• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction

    2020-03-27 06:42:50ShuhuaDuanShufengWuLeiWangHoudeSheJingweiHuangQizhaoWang
    物理化學(xué)學(xué)報(bào) 2020年3期

    Shuhua Duan , Shufeng Wu , Lei Wang ,*, Houde She , Jingwei Huang , Qizhao Wang ,*

    1 College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou 730070, P. R. China.2 State Key Laboratory of Petroleum and Petrochemical Pollution Control and Processing, Lanzhou Petrochemical Research Center,PetroChina, Lanzhou 730060, P. R. China.

    Abstract: The photocatalytic reduction of CO2 has attracted considerable attention owing to the dual suppression of environmental pollution and energy shortage. The technology uses solar energy to convert carbon dioxide into hydrocarbon fuel, which is of great significance for achieving the carbon cycle. The development of low-cost photocatalytic materials is critical to achieving efficient solar energy to fuels conversion. One of the most commonly employed photocatalysts is TiO2. However, it suffers from broad band gap as well as the recombination of photo-excited holes and electron.Hence, in this work, we report the photochemical reduction of CO2 using rodlike PCN-222(Cu)/TiO2 composites as photocatalyst through a simple hydrothermal method, in which TiO2 nanoparticles are anchored at the interface of the SiC rod PCN-222(Cu). Multiple characterization techniques were used to analyze the structure, morphology,and properties of the PCN-222(Cu)/TiO2 composite. A series of characterizations including X-ray diffraction (XRD),scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy,photo-electrochemical, and photoluminescence (PL) confirm the successful preparation of PCN-222(Cu)/TiO2 composites.SEM reveals that the TiO2 nanoparticles are uniformly distributed on the surface of the rod-shaped PCN-222(Cu)/TiO2.XRD results show that PCN-222(Cu) and PCN-222(Cu)/TiO2 composite photocatalysts with good crystal structure were successfully synthesized. According to the DRS results, the prepared PCN-222(Cu)/TiO2 composite samples exhibit characteristic absorption peaks of metalloporphyrins in the visible region. PL spectroscopy, transient photocurrent response,and electrochemical impedance spectroscopy further confirm that the rod-like PCN-222(Cu)/TiO2 samples have high electron-hole pair separation efficiency. By controlling the mass ratio of PCN-222(Cu) and TiO2, the photocatalytic CO2 reduction performance test shows that the 10% PCN-222(Cu)/TiO2 composite achieves optimal catalytic performance,yielding 13.24 μmol·g-1·h-1 CO and 1.73 μmol·g-1·h-1 CH4, respectively. All the rod-like PCN-222(Cu)/TiO2 composites exhibit better photocatalytic CO2 activity than that of TiO2 nanoparticles or PCN-222(Cu) under the illumination of xenon lamps, which is attributed to charge transport and electron-hole separation capabilities. After three test cycles, the catalytic activity of PCN-222(Cu)/TiO2 photocatalyst was virtually unchanged. The reduction yield of the catalyst increased for 8 h under continuous illumination, indicating that PCN-222(Cu)/TiO2 composites have acceptablestability. The estimation of the band gap curve and the Mote-Schottky curve test show that the lowest unoccupied molecular orbital position of PCN-222(Cu) is more negative than the TiO2 of the conduction band; hence, a possible photocatalytic reaction mechanism of the PCN-222(Cu)/TiO2 composite is proposed. This study provides a new strategy for the integration of metal-organic frameworks and oxide semiconductors to construct efficient photocatalytic systems.

