• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications

    2020-04-01 02:46:50FuzhongWENGXinwenYUYihongDUANJunYANGandJianjieWANG
    Advances in Atmospheric Sciences 2020年2期

    Fuzhong WENG, Xinwen YU, Yihong DUAN, Jun YANG, and Jianjie WANG

    1Chinese Academy of Meteorological Sciences, Beijing 100081, China

    2Chinese Meteorological Administration, Beijing 100081, China

    3National Meteorological Satellite Center, Beijing 100081, China

    4National Meteorological Center, Beijing 100081, China

    1. Urgent requirements for developing FengYun satellite observation operators

    In the past two decades, satellite measurements have been widely utilized for understanding and predicting weather and climate, and are now an essential component in global observing systems. Atmospheric and surface data observed from satellite, in-situ, and ground-based instruments are assimilated to produce a best representation of the atmospheric state on model grids. The gridded analysis data are derived from the scattered observations and a priori knowledge from the model forecasts. Through the assimilation of satellite data, the global medium-range (7-10 days) forecast score has been significantly improved, especially for the data-void Southern Hemisphere (Le Marshall et al., 2007). Also, the assimilation of satellite data in the Hurricane Weather and Forecast Model improves the prediction of hurricane tracks and intensity, as well as coastal precipitation (Zou et al., 2013).

    The data assimilation systems developed at major numerical weather prediction (NWP) centers have undergone more than 50 years of research. Optimal interpolation was initially utilized by NWP centers (until the early 1990s) to assimilate all the observations. Most of the ingested data (> 90%) into numerical models come from satellites, and the highest impacts of satellite data on global medium-range forecasts result from direct assimilation of satellite microwave and infrared sounding radiance data. Since the radiances are not atmospheric-state variables produced by forecast models, a relationship between the state variable and the satellite radiances is required and this relationship is based on the radiative transfer model or observation operator. In addition, the derivative of radiance relative to the state variable or radiance Jacobian is required in satellite data assimilation. Thus, it is important that the observation operator be executed fast and accurately in NWP models in order for a sheer volume of satellite data to be ingested within a limited assimilation time window.

    A fast radiative transfer model is effective for assimilation of satellite radiance data into NWP models. The United States and Europe have developed their respective fast models through satellite missions and NWP programs. The Community Radiative Transfer Model (CRTM) was proposed at the US Joint Center for Satellite Data Assimilation in the early 2000s (Weng et al., 2003; Weng, 2007) and has undergone nearly two decades of scientific and software-engineering improvements. The Radiative Transfer for TOVS (RTTOV) model was also developed for simulating satellite radiances at variable wavelengths (Saunders et al., 2018) and is now widely used in the NWP community. In the past, Chinese NWP development has benefited from using RTTOV in its data assimilation systems (Yu et al., 2019). Indeed, both CRTM and RTTOV are performing quite well for NOAA and for European satellite instruments. However, the scientific priority in upgrading CRTM and RTTOV is driven by the United States and European satellite missions. Thus, for the plethora of observation data from Chinese satellites, it is imperative that an independent radiative transfer system be developed to accelerate the use of Chinese satellite data in NWP models and for many other applications. This article describes the ongoing development of such a system, named the Advanced Radiative Transfer Modeling System, or ARMS.

    2. Capabilities of ARMS

    A typical radiative transfer model includes four modular components: (1) atmospheric gaseous absorption; (2) aerosol and cloud absorption and scattering; (3) surface emission and reflection; and (4) radiative transfer schemes. Some of the components may be further split into sub-modules. For example, non-precipitating and precipitating clouds may be treated separately due to their distinct differences in particle size distribution. Surface emissivity and reflectivity modules are developed according to wavelength and surface types, respectively.

