卡| 久久久久久久久久人人人人人人| 欧美区成人在线视频| 一个人看视频在线观看www免费| 国产精品99久久久久久久久| 精品不卡国产一区二区三区| 大话2 男鬼变身卡| 亚洲精品,欧美精品| 色吧在线观看| 国产麻豆成人av免费视频| 80岁老熟妇乱子伦牲交| 3wmmmm亚洲av在线观看| 大香蕉97超碰在线| 成人美女网站在线观看视频| 亚洲精品aⅴ在线观看| 国产黄a三级三级三级人| 人妻少妇偷人精品九色| 中文字幕av在线有码专区| 国产精品国产三级专区第一集| 深爱激情五月婷婷| 亚洲av电影不卡..在线观看| 波野结衣二区三区在线| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| 激情五月婷婷亚洲| 欧美极品一区二区三区四区| 老司机影院毛片| 丰满人妻一区二区三区视频av| 午夜福利视频1000在线观看| 亚洲人成网站在线观看播放| 国产不卡一卡二| 嫩草影院入口| 日韩电影二区| 男女啪啪激烈高潮av片| 亚洲av电影在线观看一区二区三区 | 免费看日本二区| 亚洲国产精品国产精品| 国产在视频线在精品| 22中文网久久字幕| 三级国产精品欧美在线观看| 日韩精品青青久久久久久| 成人国产麻豆网| 精品久久国产蜜桃| 能在线免费看毛片的网站| 国产精品蜜桃在线观看| 中文字幕av在线有码专区| 成人亚洲精品一区在线观看 | 久久久久精品久久久久真实原创| 欧美另类一区| 69av精品久久久久久| 亚洲高清免费不卡视频| 久久人人爽人人片av| 午夜久久久久精精品| 成人综合一区亚洲| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 九九在线视频观看精品| 最近的中文字幕免费完整| 婷婷色综合www| 久久精品夜色国产| 韩国av在线不卡| 高清在线视频一区二区三区| 天天一区二区日本电影三级| 在线天堂最新版资源| 人人妻人人澡欧美一区二区| 一级毛片 在线播放| 亚洲国产精品成人综合色| 99久久精品国产国产毛片| 熟妇人妻不卡中文字幕| 午夜久久久久精精品| 精品少妇黑人巨大在线播放| 神马国产精品三级电影在线观看| 国产视频内射| 久久精品国产鲁丝片午夜精品| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 久久99热这里只频精品6学生| 国产久久久一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 久久草成人影院| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 色哟哟·www| 简卡轻食公司| 午夜视频国产福利| 九九在线视频观看精品| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久 | 国产精品人妻久久久影院| 久久人人爽人人片av| 国产精品.久久久| 黑人高潮一二区| 久久99热6这里只有精品| 国产精品.久久久| 久久人人爽人人爽人人片va| 成年av动漫网址| 黄色配什么色好看| 亚洲欧美日韩无卡精品| 久久久精品欧美日韩精品| 在线免费十八禁| 免费黄频网站在线观看国产| 色5月婷婷丁香| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 国产 一区 欧美 日韩| 国内精品美女久久久久久| 亚洲综合色惰| 超碰av人人做人人爽久久| 最近2019中文字幕mv第一页| 久久久久久久大尺度免费视频| 国产高清三级在线| 岛国毛片在线播放| 国产黄a三级三级三级人| 久热久热在线精品观看| 中文字幕av成人在线电影| 乱人视频在线观看| 午夜久久久久精精品| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 日日撸夜夜添| 国产一级毛片在线| 亚洲av日韩在线播放| 舔av片在线| 国产久久久一区二区三区| 亚洲精品aⅴ在线观看| 国产综合精华液| 99热6这里只有精品| 成人欧美大片| 麻豆久久精品国产亚洲av| 久久久久久久久久黄片| 国产成人a∨麻豆精品| 天堂俺去俺来也www色官网 | 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 国产一区二区在线观看日韩| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 久久久久久久久久人人人人人人| 久久99热这里只有精品18| 欧美zozozo另类| 成人亚洲精品av一区二区| av天堂中文字幕网| 亚洲真实伦在线观看| 97在线视频观看| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 国产三级在线视频| 嫩草影院新地址| 精品久久久久久成人av| 成人亚洲精品一区在线观看 | 亚洲性久久影院| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 最近中文字幕2019免费版| 丰满人妻一区二区三区视频av| 男人和女人高潮做爰伦理| 欧美潮喷喷水| 日本黄大片高清| 一级毛片电影观看| 日本猛色少妇xxxxx猛交久久| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 高清日韩中文字幕在线| 精品久久久精品久久久| av在线老鸭窝| 天堂中文最新版在线下载 | 亚洲自拍偷在线| 久久6这里有精品| 精品久久久久久久久久久久久| 肉色欧美久久久久久久蜜桃 | 国产av国产精品国产| 高清毛片免费看| 欧美三级亚洲精品| 床上黄色一级片| 国产精品国产三级国产专区5o| 亚洲在久久综合| 亚洲国产精品专区欧美| 成人无遮挡网站| 建设人人有责人人尽责人人享有的 | 国产有黄有色有爽视频| 黑人高潮一二区| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 亚洲国产最新在线播放| 亚洲三级黄色毛片| 2022亚洲国产成人精品| 69人妻影院| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 综合色av麻豆| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 亚洲av成人av| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| www.