    Key Words: Composite; Metal-organic frameworks; PCN-222(Cu); Photocatalytic CO2 reduction; TiO2

    1 Introduction

    A large amount of fossil fuel causes the concentration of carbon dioxide in the atmosphere to increase, and subsequently bring up a series of disasters such as global climate change and greenhouse effect1,2. In recent decades, a number of technologies have been used for the recovery of carbon dioxide.In particular, the photocatalytic technology not only abates the concentration of carbon dioxide in the atmosphere, but alleviates the energy shortage, which has attracted wide attention of researchers3. Photocatalytic carbon dioxide reduction technology employing carbon dioxide as raw material to produce valuable chemical products and fuels is one of the most ideal ways to achieve carbon neutral circulation, displaying great significance for the protection of the natural environment for sustainable development4,5. Since the semiconductor is sensitive to light, it is used as a catalyst for photocatalytic reduction reaction to accelerate the photocatalytic reaction process. At present, common semiconductor materials such as TiO26-9, g-C3N410-12, CdS13-15and BiVO416,etc. have been used in photocatalytic reaction technology.

    Carbon dioxide is a linear carbon with significantly thermodynamical stability. The valence of carbon is the highest oxidation state, chemically inert and difficult to be activated. The adsorption and activation of carbon dioxide molecules in photocatalysis is a key step in the catalytic reaction17-19. TiO2has been widely used as a catalyst for photocatalytic reaction because of its good chemical stability, non-toxicity and low cost.However, because the photogenerated electron and holes over TiO2are easily recombined, their photocatalytic reactivity is highly affected. Therefore, in order to improve the catalytic activity of the catalyst, the common methods include ion doping,noble metal deposition, dye sensitization, semiconductor material recombinationetc.20-27. The metal organic frameworks(MOFs) is a crystalline porous material bearing a periodic structure connected by metal cluster and an organic linker through a coordinate bond28. The MOF material holds the advantages of adjustable structure, high surface area and high selectivity, and extensively explored as a catalyst for photocatalytic reaction. Among them, metalloporphyrin-based PCN-222 possesses high light-capturing ability, and the porous structure that contributes to CO2absorption. With broadened light-havesting as well enriched CO2molecules around the catalytic center Zr6, its photocatalytic efficiency is impressive rather than many other MOFs29-32. Also, studies have shown that the electron trap state exhibited in PCN-222 can effectively suppress electron-hole recombination17,33-35.

    In present work, we design and construct a novel nanorod PCN-222(Cu)/TiO2viaa hydrothermal method. The PCN-222(Cu)/TiO2nanostructures show more excellent photocatalytic performance than TiO2under illumination of 300 W Xe lamp, which can be attributed a significantly advantageous effect on the charge separation efficiency and light absorption ability. This study provides new insights into MOF/TiO2nanomaterials with different morphologies for photocatalytic CO2reduction. In addition, a possible photocatalytic CO2reduction mechanism and the electrons migration path of the PCN-222(Cu)/TiO2composite are also proposed.

    2 Experimental and computational section

    2.1 Material synthesis

    Pyrrole (C4H5N, 99.0%), 4-formylbenzoic acid (C8H6O3,99.0%) and propionic acid (C3H4O2, 99.0%) were purchased from Damas-beta. Benzoic acid (C7H6O2, 99.9%), copper (II)chloride dihydrate (CuCl2·2H2O, 98%), zirconium (IV) chloride(ZrCl4, 98%), terephthalic acid (C8H6O4, 98%) and titanium butoxide (C16H36O4Ti, 98%) were all purchased from Sinopharm Chemical Reagent Co. Ltd. All reagents were analytical grade and no further purification was required except for pyrrole.

    2.1.1 Synthesis of pure PCN-222 (Cu)

    The synthesis of copper porphyrins (CuTCPP) is based on methods already reported in the laboratory36. 10 mg of zirconium tetrachloride (ZrCl4), a volume ratio of benzoic acid and distilled water, and 10 mg of CuTCPP were sequentially added to a beaker containing 2 mL of DMF solution, and stirring for 30 min. The mixture was transferred to a 50 mL teflon-lined steel autoclave and heated at 120 °C for 24 h. After cooling to room temperature, it was centrifuged to give a red solid. The solid was washed several times with DMF and ethanol, and then dried in an oven at 80 °C for 12 h.

