• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory experimental study of water drag force exerted on ridge keel

    2020-03-31 02:21:18ZUYonghengLUPengYUMiaoCAOXiaoweiLIZhijun
    Advances in Polar Science 2020年1期

    ZU Yongheng, LU Peng, YU Miao, CAO Xiaowei & LI Zhijun

    Laboratory experimental study of water drag force exerted on ridge keel

    ZU Yongheng, LU Peng*, YU Miao, CAO Xiaowei & LI Zhijun

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

    With the diminishing Arctic sea ice, the dynamic energy-exchange process between sea ice and ocean gains in importance. Concerning how the ice bottom topography affects the drift of sea ice, it is unclear how the ridge–keel-drag force exerted by seawater changes the momentum balance of sea ice. We thus conducted laboratory experiments to investigate how the local drag coefficient of the ridge keel depends on keel shape and on the relative velocity of ice with respect to seawater. A dimensional analysis is used to obtain the relationship between the local drag coefficientr, the Reynolds number, the dimensionless keel depth0, and the keel slope angle. The results indicate that the local drag coefficientris only relevant towhen< 4000 and the flow is in the laminar regime. With increasing,rdepends on0and, which are independent variables, as the flow transitions to the turbulent regime. The parameterization formulas forrare also provided.

    ridge keel, drag coefficient, parameterization, Reynolds number

    1 Introduction

    The Arctic sea ice has become thinner and younger in recent years, particularly in the marginal ice zone (MIZ) (Lindsay and Schweiger, 2015; Granskog et al., 2016; Notz and Stroeve, 2016). The decrease in Arctic ice is a synthetic process combining thermodynamic and dynamic processes (Serreze et al., 2007; Zhao et al., 2018). Thermodynamic processes, which are affected by solar radiation, atmospheric and oceanic boundary layers, and sea-ice characteristics, involve ice growth and melt in extent and thickness (Lu et al., 2016). Dynamic processes also strongly affect the extent of summer sea ice (Lu et al., 2011), resulting in the export of Arctic sea ice through the Fram Strait and Nares Strait by the transpolar drift stream and Beaufort Gyre (Mysak et al., 2001; Krumpen et al., 2019). The thinning of Arctic sea ice has led to a faster drift speed of sea ice, especially in the historically narrow MIZ (Spreen et al., 2011). The drift of sea ice in the MIZ is complex because of the convergence and divergence of sea ice resulting from the regional winds and ocean currents. Atmospheric and oceanic drag coefficients, which are the main contributors to the external force on the sea ice, are two key parameters in the momentum balance of sea ice (Petty et al., 2017).

    Research on sea-ice dynamics originated in the polar expeditions of the 19th century. More recent research includes the Arctic Ice Dynamics Joint Experiment in the 1970s and the Marginal Ice Zone Experiment in the 1980s. In the initial studies, drag coefficients were considered to be constants in the eddy correlation method (Shirasawa and Ingram, 1997), the profile method (Andreas and Claffey, 1995; Mcphee, 2002), and the momentum method (Hunkins, 1975; Martinson and Wamser, 1990). Drag coefficients determined by traditional methods depend partly on the environmental variations that occur during field observations and ignore sea-ice characteristics such as shape parameters, concentration, and ridge density. In particular, form drag caused by the edges of floes and ridges forms due to floe collisions and is often underestimated by conventional methods, particularly in heavily ridged regions or regions with low sea-ice concentrations (Tsamados et al., 2014). An alternative way to feed the gap is to parameterize sea-ice drag coefficients. Arya (1975) proposed to partition the sea-ice drag force, following which the drag coefficient has been progressively parameterized. Later, sea-ice morphology began to be included in the drag-coefficient-parameterization scheme (Lu et al., 2011; Lüpkes et al., 2012). In addition, these schemes are used in the sea-ice model CICE (Flocco et al., 2017).

    whereis the form drag force exerted on the ridge keel in the horizontal direction,is the fluid density,is the keel-area footprint, andis the keel-drag velocity. However, the specific expression forrremains uncertain because of the lack of relevant observations and experimental studies, and this situation has remained unchanged even after the adoption of the parameterization in the CICE model (Tsamados et al., 2014; Martin et al., 2016). The motivation of the present study is thus to identify how the local drag coefficientrof a ridge keel depends on keel depth, keel slope angle, and fluid velocity. Toward this end, physical modeling experiments were conducted in our laboratory to obtain the relationships between these variables, which has led to a parameterization scheme for the form drag force on a ridge keel.