色视频.com| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 欧美bdsm另类| 婷婷色综合www| 少妇的逼水好多| 精品久久久久久久久亚洲| 日韩欧美精品免费久久| 日韩电影二区| 国产精品无大码| 美女内射精品一级片tv| 联通29元200g的流量卡| av播播在线观看一区| 午夜免费激情av| 日日摸夜夜添夜夜添av毛片| 97人妻精品一区二区三区麻豆| 免费观看无遮挡的男女| 色视频www国产| av福利片在线观看| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 免费大片黄手机在线观看| 日韩av不卡免费在线播放| 久久国产乱子免费精品| 日本与韩国留学比较| 欧美日韩视频高清一区二区三区二| 亚洲av不卡在线观看| 熟女电影av网| 国产成人福利小说| 久久久久性生活片| 搞女人的毛片| 日韩伦理黄色片| 一本一本综合久久| 日日啪夜夜爽| 好男人在线观看高清免费视频| 国产综合懂色| 成年女人看的毛片在线观看| 日韩强制内射视频| 超碰97精品在线观看| www.av在线官网国产| 日韩不卡一区二区三区视频在线| 国产av国产精品国产| 免费不卡的大黄色大毛片视频在线观看 | 国产精品精品国产色婷婷| 能在线免费观看的黄片| 亚洲欧美日韩东京热| 色哟哟·www| 国产免费又黄又爽又色| 黑人高潮一二区| 老师上课跳d突然被开到最大视频| 精品国产三级普通话版| 久久草成人影院| 黄片无遮挡物在线观看| 亚洲精品456在线播放app| 人人妻人人澡欧美一区二区| 亚洲成人一二三区av| 免费看a级黄色片| 亚洲精品成人av观看孕妇| 22中文网久久字幕| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 中文天堂在线官网| 少妇人妻精品综合一区二区| 人人妻人人澡欧美一区二区| 一级av片app| 亚洲自拍偷在线| 国产69精品久久久久777片| 日本免费在线观看一区| 日韩大片免费观看网站| 精品一区二区免费观看| 午夜激情欧美在线| 亚洲最大成人中文| 中文精品一卡2卡3卡4更新| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 日本猛色少妇xxxxx猛交久久| 水蜜桃什么品种好| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 久久久欧美国产精品| 91久久精品国产一区二区三区| a级一级毛片免费在线观看| 亚洲熟妇中文字幕五十中出| a级一级毛片免费在线观看| 久久精品综合一区二区三区| 91精品一卡2卡3卡4卡| 乱人视频在线观看| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 国产毛片a区久久久久| 日韩成人av中文字幕在线观看| 亚洲在久久综合| 69人妻影院| 黄色配什么色好看| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 最近手机中文字幕大全| 两个人的视频大全免费| 人妻少妇偷人精品九色| 国产亚洲5aaaaa淫片| 天堂俺去俺来也www色官网 | 欧美激情在线99| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| av福利片在线观看| 2021少妇久久久久久久久久久| 日本黄大片高清| 亚洲国产色片| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 亚洲成人中文字幕在线播放| 亚洲av在线观看美女高潮| 亚洲综合色惰| 国产淫语在线视频| 中国国产av一级| 亚洲性久久影院| 日日干狠狠操夜夜爽| 成人亚洲精品一区在线观看 | 国产成年人精品一区二区| 日韩视频在线欧美| 国产亚洲最大av| 人妻一区二区av| 日韩成人av中文字幕在线观看| 久久久久国产网址| 午夜老司机福利剧场| 免费观看在线日韩| 51国产日韩欧美| 神马国产精品三级电影在线观看| 久久草成人影院| 热99在线观看视频| 日本一本二区三区精品| 色哟哟·www| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 亚州av有码| 精品亚洲乱码少妇综合久久| 日韩欧美精品v在线| 日本一二三区视频观看| 特级一级黄色大片| 九色成人免费人妻av| 亚洲图色成人| 亚洲av电影不卡..