    Figure 1 illustrates ARMS, whose development is currently underway and is being designed with a modular structure that allows for new “plug and play” software modules. The ARMS forward model computes the emissivity and reflectivity at surfaces, the particle optical parameters, and the radiances at the top of the atmosphere. The ARMS tangent linear module is derived from the forward module, and the adjoint module is then a translation of the tangent linear module. The tangent linear and adjoint modules and their performance evaluations are conducted according to the training materials (Angela Benedetti, 2016, https://earth.esa.int/documents/973910/2642313/AB2b.pdf).

    Radiative transfer simulation requires atmospheric optical parameters as inputs. Atmospheric optical thickness varies with atmospheric conditions and is often derived by using a spectroscopic database that has line-by-line (LBL) absorption coefficients. The LBL models are accurate but take a long time to calculate the atmospheric optical thickness profiles. In order to provide accurate optical parameters in the short time allotted in the operational forecast process, we have developed fast models that approximate the LBL calculations for each frequency at the specific satellite viewing angle. In LBLRTM,molecular line absorption parameters are selected from the HITRAN database (Rothman et al, 2013), and the self- and foreign-broadened water vapor continuum model of MT_CKD (Clough et al., 1992) as well as continuum absorption of carbon dioxide are also incorporated. The approach for a fast atmospheric transmittance calculation was developed by McMillin and Fleming (1976), and some incremental changes have been made by the community since then (Saunders et al., 1999;Han et al., 2007). In ARMS, the parameterized optical modules of each satellite instrument are also derived from the LBL calculation and convolved with the instrument spectral response function, resulting in an instrument-specific observation operator. For a hyperspectral IR instrument like CrIS or HIRAS, the accuracy is typically within 0.1 to 0.3 K within each spectral band.

    In ARMS, the optical parameters of five hydrometeors associated with cloud and rain water, cloud ice, snow, and graupel are computed at each model layer. The atmosphere is divided into 100 layers and 101 levels. The liquid-phase hydrometeors are assumed to be spherical in shape and the scattering parameters are derived from Mie theory. The particle size distribution is a modified Gamma function in which the effective radii and a fixed effective variance are chosen. At each atmospheric layer, the total number of particles is derived from the layer water content for a given effective radius. For ice clouds, the scattering by particles similar to or larger than the wavelength of light is treated using a T-matrix (Bi and Yang,2017) and is stored as a wavelength-consistent scattering database. The T-matrix is also used for computing the scattering parameters of aerosol particles.

    Fig. 1. ARMS, for fast and accurate calculations of satellite radiances and Jacobians at the top of atmospheres.

    The water-surface emissivity at microwave wavelengths is computed with a parameterized two-scale roughness model(Weng, 2017), which is called the Fast Emissivity Model, or FASTEM (Liu et al., 2011). In the two-scale model, the largescale roughness is simulated from many small facets whose slopes follow the normal and isotropic distribution (Cox and Munk, 1954). The emission and reflection for each facet is approximated as a specular surface and the reflection at the viewing angle is calculated from the Fresnel formula. The effects of wave shadowing and surface reflection are taken into consideration. The small-scale capillary waves have a wavelength comparable to the radiation wavelength and their reflection is modeled through Bragg scattering. At the infrared wavelength, the water emissivity is simulated by the numerous small facets having a Cox-Munk slope distribution (Wu and Smith, 1997).

    Land emissivity at the microwave frequency was developed earlier by Weng et al., (2001). It has a two-layer medium with the top layer having the scatters related to vegetation, or snow, and with the bottom soil layer. The soil reflectivities are first computed from the Fresnel formula and are then weighted with roughness and cross polarization factors. The radiation from volumetric scattering of vegetation or snow is derived from a two-stream radiative transfer model (Weng and Grody, 2000). The latest updates in surface roughness in the ARMS land emissivity model result in better simulations of microwave radiances at a wider frequency range (Chen and Weng, 2016). A polarization-dependent soil roughness model (Shi et al., 2005) is being implemented into the ARMS surface emissivity model.