    2 Laboratory experiments

    The physical experiments were done in a wave tank located at the State Key Laboratory of Coastal and Offshore Engineering at the Dalian University of Technology, China (see Figure 1). The tank is 0.23 m wide, 4.5 m long, 0.45 m deep, and is constructed from glass panels that form the sides and bottom of the tank. The ridge keel is simulated by an inverted-triangle model made of Plexiglas?. Arrays of pipes line the bottom of the tank and are used to inject fresh water into the tank. The water depth was 0.35 m, and the water in the tank was maintained relatively static. Powered by an electronic stepper motor, the ridge-keel model could move along the water surface at a constant speed.

    Figure 1 Photograph of laboratory wave tank with ridge-keel model (in yellow).

    A tension-compression sensor connected the ridge-keel model with the motor via wire ropes, and a heavy balance serving to increase the model inertia was used to join the end of the model and reduce vibrations of the model. The sensor measurement range was 10 N, and the accuracy was ±0.1% of full scale. Before starting the system, the force tensor was calibrated by using a standard force, following which the drag force exerted on the keel by the fluid was measured with the motor running.

    The ice drag consists essentially of two parts: skin drag and form drag (Arya, 1975). Skin drag results from tangential stress in the boundary layer between the ice surface and ocean flow, whereas form drag (exerted on ridge keels) results from the pressure difference between the upstream and the lee of keels. This study simulates the motion of a keel in the tank and is concerned mainly with the form drag on the keel, which is a passive force. If the experiment is to reflect real conditions, the Euler number dynamic similarity law should be applied. However, satisfying the Euler number dynamic similarity is difficult because it is simultaneously affected by the Reynolds number, the Froude number, and boundary conditions.

    In the present study, the Reynolds number was selected to account for viscous forces and the keel shape, as done by Schlichting (1960). The drift speed of Arctic sea ice is of the order of 1–100 cm·s?1(Lepparanta, 2011), and ridge-keel depths range from 2 to 10 m with a slope angle of 10°–50° (Li et al., 2011). The sea-ice drift speed and keel depth were selected to calculate the Reynolds number, which gives> 20000(=/, whereis the keel depth andis the viscosity coefficient). In this experiment, the velocity of the moving model was 1, 3, 6–10, 12, 15, 24, and 30 cm·s?1. The keel penetration into the water was adjusted to 2, 4, 6, 8, and 10 cm. Thus, the Reynolds number for the laboratory experiments covers the range 200–30000. When> 10000, we consider that the laboratory fluid conditions are similar to those encountered in the real ocean environment. The large range of Reynolds number ensures that the keel-drag laws probe the different fluid regimes, in particular the transition between the laminar and turbulent regimes.

    In addition to having similar fluid environments, the boundary conditions of the ice ridge should also be similar to those found in the ocean. Therefore, the boundary conditions, which depend on the shape of the keel, should be consistent with the real conditions. To explore how keel shape affects keel drag for an individual keel, we selected as the key shape parameters the keel depth and slope angle.

    The slope angle of the ridge-keel model was set at 20°, 30°, 45°, or 60°. The experiments included 220 trials to cover all flow conditions from laminar to turbulent flow.

    Figure 2 Experimental setup:is the drift speed of the ridge-keel model,is the keel depth, andis the keel slope angle.

    3 Drag force

    While moving the ice-ridge model, the drag force on the model was measured by the force sensor at a sampling frequency of 50 Hz. Accelerating the model from rest to a specified speed produces an additional mass force, which is the disturbance term of the drag-force measurements. The starting and ending portions of the raw time-series data are excluded from the analysis because the keel speed varies during the acceleration and deceleration stages. Additionally, vibrations of the model platform could also introduce errors into the drag-force measurements. Thus, the raw time-series data were low-pass filtered to eliminate high-frequency noise, and the mean of the filtered data was taken as the experimental drag force. Figure 3 shows the measured drag force for all experiments.

    In general, the drag force increases with increasing speed, keel depth, and slope angle. Simultaneously, Figure 3 shows that, for large keel depth, the drag force exerted on the ice ridge increases significantly with increasing velocity, which is because the drag force exerted on the ice ridge is mainly the form drag force, which is generated by the pressure difference between the front and rear of the ridge keel.

    The next section discusses quantitatively how the slope angle, keel depth, and velocity affect the drag force.

    4 Discussion

    Because cross sections of models have the same shape along the width direction of the wave tank, the problem considered herein is a two-dimensional model with both horizontal and vertical directions. Given an object moving at a constant velocity through a fluid, the drag force exerted on the object depends on the flow conditions (i.e., laminar or turbulent). In this study, the experiments covered both conditions. The experiments in this study investigate a classic problem of fluid mechanics. The momentum flux from ice keel to fluid is described by the Reynolds Averaged Navier–Stokes equations. The drag forceexerted by the fluid on the keel contains two parts: frictional stresses and normal stresses. Viscous stresses along the keel boundary are defined as(?u/?x+?u/?x), which are in the form of frictional stress. Reynolds stresses are represented byτ, according to the Boussinesq hypothesis, and are defined byμ(?u/?x+?u/?x). Along the keel boundary, the presence of a viscous sublayer results in zero Reynolds stresses, which affects the pressure distribution along the keel boundary. Normal stresses originate from pressureand 2(?u/?x) exerted on the keel. Thus, the total drag exerted on the keel is the integral of the frictional and normal stresses along the keel boundary. The boundary conditions of this problem are thus related to keel-shape functions(|w,,) and keel velocity, and then total drag forcecan be calculated from the velocity and pressure field, which is obtained by solving the Reynolds Averaged Navier–Stokes equations with the given boundary conditions. Thus,= f(,,w,,,).