    2.1.2 Synthesis of PCN-222(Cu)/TiO2

    The synthesis of TiO2is based on methods according to our previous method37. PCN-222(Cu)/TiO2composites were prepared by hydrothermal method, as shown in Fig. 1. First, 0.1 g of TiO2nanoparticles were dissolved in 5 mL of N, Ndimethylformamide (DMF) solution and continuously stirring,followed by addition of 0.005 g, 0.01 g and 0.015 g of PCN-222(Cu). The mixture kept stirring at room temperature for 30 min,and then ultrasonicated for 10 min. The resulting solution was placed in a 50 mL polytetrafluoroethylene lining, sealed in a steel autoclave and heated in an oven at 120 °C for 24 h. The final product was collected by natural cooling to room temperature, washed several times and dried in an oven at 80 °C for 12 h. The obtained PCN-222(Cu)/TiO2samples of different mass ratios were labeled as 5%, 10%, and 15% PCN-222(Cu)/TiO2according to the mass ratio of PCN-222(Cu).

    2.2 Material characterization

    Fig. 1 Illustration of the synthesis of PCN-222(Cu)/TiO2 composites by hydrothermal method.

    X-ray diffraction patterns (XRD) analysis was recorded on a Rigaku D/Max-2400/PC with scattering angle ranging from 5°to 60°. The scanning electron microscopy (JEOL,JSM-6701E)including elements mapping were performed to observe the morphology and structure of all composites. Fourier transform infrared (FT-IR) spectroscopy was performed on a Nicolet NEXUS 670 spectrometer (UnitedStates Thermo Fisher Scientific). Ultraviolet visible diffuse reflectance spectroscopy(DRS) was measured by the Beijing of China PuXinTU-1901 UV-Vis spectrophotometer equipped with an integrating sphere attachment. Photoluminescence (PL) spectroscopy of the samples was performed on a PE LS-55 fluorescence spectrophotometer (SHIMADZU).

    2.3 Photoelectrochemical performance

    The photoelectrochemical performance measurements were performed on CHI 660D electrochemical system with threeelectrode, which used FTO glass as working electrode, platinum as the counter electrode and Ag/AgCl as a reference electrode.0.5 mol·L-1Na2SO4was used as the electrolyte solution. All samples were backlit while measuring and the FTO glass (1 cm ×1 cm). A CEL-HXF300 xenon lamp was served as the light source for the measurement38.

    2.4 Photocatalytic activity

    The performance of photocatalytic CO2reduction is detected in a steel reaction system. First, 2 mL of distilled water was added to a 50 mL stainless steel reactor, and then 0.1 g of the sample was accurately weighed into a weighing bottle (40 × 25 mm) and placed in the reactor. The photocatalytic reactor was sealed and evacuated to remove internal air, followed by high purity CO2gas into the reactor. This step was repeated three times to ensure complete removal of air from the reactor to reduce experimental error. Finally, the circulating cooling water pump system was turned on, and the reactor was placed under a 300 W xenon lamp (Beijing Au light Co., Ltd. CELHXF300/CEL-HXUV300). After the photocatalytic reaction was continuously irradiated for one hour, the gas was extracted by a gas injector and injected into a gas chromatograph, and the content of the reduced products CO and CH4was quantitatively determined by a flame ionization detector (FID). During the course of the photocatalytic reaction, the reactor was kept sealing from start to end and the pressure was kept constant, and the circulating cooling system kept the reactor at room temperature.