    Since the First Workshop on Remote Sensing and Modeling of Surface Properties held in Paris, France in 2006, the assimilation of satellite surface sensitive data in NWP models has been significantly improved. NWP centers have developed their respective strategies from the uses of land emissivity models and land surface products. In RTTOV, a Tool to Estimate Land Surface Emissivities at Microwave frequencies, or TELSEM (Aires et al., 2011) and the Combined ASTER and MODIS Emissivity over Land, or CAMEL (Borbas et al., 2017) at infrared wavelengths are used for simulations. In CRTM, the snow and sea-ice microwave emissivities are derived using satellite brightness temperatures at window channels and are stored as static databases at variable frequencies and viewing angles (Yan et al., 2008; Yan and Weng, 2011).These datasets are used to generate the emissivity spectra according to snow/sea-ice types. The spectrum range covers the frequency ranging from 5 to 200 GHz. These emissivity databases are also utilized in ARMS as an alternative solution to the land emissivity.

    Currently, a polarized two-stream model (Liu and Weng, 2002) is implemented as a standard solver in ARMS. In addition, the advanced doubling-adding (or ADA) method (Weng and Liu, 2003; Liu and Weng, 2006), the vector double and adding (or VADA) scheme (Evans and Stephens, 1991), a vector discrete-ordinate radiative transfer model (or VDISORT)(Weng, 1992, 2017; Schulz et al., 1999) are also considered as alternative solvers in ARMS. These advanced solvers are designed for more accurate simulations in UV to visible wavelengths where scattering from molecules and aerosols can exhibit high anisotropic behaviors and require more streams in radiative transfer simulations. Users can also plug their own solvers into ARMS while taking full advantage of the system’s surface and atmospheric optical calculations.

    3. Preliminary results from ARMS simulations on FengYun satellite observations

    Since ARMS is mainly being developed for accelerating the use of Chinese FengYun (FY) satellite data in NWP systems, the transmittance models for the FY instruments must be first generated. In addition, we also take some of the optical thickness databases from CRTM and convert them into ARMS format. So far, the optical databases are available for the instruments listed in Table 1. An example of a simulated brightness temperature spectrum of FY-3D’s HIRAS (Hyperspectral Infrared Atmospheric Sounder) and its comparison with observation is shown in Fig. 2. The overall biases at longwave and midwave bands are small, while that in the shortwave band between 2200 and 2400 cm-1is large. This may be due to the non-local thermal equilibrium effects, which are not included in the current ARMS daytime simulation. The simulation accuracy of ARMS has been intercompared with that from CRTM, which has been widely used by the community for satellite data assimilation. The biases and RMSEs of both models with respect to LBLRTM are documented elsewhere (Kan et al., 2019). Here, we are more concerned about the relative biases between the two models. For HIRAS long-wave to midwave bands, the difference is less than 0.0002% (Fig. 3). For mid-wave sounding instruments, the brightness temperature is accurate to the third decimal place and the computational speed is much faster, compared to both RTTOV and CRTM (figure omitted). The gain in computational time is probably more attributable to the use of a faster polarization two-stream radiative transfer solver.

    4. The pathway for transitioning ARMS into operation and the plan for future development

    Since the ARMS framework is designed with flexible interfaces with different NWP systems, it is being tested in two satellite data assimilation systems running in the community. The Global/Regional Assimilation and Prediction System(GRAPES) was developed, and is commonly used for, both operation and research (Yu et al., 2019). As a core component,GRAPES’ four-dimensional variation (4D-Var) data assimilation system was developed, and is used for, satellite data assimilation. The satellite observation operator used in GRAPES 4D-Var is RTTOV, having been updated for assimilating satellite data including those from AMSU-A/MHS, ATMS, CrIS, MWTS/MWHS, AIRS, IASI, and GIIRS. Since RTTOV is maintained and updated by EUMETSAT NWP SAF, which is led by the UK Met Office with contribution from Meteo France, any request for assimilating the new data stream through RTTOV has to be closely coordinated with those organizations. With ARMS, we are developing a software interface with GRAPES 4D-Var and have begun various data assimilation experiments.