在线观看| 亚洲精品国产av蜜桃| h日本视频在线播放| 亚洲av福利一区| 国产麻豆成人av免费视频| 国产老妇女一区| 亚洲最大成人av| 天堂网av新在线| 日韩不卡一区二区三区视频在线| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 国产高清三级在线| 综合色av麻豆| 国产成人freesex在线| 国产高清有码在线观看视频| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 高清午夜精品一区二区三区| 久久久久网色| 免费高清在线观看视频在线观看| 51国产日韩欧美| 精品人妻偷拍中文字幕| 听说在线观看完整版免费高清| 丰满乱子伦码专区| 亚洲人成网站在线播| 免费观看av网站的网址| 91在线精品国自产拍蜜月| 人妻一区二区av| 成人特级av手机在线观看| 亚洲三级黄色毛片| 国产成人91sexporn| 亚洲av在线观看美女高潮| 3wmmmm亚洲av在线观看| 中文字幕制服av| 久久这里有精品视频免费| 国产不卡一卡二| 午夜精品国产一区二区电影 | 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 一级毛片我不卡| 在线a可以看的网站| 少妇猛男粗大的猛烈进出视频 | 熟妇人妻久久中文字幕3abv| 亚洲内射少妇av| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 人妻一区二区av| 亚洲最大成人av| 成人欧美大片| 亚洲精品乱久久久久久| 亚洲不卡免费看| ponron亚洲| 国产黄色免费在线视频| 精品国产一区二区三区久久久樱花 | 黄色欧美视频在线观看| 久久综合国产亚洲精品| 欧美区成人在线视频| 亚洲成人久久爱视频| 91av网一区二区| 最近最新中文字幕大全电影3| 97在线视频观看| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 日日啪夜夜撸| 久久精品国产亚洲av天美| 一级片'在线观看视频| 亚洲性久久影院| 亚洲国产最新在线播放| 神马国产精品三级电影在线观看| 欧美成人午夜免费资源| 亚洲熟妇中文字幕五十中出| 搞女人的毛片| 毛片女人毛片| 国产一区二区三区av在线| 中文在线观看免费www的网站| 97在线视频观看| 黄色一级大片看看| 国产淫片久久久久久久久| 亚洲乱码一区二区免费版| 极品少妇高潮喷水抽搐| 激情 狠狠 欧美| 网址你懂的国产日韩在线| 在线免费十八禁| av国产免费在线观看| 国产成人a区在线观看| 欧美一区二区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院入口| 中文天堂在线官网| 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品有码人妻一区| 精品一区二区三卡| 久久综合国产亚洲精品| 精品国产一区二区三区久久久樱花 | 国产黄频视频在线观看| 国产在线一区二区三区精| 精品久久久久久久久av| 免费大片黄手机在线观看| 国产亚洲精品久久久com| freevideosex欧美| 别揉我奶头 嗯啊视频| 色哟哟·www| 黄色配什么色好看| 大香蕉97超碰在线| 国产精品综合久久久久久久免费| 国产精品一区www在线观看| 日韩人妻高清精品专区| 人妻系列 视频| 国产乱人视频| 免费黄色在线免费观看| 2022亚洲国产成人精品| 美女高潮的动态| 亚洲乱码一区二区免费版| 最近的中文字幕免费完整| 两个人的视频大全免费| 欧美日韩国产mv在线观看视频 | 国产视频内射| 欧美日韩精品成人综合77777| 亚洲三级黄色毛片| av在线播放精品| 国内精品美女久久久久久| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 久久鲁丝午夜福利片| av女优亚洲男人天堂| 日韩中字成人| 亚洲av中文字字幕乱码综合| 美女内射精品一级片tv| 亚洲真实伦在线观看| 精品久久久久久久久久久久久| 欧美性猛交╳xxx乱大交人| 国产老妇女一区| 三级国产精品片| 久久久成人免费电影| 人人妻人人看人人澡| 午夜福利在线观看吧| 身体一侧抽搐| 久久草成人影院| 中文精品一卡2卡3卡4更新| 十八禁网站网址无遮挡 | 精品人妻视频免费看| 丝袜喷水一区| 日韩成人av中文字幕在线观看| 国产有黄有色有爽视频| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 十八禁网站网址无遮挡 | 大陆偷拍与自拍| 亚洲av免费高清在线观看| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| a级毛色黄片| 国产亚洲5aaaaa淫片| 91精品国产九色| 婷婷六月久久综合丁香| 丝袜喷水一区| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片| 女人十人毛片免费观看3o分钟| 免费av不卡在线播放| 欧美成人a在线观看| 国产精品久久久久久久电影| 久久久久精品性色| 亚洲乱码一区二区免费版| 午夜精品国产一区二区电影 | 精品久久久久久久久av| 久久久久久久久久人人人人人人| 久久久久性生活片| 又大又黄又爽视频免费| 国产免费又黄又爽又色| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| av女优亚洲男人天堂| 亚洲成人精品中文字幕电影| 中文字幕免费在线视频6| 免费不卡的大黄色大毛片视频在线观看 | 亚洲电影在线观看av| 高清欧美精品videossex| 亚洲精品亚洲一区二区| 亚洲国产成人一精品久久久| 国产欧美另类精品又又久久亚洲欧美| 久久久欧美国产精品| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美精品专区久久| 丝袜喷水一区| 少妇裸体淫交视频免费看高清| 日本免费在线观看一区|