    3 Results and discussion

    Fig. 2 shows the morphology and microstructure of the materials PCN-222(Cu) and PCN-222(Cu)/TiO2by scanning electron microscope (SEM). Fig. 2a is an SEM image of pure PCN-222 (Cu). It can be observed from the image that PCN-222(Cu) exhibits a more uniform rod-like morphology and a smooth surface, and its morphology is similar to that of a cylindrical magnet. Fig. 2b is a SEM image of PCN-222(Cu)/TiO2composite. TiO2is uniformly distributed on the surface of PCN-222(Cu), while partially agglomerated TiO2nanoparticles. It can be observed that the combination of PCN-222(Cu) and TiO2can effectively reduce the severe agglomeration of TiO2nanoparticles. The chemical composition of the PCN-222(Cu)/TiO2nanocomposite was determined by element mapping spectroscopy, demonstrating the presence of C, O, N,Zr, Ti and Cu in PCN-222(Cu)/TiO2nanocomposites.

    The crystal structure of the nanocomposite was investigated using X-ray diffraction (XRD) analysis. Fig. 3a is a XRD pattern of simulated PCN-222 and PCN-222(Cu). It can be seen that the XRD diffraction peak of PCN-222 obtained by the crystal simulation software is consistent with the XRD diffraction peak of the laboratory prepared PCN-222(Cu), suggesting that PCN-222 (Cu) is successfully prepared. Fig. 3b presents the XRD pattern of TiO2and PCN-222(Cu)/TiO2composites. As can be seen from the figure, there is only a pure anatase type of TiO2. In addition to the anatase diffraction peak of TiO2anatase in the composite, the characteristic diffraction peak of PCN-222(Cu)appeared at 5°-10°. The XRD results show that PCN-222(Cu)/TiO2photocatalyst has been successfully prepared by simple hydrothermal method.

    Fig. 4 presents the Fourier transform infrared (FTIR) spectra of TiO2, PCN-222(Cu) and 10% PCN-222(Cu)/TiO2,respectively. The broad peak at 3400 cm-1in all samples is attributable to the stretching vibrational peak of the hydroxyl group, which represents the presence of bound water and free water in the sample39. The presence of vibration peak of ―COOH and a vibrational peak of Cu―N at 1000 cm-1in the porphyrin structure indicates the presence of CuTCPP compound in the prepared PCN-222(Cu) structure. The vibrational peaks at 1800-1200 cm-1are attributable to the symmetrical vibration and asymmetric vibrational peaks of the carboxyl groups in the PCN-222(Cu) and PCN-222(Cu)/TiO2composites25,40. After the copper metal is coordinated in the porphyrin structure, the vibrational deformation of the nitrogen ring is enhanced, giving a Cu―N stretching vibration characteristics at 1000 cm-141. Moreover, the PCN-222(Cu)and PCN-222(Cu)/TiO2strength is enhanced at 1800-1200 cm-1, which may be attributed to the ―COOH vibration peak in the porphyrin compound, demonstrating the successful preparation of the PCN-222(Cu)/TiO2composite.

    Fig. 2 SEM image of (a) PCN-222(Cu), (b) PCN-222(Cu)/TiO2 nanocomposite, and the corresponding elemental mapping images of PCN-222(Cu)/TiO2.

    Fig. 3 XRD patterns of TiO2, PCN-222(Cu), PCN-222(Cu)/TiO2.

    Fig. 4 FT-IR spectra the synthesis TiO2, PCN-222(Cu) and 10% PCN-222(Cu)/TiO2.

    Fig. 5 shows the UV-visible diffuse reflectance (DRS) to determine the light absorption capacity of the samples.Compared with the absorption edge of TiO2, the absorption edge of PCN-222(Cu)/TiO2composites did not change, but the characteristic absorption peaks of S-band and Q-band metal porphyrin appears in the visible region, which proved PCN-222(Cu) successfully combined with TiO241,42. The potential position of PCN-222(Cu) was measured by Motty-Schottky (MS) curves (Fig. 5c). The positive slope indicates that the rod PCN-222(Cu) isn-type semiconductor. According to the M-S curve, the flat band potential of PCN-222(Cu) relative to the Ag/AgCl electrode is approximately -0.55 V. The DRS diagram exhibits the PCN-222(Cu) band gap value is 1.73 eV by intercepting the tangent of (Ahv)2and photon energy. Hence, the LUMO and HOMO positions of PCN-222(Cu) are at -0.55 V and 1.18 V, respectively.