    Table 1. Instrument-specific fast transmittance model developed for ARMS applications (instruments in italic are onboard polarorbiting satellite systems and the rest are onboard geostationary satellite systems).

    Fig. 2. (a) Simulated brightness temperature spectrum for the HIRAS instrument onboard the FY-3D satellite and comparison with (b) the difference between observations (O) and simulations (B) .

    Fig. 3. (a) Simulation accuracy of HIRAS from ARMS and (b) difference between CRTM and ARMS.

    The NOAA data assimilation system takes a three-dimensional variational (3D-Var) approach and has inherited the Gridpoint Statistical Interpolation (GSI) analysis system (Wu et al., 2002). GSI is a community data assimilation system with a comprehensive user guide and can be installed and compiled on various computer systems. CRTM is part of GSI and supports a large number of sensors onboard historical GOES/POES satellites. Unfortunately, CRTM does not support the new generation of FengYun satellites. Thus, we are now integrating ARMS into GSI so that all its users can perform assimilations of satellite data from global observing systems.

    While ARMS is now ready for assimilating radiance data from satellite sounding instruments, it requires more scientific refinements to many modules. The near-term priority is to improve the simulation accuracy of satellite sounding instruments. In clear conditions, atmospheric optical models should consider trace gas components as NWP models start using more satellite measurements that are sensitive to them. For upper-air microwave sounding channels having weighting functions peaking above 40 km, Zeeman splitting absorption will be considered in ARMS (Han et al., 2007). At infrared wavelengths near 4 μm, absorbing aerosols can have significant effects on radiance simulation. Volcanic gases and aerosols can affect the radiance simulation at longwave infrared regions and should be fully considered in the transmittance calculation. At UV and visible wavelengths, the atmospheric gases also have scattering and create strong polarization. These features must also be accurately simulated in fast radiative transfer models. ARMS will include Rayleigh scattering of molecules and rotational Raman scattering when the UV hyperspectral data are ready for NWP data assimilation.

    The gaps in our knowledge regarding surface emissivities must be filled. In ocean emissivity models, the water dielectric constant affected by salinity was updated earlier in FASTEM (Liu et al., 2011), but has been found to be incomplete at lower frequencies (Lawrence et al., 2017). Sea-ice emissivity is also limited. Over land, an infrared emissivity model has not yet been fully developed for operational fast and accurate radiative transfer models.

    Acknowledgements.We would like to thank the support of the National Key Research and Development Program of China “Development of Meteorological Satellite Remote Sensing Technology and Platform for Global Monitoring, Assessments and Applications under the funding code of 2018YFC1506500”.