    According to Buckingham’s π theorem, this problem has seven variables containing three primary dimensions: mass, length, and time. The measured drag forcedepends on the keel velocity, keel depth, water depthw, and keel slope angle. Five variables can be controlled to determine the drag laws between these variables. In addition to these five variables, two parameters, fluid densityand viscosity coefficient, reflect the physical properties of the fluid. We thus search for four independent dimensionless parameters to analyze these relationships. This leads to the following dimensional equation:

    Figure 3 Drag forceas a function of keel velocityfor different keel depthsand slope angles= 20° (a),= 30° (b),= 45° (c), and= 60° (d). Each panel is divided into two parts by a dashed line representing= 10000. The results above this line can be used as a reference for real sea-ice conditions, whereas the results below this line apply only to experimental phenomena.

    We then get

    Equation (4) produces the following four independent dimensionless parameters:

    The first dimensionless parameter is the local drag coefficientrmentioned in Section 1. The second dimensionless parameter is the Reynolds number, which depends on the flow conditions around the keel model. The third dimensionless parameter is the dimensionless keel depth penetrating into the water in the tank, and the last dimensionless parameter is a special parameter that represents the inclination gradient of the ridge keel. Analyses of the drag force consider separately the laminar and turbulent regimes, where the flow conditions are described by the Reynolds number, the keel velocity, the keel depth, and the fluid viscosity coefficient(≈1.002×10?6m2·s?1in this study), as shown in Equation (5).

    The flow resistance exerted on the ridge-keel model consists mainly of pressure resistance (i.e., the form drag force) generated by the pressure exerted by the fluid that flows around the ridge keel and the friction drag force due to the fluid viscosity. These two contributions to the total drag force depend on the Reynolds number. Whenis small, the fluid exerts mainly a friction drag force on the keel; in other words, the viscous stress in the fluid dominates the total stress. In this regime, the local drag coefficient depends strongly on the Reynolds number. However, with increasing, the flow state transitions to the turbulent regime and vortex shedding occurs at the back of the object, inducing the von Kármán vortex street so that the form drag force becomes a major part of the total force.

    Figure 4 plots log10(r) versus log10(0.01), which reveals a critical(≈4000) dividing the plot into two parts. The local drag coefficientr, representing the water head loss describes different physical mechanisms from the laminar to the turbulent transition.

    Figure 4 Log-log plot ofrversus 0.01for all experimental results. The dotted line shows Pite et al.’s (1995) experimental results and is consistent with the skin friction law. The vertical line at log10(0.01) = 1.6 (i.e.,= 4000) marks the transition from laminar flow to turbulent flow.

    When< 4000, the flow is mainly laminar. In the laminar regime, log10(10r) is linear in log10(0.01). Based on the results shown in Figure 4, the keel slope anglehas little effect onrin the laminar regime.rdecreases rapidly with increasing, which is attributed to the friction drag force being dominated by the fluid viscosity. A linear fit in the laminar regime gives

    which can be simplified to

    In this experiment,≈ 5000 and= 1.4. Pite et al. (1995) gives skin friction values of= 2.8 and= 0.5. In this study, we use the larger power forthan in Pite’s formula, sois three orders of magnitude greater than in Pite’s formula. Whenis small, the fluid mainly exerts a drag force on the ridge model; that is, the viscous stress in the fluid dominates the total stress. In addition, the local drag coefficient depends strongly on the Reynolds number.

    Conversely, asincreases above 4000, the flow gradually becomes turbulent. The Reynolds number has less effect on the local drag coefficientr, which is now concentrated within a small range.

    In the turbulent-flow regime, the streamlines around the model are no longer parallel, and a vortex forms to the lee of the model. The pressure in the vortex zone is lower than the pressure near the front streamline, exerting a form drag force that is much greater than the friction drag force. The total drag force is thus strongly affected by the shape of the model because the shape determines the distribution of the pressure gradient around the boundary. In this study, the two parametersanddetermine the flow boundary conditions.

    Figure 5a showsras a function offor various keel depthsand for a slope angle= 45°. Figure 5b showsras a function offor various slope anglesand for a keel depth= 6 cm.Figures 5a and 5b show thatris independent offor> 10 cm·s?1in the turbulent regime, whereas the two variablesandstrongly affectr.