    Fig. 6a shows the Photoluminescence (PL) spectra of sample TiO2, PCN-222(Cu) and PCN-222(Cu)/TiO2. The catalyst generates photogenerated electrons and holes after being excited by light, and afterwards electrons and holes will recombine to generate fluorescence, so that the fluorescence intensity can effectively reflect the separation efficiency of electrons and holes of the photocatalyst. From the test results, the pure TiO2exhibits the strongest fluorescence intensity among the three samples. The intensity of PCN-222(Cu)/TiO2is between PCN-222(Cu) and TiO2, indicating PCN-222(Cu)/TiO2composite material can effectively improve the separation efficiency of photoinduced charges, and thereby improving the photocatalytic activity of the catalyst.

    Next, we conducted a series of photoelectrochemical (PEC)performance measurements to gain insight into the photocatalytic CO2reduction performance of rod-shaped PCN-222(Cu)/TiO2composites. Fig. 6b-d shows the PEC properties of TiO2and PCN-222(Cu)/TiO2to investigate the effect of the charge separation efficiency of composites. Fig. 6b shows that the transient photocurrent spectra of PCN-222(Cu)/TiO2is significantly enhanced compared with TiO2, indicating that the composite can effectively improve the separation efficiency of photogenerated electron holes. On the other hand, the electrochemical impedance spectroscopy can effectively reflect the charge carriers transport efficiency of the PCN-222(Cu)/TiO2photocatalyst, and the composite manifests the smallest arc radius in the spectrum, which is further reflected in the lowest resistance. Fig. 6b, c are electrochemical impedance spectra(EIS) of TiO2and PCN-222(Cu)/TiO2. The EIS plots show a significant decrement of electrochemical impedance value from TiO2and PCN-222(Cu)/TiO2electrode. The semicircle in the PCN-222(Cu)/TiO2is smaller than TiO2electrode in both light and dark conditions, suggesting that the PCN-222(Cu)/TiO2benefit the transfer and separation of photo-induced carriers in the interface between semiconductor and electrolyte43.Therefore, the composite material PCN-222(Cu)/TiO2can impressively reinforce photocatalytic CO2reduction performance.

    Fig. 5 (a) UV-Vis diffuse reflectance spectra of TiO2 and PCN-222(Cu)/TiO2, (b) estimation of band gap energies and UV-Vis diffuse reflectance spectra of PCN-222(Cu) (inset), (c) Mott-Schottky plot of the PCN-222(Cu) electrode (0.5 mol·L-1 Na2SO4).

    Fig. 6 (a) PL spectra of the various components, (b) the photocurrent-time (I-t) curves, Nyquist plots of EIS measurements on the TiO2 and PCN-222 (Cu)/TiO2 (a) in the dark and (b) light irradiation (0.5 mol·L-1 Na2SO4).

    Fig. 7 (a)The dependence of TiO2 and different ratios of PCN-222(Cu)/TiO2 and Xe lamps on total CO/CH4 release in 1 h. (b) Three cycles of CO2 reduction over the 10%PCN-222(Cu)/TiO2. (c) Total CO/CH4 evolution amount of 10%PCN-222(Cu)/TiO2 with Xe lamp within 8 h.