    欧美老熟妇乱子伦牲交| 桃花免费在线播放| 久久国产精品大桥未久av| 久久国产精品男人的天堂亚洲| 丰满饥渴人妻一区二区三| 不卡av一区二区三区| 亚洲情色 制服丝袜| 99香蕉大伊视频| 大陆偷拍与自拍| 人妻 亚洲 视频| 97在线人人人人妻| 美女国产高潮福利片在线看| 国产精品 欧美亚洲| 亚洲精品日韩在线中文字幕| 五月开心婷婷网| 亚洲美女搞黄在线观看| 妹子高潮喷水视频| 老司机影院成人| 国产人伦9x9x在线观看| 欧美日韩福利视频一区二区| 午夜福利在线免费观看网站| 免费看不卡的av| 在线观看www视频免费| 亚洲精品国产av成人精品| 日韩av免费高清视频| 香蕉国产在线看| 在线天堂最新版资源| 久久鲁丝午夜福利片| 日韩精品免费视频一区二区三区| 如何舔出高潮| 老司机深夜福利视频在线观看 | 亚洲精品av麻豆狂野| 国产高清国产精品国产三级| 十分钟在线观看高清视频www| 看非洲黑人一级黄片| 大话2 男鬼变身卡| 国产高清不卡午夜福利| 午夜免费观看性视频| videos熟女内射| 老司机靠b影院| 国产亚洲一区二区精品| 在现免费观看毛片| 亚洲成人手机| 精品第一国产精品| 亚洲国产欧美在线一区| 最新在线观看一区二区三区 | 一级黄片播放器| 男女高潮啪啪啪动态图| 桃花免费在线播放| 欧美日韩福利视频一区二区| 两性夫妻黄色片| 国产极品天堂在线| 满18在线观看网站| 午夜福利在线免费观看网站| 亚洲,欧美,日韩| 精品人妻在线不人妻| 极品少妇高潮喷水抽搐| 亚洲伊人色综图| 天天影视国产精品| 尾随美女入室| 丝袜美腿诱惑在线| 夫妻性生交免费视频一级片| 久久久久精品人妻al黑| 免费在线观看完整版高清| 亚洲视频免费观看视频| 久久婷婷青草| videos熟女内射| 亚洲专区中文字幕在线 | 精品免费久久久久久久清纯 | 亚洲精品国产av成人精品| av卡一久久| 男女国产视频网站| 久久久精品94久久精品| xxx大片免费视频| 操出白浆在线播放| 两性夫妻黄色片| 欧美精品一区二区免费开放| 亚洲av日韩在线播放| 国产伦人伦偷精品视频| 色网站视频免费| 国产在线免费精品| 久久久精品免费免费高清| 日韩精品免费视频一区二区三区| 少妇精品久久久久久久| 老熟女久久久| 男人舔女人的私密视频| 热re99久久精品国产66热6| 777久久人妻少妇嫩草av网站| 国产精品免费视频内射| 亚洲欧美激情在线| 国产精品免费视频内射| 韩国av在线不卡| 最近2019中文字幕mv第一页| 亚洲欧美精品综合一区二区三区| 国产亚洲av高清不卡| 国产精品99久久99久久久不卡 | 天天添夜夜摸| 国产免费现黄频在线看| 性高湖久久久久久久久免费观看| 在线精品无人区一区二区三| 日本黄色日本黄色录像| 国产一区二区三区综合在线观看| 亚洲成av片中文字幕在线观看| 国产毛片在线视频| 国产又色又爽无遮挡免| 黄片小视频在线播放| 国产毛片在线视频| 黄色视频不卡| av有码第一页| 女性生殖器流出的白浆| 在线天堂中文资源库| 90打野战视频偷拍视频| 欧美日韩综合久久久久久| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久男人| 大陆偷拍与自拍| 欧美在线一区亚洲| 纵有疾风起免费观看全集完整版| 欧美xxⅹ黑人| 一区二区三区精品91| 国产 一区精品| 中文欧美无线码| 欧美日韩成人在线一区二区| 99热国产这里只有精品6| 亚洲伊人久久精品综合| 七月丁香在线播放| 国产成人91sexporn| 成人国语在线视频| 国产男女内射视频| www.熟女人妻精品国产| av天堂久久9| 天美传媒精品一区二区| 欧美日韩视频高清一区二区三区二| 黑人欧美特级aaaaaa片| 国产一区二区 视频在线| 久久国产亚洲av麻豆专区| 午夜日韩欧美国产| 欧美国产精品va在线观看不卡| 国产精品免费视频内射| 999久久久国产精品视频| 涩涩av久久男人的天堂| 国产高清国产精品国产三级| 日韩一卡2卡3卡4卡2021年| 日韩大片免费观看网站| 一级片'在线观看视频| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| 好男人视频免费观看在线| 一本大道久久a久久精品| 精品国产国语对白av| 一边摸一边抽搐一进一出视频| 在线免费观看不下载黄p国产| 欧美亚洲日本最大视频资源| 久久久久久久国产电影| 久久精品国产a三级三级三级| 91成人精品电影| 涩涩av久久男人的天堂| 日韩一区二区视频免费看| 午夜福利,免费看| 黑丝袜美女国产一区| 日韩一本色道免费dvd| 男人操女人黄网站| 日本wwww免费看| 国产男女内射视频| 久久久久久久精品精品| 亚洲自偷自拍图片 自拍| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 999精品在线视频| 