    Figure 5ras a function of keel velocityfor various keel depthsand with a keel slope angle= 45° (a) and for various keel slope angles and with a keel depth= 6 cm (b). The dashed lines in both panels mark the boundary of= 10000 between the real ocean and experimental conditions.

    Figure 5 shows thatrdepends strongly onandwhen the flow is turbulent. When0andare in the turbulent-flow regime,rdepends only slightly on(see Figure 4), so we may neglect the effect ofonrin the turbulent-flow regime. This gives

    Figure 6 showsrcalculated from the mean drag force as a function of0and, together with a surface fit. When= 20°, the flow in the partial experimental cases transitions from laminar to turbulent, which gives rise to the fluctuations for= 20° in Figure 6.

    Figure 6 Plot ofr(> 4000) as a function of0andand the fitting surface.

    The drag coefficient clearly increases with increasing keel depth0and keel slope angle. We applied a logarithmic surface fit to obtain an analytical expression forras a function of0and. Whenis small (e.g.,= 20°),ris stable around 0.5. Upon increasing, the gradient ofrwith respect to0increases andrreaches almost 1.1 when0= 0.29,= 60°. When0is constant,rmay be expressed in terms ofas

    whereandare parameters related to the keel depth0. When0= 0.17 (moderate keel depth in this study),= 0.4 and= 0.71, and the mean value ofris about 0.67. Gabrecht et al. (1999) analyzed field data and obtained the local drag coefficient for a single ridge sail ofr= 0.68, which led them also to conclude that a logarithmic function describes how the local atmospheric drag coefficient of a single ridge sail depends on ridge height.Thus, the logarithmic dependence ofron0andis feasible in the turbulent region, where the shape of the ridge keel strongly affects the local drag coefficient.

    5 Conclusion

    This paper discusses how the parameters of the ice ridge affect the local drag coefficient, where the parameters include the fluid velocity with respect to the keel, the depth of the ice ridge keel, and the keel slope angle. The experimental results for the drag force exerted on the ice ridge are analyzed dimensionally. The local ridge–keel-drag coefficientrdepends on the Reynolds number, the dimensionless keel depth0, and the keel slope angle.

    When< 4000, the flow is laminar. The friction drag force is the main contributor to the total force, and the shape of the keel has little effect on the local drag coefficient. Equation (6) expresses the parameterization that is relevant in the laminar regime.

    When> 4000, the flow gradually transitions to turbulence. The form drag force now exceeds the friction drag force, and the local drag coefficient becomes sensitive to the shape of the keel, as described by0and. In this regime, a logarithm surface fitting is used to express howrdepends on0and.

    This paper provides a preliminary discussion of the local drag coefficient of a ridge keel in laboratory experiments. In practice, the smallest Reynolds number for a fluid under a ridge keel is about 10000. In comparison with the experiment results, this interval (> 10000) should undoubtedly be in the turbulent regime. Therefore, the local drag coefficient of a ridge keel is a function of keel depth and keel slope angle.

    In the future, ridge-keel morphology needs to be considered to express the local drag coefficient, which lays the foundation for the parameterization of the ice-water drag coefficient. The local drag coefficient of a single ice ridge plays an essential role in determining the ice-water drag coefficient. Combined with the lower concentration of sea ice in the Arctic summer MIZ, accurate knowledge of the drag coefficient given the local conditions of sea ice, wind, and current is urgently required for sea-ice forecasting in the climatology model.

    Note that this study does not consider how the drag of the ice ridge is affected in reality by the depth of the mixed ocean layer. Thus, further experimental research and theoretical analysis are needed to fully parameterize the ice-water drag coefficient.

    Acknowledgments This research was supported by the National Key R&D Program of China (Grant no. 2017YFE0111400), National Natural Science Foundation of China (Grant nos. 41922045 and 41876213), and the Fundamental Research Funds for the Central Universities.

    Andreas E L, Claffey K J. 1995. Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. J Geophys Res-Oceans, 100(C3): 4821-4831, doi: 10.1029/94jc02015.

    Arya S P S. 1975. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J Geophys Res, 80(24): 3447-3454, doi: 10.1029/jc080i024p03447.

    Flocco D, Feltham D L, Schroeder D, et al. 2017. Improved ice-ocean form drag parameterization in the CICE Model//AGU Fall Meeting, abstract #C21B-1117.

    Granskog M, Assmy P, Gerland S, et al. 2016. Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos Trans. AGU, 97(5): 22-26, doi: 10.1029/2016eo044097.

    Hunkins K. 1975. The oceanic boundary layer and stress beneath a drifting ice floe. J Geophys Res, 80(24): 3425-3433, doi: 10.1029/jc080i 024p03425.

    Krumpen T, Belter H J, Boetius A, et al. 2019. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci Rep, 9(1): 5459, doi: 10.1038/s41598-019- 41456-y.

    Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9(1): 269-283, doi: 10.5194/tc-9-269-2015.

    Lu P, Lepp?ranta M, Cheng B, et al. 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Reg Sci Technol, 124: 1-10, doi: 10.1016/j.coldregions.2015. 12.010.

    Lu P, Li Z, Cheng B, et al. 2011. A parameterization of the ice-ocean drag coefficient. J Geophys Res-Oceans, 116(C07019): 1-14, doi: 10.1029/2010JC006878.

    Lüpkes C, Gryanik V M, Hartmann J, et al. 2012. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res-Atmos, 117(D13112): 1-18, doi: 10.1029/2012JD017630.

    Martin T, Tsamados M, Schroeder D, et al. 2016. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study. J Geophys Res-Oceans, 121(3): 1931-1952, doi: 10.1002/ 2015jc011186.

    Martinson D G, Wamser C. 1990. Ice drift and momentum exchange in winter Antarctic pack ice. J Geophys Res-Oceans, 95(C2): 1741-1755, doi: 10.1029/jc095ic02p01741.

    McPhee M G. 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. J Geophys Res-Oceans, 107(C10): 8037, doi: 10.1029/2000jc000633.

    Mysak L A. 2001. Patterns of Arctic circulation. Science, 293(5533): 1269-1270, doi: 10.1126/science.1064217.

    Notz D, Stroeve J. 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO2emission. Science, 354(6313): 747-750, doi: 10.1126/science.aag2345.

    Petty A A, Tsamados M C, Kurtz N T. 2017. Atmospheric form drag coefficients over Arctic sea ice using remotely sensed ice topography data, spring 2009-2015. J Geophys Res-Earth Surf, 122(8): 1472-1490, doi: 10.1002/2017jf004209.

    Pite H D, Topham D R, van Hardenberg B J. 1995. Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow. J Phys Oceanogr, 25(12): 3008-3031, doi: 10.1175/1520-0485(1995)025<3008:lmotdf>2.0.co;2.

    Schlichting H. 1960. Boundary layer theory. New York: McGraw-Hill.

    Serreze M C, Holland M M, Stroeve J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315(5818): 1533-1536, doi: 10.1126/science.1139426.

    Shirasawa K, Grant Ingram R. 1997. Currents and turbulent fluxes under the first-year sea ice in Resolute Passage, Northwest Territories, Canada. J Mar Syst, 11(1-2): 21-32, doi: 10.1016/S0924-7963 (96)00024-3.

    Spreen G, Kwok R, Menemenlis D. 2011. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys Res Lett, 38(L19501): 1-6, doi: 10.1029/2011GL048970.

    Zhao J P, Barber D, Zhang S G, et al. 2018. Record low sea-ice concentration in the central Arctic during summer 2010. Adv Atmos Sci, 35(1): 106-115, doi: 10.1007/s00376-017-7066-6.

    22 July 2019;

    27 November 2019;

    6 March 2020

    10.13679/j.advps.2019.0026

    : Zu Y H, Lu P, Yu M, et al. Laboratory experimental study of water drag force exerted on ridge keel. Adv Polar Sci, 2020, 31(1): 36-42,