亚洲av成人不卡在线观看播放网 | 亚洲国产av新网站| 亚洲精品国产色婷婷电影| 国产精品欧美亚洲77777| 黄色怎么调成土黄色| 国产精品熟女久久久久浪| 亚洲三区欧美一区| 成年av动漫网址| 精品视频人人做人人爽| 18禁国产床啪视频网站| 看免费成人av毛片| 国产成人精品久久久久久| 这个男人来自地球电影免费观看 | av女优亚洲男人天堂| 熟妇人妻不卡中文字幕| 国产成人午夜福利电影在线观看| 精品国产一区二区三区久久久樱花| 亚洲av国产av综合av卡| 少妇人妻久久综合中文| 国产亚洲午夜精品一区二区久久| 国产99久久九九免费精品| 老司机亚洲免费影院| 天天躁狠狠躁夜夜躁狠狠躁| 99re6热这里在线精品视频| 精品国产一区二区三区久久久樱花| 男的添女的下面高潮视频| 久久久久精品久久久久真实原创| 又粗又硬又长又爽又黄的视频| 我的亚洲天堂| 亚洲婷婷狠狠爱综合网| 97人妻天天添夜夜摸| 乱人伦中国视频| 欧美老熟妇乱子伦牲交| 天天添夜夜摸| 久久精品亚洲av国产电影网| 日日撸夜夜添| 91老司机精品| 超碰成人久久| 久久久久久久大尺度免费视频| 男人添女人高潮全过程视频| 人人妻人人爽人人添夜夜欢视频| 国产熟女欧美一区二区| a级毛片在线看网站| 午夜av观看不卡| 亚洲综合色网址| 精品卡一卡二卡四卡免费| 老司机在亚洲福利影院| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 大香蕉久久网| 男女下面插进去视频免费观看| 在线观看免费午夜福利视频| √禁漫天堂资源中文www| 国产99久久九九免费精品| 亚洲欧美清纯卡通| 婷婷成人精品国产| 在线观看一区二区三区激情| 亚洲视频免费观看视频| 51午夜福利影视在线观看| 国产精品一国产av| 狂野欧美激情性xxxx| 国产精品女同一区二区软件| 超碰成人久久| 在线观看www视频免费| 黄色视频在线播放观看不卡| 久久久久久人妻| 免费看不卡的av| 中文字幕人妻丝袜制服| 日本色播在线视频| 欧美日韩亚洲国产一区二区在线观看 | 免费观看a级毛片全部| 国产成人av激情在线播放| 青春草国产在线视频| 国产成人系列免费观看| 亚洲av日韩精品久久久久久密 | 国产午夜精品一二区理论片| av.在线天堂| 9色porny在线观看| netflix在线观看网站| 麻豆乱淫一区二区| 韩国精品一区二区三区| 欧美老熟妇乱子伦牲交| 伊人亚洲综合成人网| 性少妇av在线| 日日爽夜夜爽网站| 亚洲三区欧美一区| 美女午夜性视频免费| 国产精品av久久久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区在线观看国产| 最近手机中文字幕大全| 蜜桃国产av成人99| a级片在线免费高清观看视频| 男女免费视频国产| 免费不卡黄色视频| 王馨瑶露胸无遮挡在线观看| 青春草国产在线视频| 国产精品香港三级国产av潘金莲 | 国产精品.久久久| 免费高清在线观看视频在线观看| 国产精品三级大全| 亚洲国产最新在线播放| 韩国精品一区二区三区| 91精品三级在线观看| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 夜夜骑夜夜射夜夜干| 熟妇人妻不卡中文字幕| 亚洲在久久综合| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 久久人人爽人人片av| 日韩精品免费视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 在线观看国产h片| 99热全是精品| 国产成人一区二区在线| 青草久久国产| 9色porny在线观看| 妹子高潮喷水视频| 国产欧美亚洲国产| 日本wwww免费看| 精品国产国语对白av| 久久久久久人妻| 国产熟女欧美一区二区| 国产成人免费观看mmmm| 久久精品久久精品一区二区三区| 999精品在线视频| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 麻豆精品久久久久久蜜桃| 国产精品久久久人人做人人爽| 最新的欧美精品一区二区| 欧美中文综合在线视频| 无限看片的www在线观看| 在线观看人妻少妇| 免费观看av网站的网址| 中国三级夫妇交换| 免费日韩欧美在线观看| 日韩视频在线欧美| 男女下面插进去视频免费观看| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 精品视频人人做人人爽| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂| 黄色 视频免费看| 国产一区二区激情短视频 | 18禁观看日本| 亚洲成人av在线免费| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 亚洲成人av在线免费| 十分钟在线观看高清视频www| 日本欧美国产在线视频| 少妇精品久久久久久久| 亚洲av日韩在线播放| 欧美日韩福利视频一区二区| 亚洲熟女精品中文字幕| 国产av精品麻豆| 午夜福利乱码中文字幕| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区国产| 嫩草影视91久久| 天天添夜夜摸| 久久这里只有精品19| av国产久精品久网站免费入址| 91成人精品电影| 国产免费福利视频在线观看| 国产精品三级大全| 狂野欧美激情性bbbbbb| 日韩一区二区视频免费看| 国产在线视频一区二区| 99精品久久久久人妻精品| 成人三级做爰电影| 国产免费一区二区三区四区乱码| 亚洲av成人不卡在线观看播放网 | 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| 国产在线免费精品| 99久久精品国产亚洲精品| 欧美 亚洲 国产 日韩一| 国产色婷婷99| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产免费视频播放在线视频| 日日啪夜夜爽| 久久99一区二区三区| 国产男女内射视频| 免费黄色在线免费观看| 午夜福利,免费看| 日本一区二区免费在线视频| 成人国产麻豆网| 亚洲国产中文字幕在线视频| 少妇人妻精品综合一区二区| 亚洲,欧美,日韩| 日韩不卡一区二区三区视频在线| 亚洲成人手机| 一级爰片在线观看| 日韩大码丰满熟妇| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 亚洲成色77777| √禁漫天堂资源中文www| 久久久久国产精品人妻一区二区| 欧美激情 高清一区二区三区| 日韩不卡一区二区三区视频在线| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区四区第35| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 亚洲av综合色区一区| 丝袜美腿诱惑在线| 国产男女内射视频| 久久精品久久久久久久性| 丝袜美腿诱惑在线| 中国国产av一级| 在线亚洲精品国产二区图片欧美| 国产一区二区三区综合在线观看| 日本一区二区免费在线视频| 欧美人与性动交α欧美软件| 久久久欧美国产精品| 一区二区av电影网| 99久国产av精品国产电影| 亚洲精品一二三| 国产一区二区在线观看av| 女性被躁到高潮视频| 亚洲,欧美精品.| 观看av在线不卡| 超碰成人久久| 亚洲精品美女久久久久99蜜臀 | 亚洲一区二区三区欧美精品| 人妻人人澡人人爽人人| 99久久人妻综合| 亚洲av中文av极速乱| 王馨瑶露胸无遮挡在线观看| 欧美黑人欧美精品刺激| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 如何舔出高潮| 亚洲av中文av极速乱| 久久97久久精品| 久久热在线av| 精品人妻在线不人妻| 欧美日韩福利视频一区二区| 国精品久久久久久国模美| 欧美人与善性xxx| 黑人猛操日本美女一级片| 欧美在线黄色| 国产精品亚洲av一区麻豆 | 欧美变态另类bdsm刘玥| 亚洲av福利一区| 国产精品久久久av美女十八| 日韩精品有码人妻一区| a级毛片黄视频| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 欧美黑人精品巨大| 亚洲免费av在线视频| 999久久久国产精品视频| 一区二区三区精品91| 日韩 亚洲 欧美在线| 亚洲七黄色美女视频| 99九九在线精品视频| 岛国毛片在线播放| 天堂8中文在线网| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| videos熟女内射| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 男的添女的下面高潮视频| 欧美人与性动交α欧美软件| 亚洲av电影在线进入| 丁香六月欧美| 老汉色av国产亚洲站长工具| 青春草亚洲视频在线观看| 久久久久久久大尺度免费视频| 这个男人来自地球电影免费观看 | 亚洲成色77777| 最近中文字幕高清免费大全6| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 国产精品av久久久久免费| 久久ye,这里只有精品| 国产1区2区3区精品| 国产片特级美女逼逼视频| a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 日韩欧美精品免费久久| 91精品三级在线观看| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 在线观看免费午夜福利视频| 