    10.13679/j.advps.2019.0026

    , E-mail: lupeng@dlut.edu.cn

    亚洲国产欧美人成| 中文字幕亚洲精品专区| 51国产日韩欧美| 97在线人人人人妻| 网址你懂的国产日韩在线| 蜜臀久久99精品久久宅男| 国产男女内射视频| 在现免费观看毛片| 亚洲av成人精品一区久久| 国产黄片美女视频| 亚洲综合色惰| 最近手机中文字幕大全| 99热这里只有是精品50| 三级国产精品欧美在线观看| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 天堂网av新在线| 国产男女超爽视频在线观看| 日韩欧美精品v在线| 精品午夜福利在线看| 黄色怎么调成土黄色| av女优亚洲男人天堂| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 久久99热这里只频精品6学生| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 22中文网久久字幕| 国产亚洲91精品色在线| 人妻少妇偷人精品九色| kizo精华| 国产午夜精品久久久久久一区二区三区| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 亚洲国产精品999| 亚洲av国产av综合av卡| 视频中文字幕在线观看| 亚洲精品国产av蜜桃| 亚洲在久久综合| 久久99精品国语久久久| 久久99热这里只频精品6学生| 欧美3d第一页| 黄色一级大片看看| 日日撸夜夜添| 中文乱码字字幕精品一区二区三区| 男女那种视频在线观看| 美女脱内裤让男人舔精品视频| 草草在线视频免费看| av国产精品久久久久影院| 成人二区视频| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 国产精品久久久久久久久免| 亚洲国产日韩一区二区| av免费观看日本| 天美传媒精品一区二区| 午夜精品国产一区二区电影 | 男女下面进入的视频免费午夜| av国产精品久久久久影院| 91精品国产九色| 在线精品无人区一区二区三 | 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 久久国产乱子免费精品| 一区二区三区四区激情视频| 欧美xxxx性猛交bbbb| 男人狂女人下面高潮的视频| 亚洲国产精品成人综合色| 欧美精品国产亚洲| 91久久精品国产一区二区成人| 超碰97精品在线观看| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 精品人妻偷拍中文字幕| 2021天堂中文幕一二区在线观| 成人国产麻豆网| 国产精品三级大全| 欧美成人a在线观看| 国产 精品1| 麻豆成人午夜福利视频| 日韩伦理黄色片| 国产精品三级大全| 久久午夜福利片| 秋霞在线观看毛片| 国产在线一区二区三区精| 日韩成人伦理影院| 中文字幕av成人在线电影| 国产成人免费观看mmmm| 91久久精品国产一区二区三区| 精品久久久精品久久久| 简卡轻食公司| 色视频www国产| 国产日韩欧美亚洲二区| 日韩在线高清观看一区二区三区| .国产精品久久| 亚洲激情五月婷婷啪啪| 久久久久久久久大av| 舔av片在线| 亚洲精品影视一区二区三区av| 在线免费十八禁| 亚洲国产成人一精品久久久| 日韩一区二区视频免费看| 女人久久www免费人成看片| 久久热精品热| 亚洲欧美精品专区久久| 九色成人免费人妻av| 欧美成人一区二区免费高清观看| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 一级毛片久久久久久久久女| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 日韩强制内射视频| 高清毛片免费看| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 久久精品国产自在天天线| 六月丁香七月| 成人欧美大片| 国产一区二区在线观看日韩| 日本一二三区视频观看| 国产精品不卡视频一区二区| 久久99热这里只有精品18| 禁无遮挡网站| 尤物成人国产欧美一区二区三区| 国产欧美亚洲国产| 国产一区亚洲一区在线观看| 又爽又黄无遮挡网站| 国产精品.久久久| 成人国产av品久久久| 国产淫片久久久久久久久| 午夜视频国产福利| 精品国产三级普通话版| 亚洲最大成人手机在线| 国产伦在线观看视频一区| 男女下面进入的视频免费午夜| 一本久久精品| 国产伦理片在线播放av一区| 日日撸夜夜添| 成年免费大片在线观看| 国产精品久久久久久久电影| 欧美国产精品一级二级三级 | 在线观看国产h片| 欧美3d第一页| 在线a可以看的网站| 国产精品秋霞免费鲁丝片| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 日韩欧美精品v在线| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 国产亚洲5aaaaa淫片| 免费观看无遮挡的男女| 精品一区二区三卡| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 国产高清国产精品国产三级 | 国产精品.久久久| 五月玫瑰六月丁香| a级毛色黄片| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 久热久热在线精品观看| 国产爱豆传媒在线观看| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 国产精品福利在线免费观看| 一级毛片我不卡| 人妻 亚洲 视频| 久久精品国产自在天天线| 99久国产av精品国产电影| 免费看不卡的av| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| av在线亚洲专区| 免费av毛片视频| 亚洲成人久久爱视频| 日本熟妇午夜| 国产一区二区亚洲精品在线观看| 黄色视频在线播放观看不卡| 久久久a久久爽久久v久久| 精品国产露脸久久av麻豆| 亚洲伊人久久精品综合| 国产 精品1| 国产成人午夜福利电影在线观看| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 国产探花在线观看一区二区| eeuss影院久久| 欧美一区二区亚洲| 亚洲三级黄色毛片| 免费av毛片视频| 免费黄色在线免费观看| 亚洲经典国产精华液单| 日韩av免费高清视频| 免费看日本二区| 国产午夜福利久久久久久| av在线天堂中文字幕| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 大香蕉97超碰在线| 国产成人精品福利久久| 亚洲内射少妇av| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 2021少妇久久久久久久久久久| 中国美白少妇内射xxxbb| 亚洲国产av新网站| 成年免费大片在线观看| 亚洲av欧美aⅴ国产| 亚洲,一卡二卡三卡| 中文字幕久久专区| 亚洲av.av天堂| a级毛色黄片| 熟女电影av网| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 亚洲精品aⅴ在线观看| 国产高清有码在线观看视频| 免费av观看视频| 日日撸夜夜添| 欧美丝袜亚洲另类| av.