国产精品国产三级国产专区5o| 精品国产露脸久久av麻豆| av国产精品久久久久影院| 国产又色又爽无遮挡免| 最新在线观看一区二区三区 | 亚洲av福利一区| 黑人巨大精品欧美一区二区蜜桃| 午夜福利免费观看在线| 久久综合国产亚洲精品| 精品一区二区三卡| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 老鸭窝网址在线观看| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| videos熟女内射| 亚洲美女视频黄频| 久久久久久免费高清国产稀缺| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 考比视频在线观看| 中文精品一卡2卡3卡4更新| videos熟女内射| 一区二区av电影网| 晚上一个人看的免费电影| 成人手机av| 在线免费观看不下载黄p国产| 母亲3免费完整高清在线观看| 欧美人与性动交α欧美软件| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| 熟女av电影| 亚洲欧洲日产国产| 天天影视国产精品| 一级毛片 在线播放| av线在线观看网站| 狠狠精品人妻久久久久久综合| 男女下面插进去视频免费观看| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 深夜精品福利| 丰满乱子伦码专区| 国产色婷婷99| 亚洲av福利一区| 搡老岳熟女国产| e午夜精品久久久久久久| av在线app专区| 日韩一卡2卡3卡4卡2021年| 国产爽快片一区二区三区| 免费在线观看黄色视频的| 美女视频免费永久观看网站| 一区二区三区精品91| 黄网站色视频无遮挡免费观看| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 丝袜美腿诱惑在线| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 大片免费播放器 马上看| 美女高潮到喷水免费观看| 久久久精品94久久精品| av视频免费观看在线观看| 国产精品欧美亚洲77777| 80岁老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| 欧美少妇被猛烈插入视频| 美女中出高潮动态图| 美女扒开内裤让男人捅视频| 国产色婷婷99| av网站在线播放免费| avwww免费| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 日韩av免费高清视频| 国产av一区二区精品久久| 丰满乱子伦码专区| 久久天堂一区二区三区四区| 多毛熟女@视频| 熟女av电影| xxxhd国产人妻xxx| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 国产成人精品福利久久| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 日韩欧美精品免费久久| 在线天堂最新版资源| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 久热爱精品视频在线9| 国产黄频视频在线观看| 国产亚洲一区二区精品| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| 性少妇av在线| 一个人免费看片子| 一级片'在线观看视频| 人妻 亚洲 视频| 精品第一国产精品| 啦啦啦 在线观看视频| 王馨瑶露胸无遮挡在线观看| 男女之事视频高清在线观看 | 成人影院久久| 亚洲,欧美,日韩| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 9热在线视频观看99| av在线观看视频网站免费| 国产日韩欧美视频二区| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 国产黄频视频在线观看| 天天躁夜夜躁狠狠躁躁| 日日撸夜夜添| avwww免费| 黄片播放在线免费| 成人亚洲精品一区在线观看| 热re99久久国产66热| 午夜福利在线免费观看网站| av不卡在线播放| av网站免费在线观看视频| 亚洲熟女毛片儿| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 亚洲一区二区三区欧美精品| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 老汉色∧v一级毛片| 日本wwww免费看| 精品国产一区二区三区四区第35| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 精品少妇内射三级| 黄频高清免费视频|