在线天堂| 色视频在线一区二区三区| 日本一本二区三区精品| 亚洲怡红院男人天堂| 亚洲欧美日韩另类电影网站 | 麻豆久久精品国产亚洲av| 啦啦啦中文免费视频观看日本| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 男女边摸边吃奶| 97热精品久久久久久| 尾随美女入室| 国产精品人妻久久久影院| 久久精品久久久久久久性| 免费观看av网站的网址| 午夜亚洲福利在线播放| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看| 男女国产视频网站| 18禁动态无遮挡网站| 中文字幕av成人在线电影| 一区二区三区乱码不卡18| 内射极品少妇av片p| 高清av免费在线| 久久精品国产a三级三级三级| 2022亚洲国产成人精品| 午夜爱爱视频在线播放| 在线看a的网站| 亚洲国产精品成人综合色| 久久久欧美国产精品| 成人国产av品久久久| 欧美日韩在线观看h| 久久久久精品性色| 国产午夜福利久久久久久| 69av精品久久久久久| 亚洲人成网站在线观看播放| 国产男女内射视频| 中文在线观看免费www的网站| 深夜a级毛片| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 卡戴珊不雅视频在线播放| 熟女av电影| 国产亚洲91精品色在线| 久久久久久久亚洲中文字幕| 久久99热这里只有精品18| 亚洲精品中文字幕在线视频 | 日韩欧美一区视频在线观看 | 精华霜和精华液先用哪个| 97精品久久久久久久久久精品| 在线天堂最新版资源| 免费大片18禁| 日韩成人伦理影院| 国产高清国产精品国产三级 | 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 老司机影院毛片| 观看美女的网站| 国产在线男女| 亚洲欧洲日产国产| 联通29元200g的流量卡| 777米奇影视久久| 九九爱精品视频在线观看| 久久99蜜桃精品久久| 国产人妻一区二区三区在| 欧美区成人在线视频| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 在线观看国产h片| 男女那种视频在线观看| 欧美精品人与动牲交sv欧美| 欧美国产精品一级二级三级 | 国产精品久久久久久精品电影小说 | 欧美成人午夜免费资源| 日本午夜av视频| 建设人人有责人人尽责人人享有的 | 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 欧美激情国产日韩精品一区| 色视频在线一区二区三区| 免费av观看视频| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 噜噜噜噜噜久久久久久91| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 日韩一区二区三区影片| 国产精品国产av在线观看| 2021天堂中文幕一二区在线观| 在线观看免费高清a一片| 国产色爽女视频免费观看| 亚洲精品成人久久久久久| 午夜福利视频1000在线观看| 成人午夜精彩视频在线观看| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 国内揄拍国产精品人妻在线| 熟女电影av网| 少妇丰满av| 久久午夜福利片| 韩国高清视频一区二区三区| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 丰满乱子伦码专区| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 欧美精品国产亚洲| 日本黄色片子视频| 熟女电影av网| 青春草亚洲视频在线观看| 亚洲图色成人| 22中文网久久字幕| 欧美zozozo另类| 精品一区二区三卡| 美女主播在线视频| 亚洲精品日本国产第一区| 欧美人与善性xxx| 国产成年人精品一区二区| 亚洲成人一二三区av| 精品熟女少妇av免费看| 国产精品精品国产色婷婷| 在线观看人妻少妇| 国产黄频视频在线观看| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 国产一级毛片在线| 午夜福利在线观看免费完整高清在| 久久人人爽av亚洲精品天堂 | 干丝袜人妻中文字幕| 国产精品久久久久久久电影| 我要看日韩黄色一级片| 精品亚洲乱码少妇综合久久| 亚洲精品自拍成人| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 日韩制服骚丝袜av| 国产精品一二三区在线看| 欧美三级亚洲精品| 五月天丁香电影| 午夜福利网站1000一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 久久久色成人| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 久热这里只有精品99| 深夜a级毛片| 国产成人aa在线观看| 在线观看av片永久免费下载| 99热6这里只有精品| 国产亚洲5aaaaa淫片| 日本黄色片子视频| 日韩伦理黄色片| 亚洲不卡免费看| 99热网站在线观看| 国产成人a区在线观看| 亚洲精品乱久久久久久| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 特级一级黄色大片| 国产成人a∨麻豆精品| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 老司机影院成人| 国产女主播在线喷水免费视频网站| 乱系列少妇在线播放| 日日啪夜夜撸| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 国产淫语在线视频| 久久久精品欧美日韩精品| 人人妻人人爽人人添夜夜欢视频 | 国产午夜精品久久久久久一区二区三区| 免费看日本二区| 最新中文字幕久久久久| 国产综合懂色| 2018国产大陆天天弄谢| 欧美高清成人免费视频www| 亚洲av一区综合| 天天一区二区日本电影三级| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 国产免费福利视频在线观看| 一级黄片播放器| 精品人妻视频免费看| 特大巨黑吊av在线直播| 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 亚洲精品国产成人久久av| 高清视频免费观看一区二区| 久久97久久精品| 国产在线男女| 亚洲欧洲日产国产| 人妻一区二区av| 免费观看无遮挡的男女| 夜夜看夜夜爽夜夜摸| 久久久久精品性色| 欧美日韩在线观看h| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看a级毛片全部| 国产精品无大码| 免费人成在线观看视频色| 少妇人妻久久综合中文| 最近最新中文字幕大全电影3| 亚洲av男天堂| 亚洲国产精品国产精品| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 中文资源天堂在线| 亚洲色图综合在线观看| 免费av不卡在线播放| 能在线免费看毛片的网站| 国产精品久久久久久久电影| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 人妻少妇偷人精品九色| av在线观看视频网站免费| 免费看日本二区| 日韩精品有码人妻一区| av在线app专区| 国产一区亚洲一区在线观看| 日韩欧美一区视频在线观看 | 欧美人与善性xxx| 欧美激情在线99| av天堂中文字幕网| 在现免费观看毛片| 亚洲一区二区三区欧美精品 | 精华霜和精华液先用哪个| 久久久久久久国产电影| 国产成人午夜福利电影在线观看| 99热网站在线观看| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 在线免费十八禁| 高清午夜精品一区二区三区| 国产精品久久久久久av不卡| 久热这里只有精品99| 97超视频在线观看视频| 久久久久久久国产电影| 日产精品乱码卡一卡2卡三| 国产精品嫩草影院av在线观看| 国产黄片美女视频| 视频中文字幕在线观看| 美女被艹到高潮喷水动态| 中国三级夫妇交换| 欧美高清性xxxxhd video| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 国产精品一区二区性色av| 性色avwww在线观看| 久久久久久久久久久免费av| 观看美女的网站| 尾随美女入室| av一本久久久久| 久久精品熟女亚洲av麻豆精品| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 激情 狠狠 欧美| 免费看光身美女| 亚洲精品影视一区二区三区av| 免费观看av网站的网址| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 国产一级毛片在线| 日日撸夜夜添| 欧美高清成人免费视频www| 精品少妇久久久久久888优播| 人体艺术视频欧美日本| 亚洲欧美中文字幕日韩二区| 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| av在线播放精品| 插逼视频在线观看| 亚洲人与动物交配视频| 欧美日韩精品成人综合77777| videos熟女内射| 亚洲精品国产成人久久av| 久久女婷五月综合色啪小说 | av天堂中文字幕网| 少妇人妻精品综合一区二区| 一区二区av电影网| 国产成人午夜福利电影在线观看| 欧美成人一区二区免费高清观看| 汤姆久久久久久久影院中文字幕| 97在线人人人人妻| 99九九线精品视频在线观看视频| 日本免费在线观看一区| 热re99久久精品国产66热6| 97超视频在线观看视频| 内射极品少妇av片p| 热99国产精品久久久久久7| 日本色播在线视频| 观看免费一级毛片| 午夜免费鲁丝| 永久免费av网站大全| 成人亚洲精品av一区二区| 一级片'在线观看视频| 亚洲最大成人中文| 人妻少妇偷人精品九色| 亚洲欧美成人综合另类久久久| 波多野结衣巨乳人妻| 好男人视频免费观看在线| 午夜福利在线在线| 真实男女啪啪啪动态图| 精品少妇久久久久久888优播| 亚洲av日韩在线播放| 亚洲av不卡在线观看| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 又大又黄又爽视频免费| 午夜视频国产福利| 插阴视频在线观看视频| 91aial.com中文字幕在线观看| 午夜精品一区二区三区免费看| 久久97久久精品| 中文字幕av成人在线电影| 精品亚洲乱码少妇综合久久| 深爱激情五月婷婷| av在线蜜桃| 中文字幕免费在线视频6| 久久久久久久午夜电影| 精品国产一区二区三区久久久樱花 | 18禁在线无遮挡免费观看视频| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 精品国产露脸久久av麻豆| 国产精品伦人一区二区| 麻豆国产97在线/欧美| av天堂中文字幕网| 欧美3d第一页| 精品久久久久久久久av| 成人亚洲精品一区在线观看 | 日韩 亚洲 欧美在线| 日本与韩国留学比较| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 丰满乱子伦码专区| 人人妻人人爽人人添夜夜欢视频 | 麻豆成人av视频| 亚洲精品影视一区二区三区av| 纵有疾风起免费观看全集完整版| 少妇人妻精品综合一区二区| 精品久久久久久久久亚洲| tube8黄色片| 日韩强制内射视频| 成年版毛片免费区| 精品一区二区三区视频在线| 久久99蜜桃精品久久| 国产一级毛片在线| 亚洲一级一片aⅴ在线观看| 小蜜桃在线观看免费完整版高清| 女人十人毛片免费观看3o分钟| 国内精品美女久久久久久| 成人二区视频| 黑人高潮一二区| 国产伦理片在线播放av一区| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 国产精品伦人一区二区| 国产一区亚洲一区在线观看| 欧美+日韩+精品|