    The photocatalytic performance characterization of the prepared rod-shaped PCN-222(Cu)/TiO2composite was evaluated under irradiation with a 300 W Xe lamp. As shown in Fig. 7a, a series of different ratios of PCN-222(Cu)/TiO2composites exhibit different CO2conversion efficiencies,showing a tendency to increase first and then decrease. All PCN-222(Cu)/TiO2samples show higher CO2reduction photocatalytic activity than pure TiO2. In all prepared composite materials, the composite 10% PCN-222(Cu)/TiO2had the best catalytic rate, and the yield was 13.24 μmol·g-1·h-1CO and 1.73 μmol·g-1·h-1CH4, respectively. In terms of the yield of the reduced product CO, 10% PCN-222(Cu)/TiO2is three times that of TiO2. The high photocatalytic activity is mainly due to the combination of PCN-222(Cu) and TiO2, which improves the carrier transmission efficiency and PCN-222(Cu) has high visible light absorption capacity. In addition, the synergistic effect of the PCN-222(Cu)/TiO2composite effectively improves the dispersibility of the TiO2nanoparticles and provides more opportunities for the contacts between CO2and the heterocatalyst33. The amount of reduced product observed remains essentially unchanged after three catalytic cycles,indicating that the stability of the 10% PCN-222(Cu)/TiO2composite is better for photocatalytic CO2reduction (Fig. 7b).Fig. 7c shows the continuous 8 h light performance test on 10%PCN-222(Cu)/TiO2. The results reveals that the yields of CO and CH4increases, indicating that the photocatalyst remains catalytically active throughout the test.

    Fig. 8 The mechanism of electron/holes transfer and separation of the PCN-222(Cu)/TiO2 composite.

    The conduction band (CB) level of TiO2is -0.3 V, while the valence band (VB) potential of TiO2is calculated as 2.75 eV according to the previous work. Based on the above characterization and photocatalytic performance test results, we proposed a possible reaction mechanism for PCN-222(Cu)/TiO2photocatalysis, as shown in Fig. 8. When 300 W Xe lamp was irradiated on the surface of the catalyst, both PCN-222(Cu) and TiO2are excited to generate electrons and holes. At the same time, since the lowest unoccupied molecular orbital (LUMO)potential of PCN-222(Cu) is more negative than the CB potential of TiO2, the electrons on the LUMO of PCN-222(Cu) are directly transferred to the CB of TiO2with initiation of reduction on the surface of TiO2. The holes on the VB of TiO2are transferred to the highest occupied molecular orbital (HOMO) position of PCN-222(Cu), which can oxidize H2O to generate ·OH radicals and release O2and H+44,45. PCN-222(Cu)/TiO2composite improves the separation efficiency of electron holes, prolongs the lifetime of photogenerated carriers, and effectively ameliorates the photocatalytic CO2reduction activity of the composites.

    4 Conclusions

    A series of PCN-222(Cu)/TiO2composites with different ratios of rod-like PCN-222(Cu) and TiO2were prepared by hydrothermal method. The samples were characterized by XRD,SEM, DRS, FT-IR, PEC, PL,etc., indicating that TiO2is integrated on the surface of PCN-222(Cu). The photocatalytic CO2reduction performance of PCN-222(Cu)/TiO2were tested.It is found that 10% PCN-222(Cu)/TiO2has the highest photocatalytic activity, and the photocatalytic CO2reduction product formation rate is as follows: CO yield was 13.24 μmol·g-1·h-1; CH4yield was 1.73 μmol·g-1·h-1. Cyclic stability tests show that PCN-222(Cu)/TiO2has good catalytic stability.The result of this work provides a new idea based on the complexation of rod-shaped metalloporphyrin PCN-222(Cu)with semiconductor materials, which can effectively promote the separation of photogenerated charges and enhance the photocatalytic reduction activity.

    内地一区二区视频在线| 国产精品国产av在线观看| 亚洲真实伦在线观看| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 欧美变态另类bdsm刘玥| 成年av动漫网址| 久久人人爽人人片av| 99九九线精品视频在线观看视频| 亚洲综合色惰| 国产精品.久久久| 国产淫语在线视频| 又黄又爽又刺激的免费视频.| 黄色视频在线播放观看不卡| 97在线视频观看| 五月伊人婷婷丁香| av天堂中文字幕网| 在线观看人妻少妇| 麻豆乱淫一区二区| 中文字幕av电影在线播放| 极品人妻少妇av视频| 这个男人来自地球电影免费观看 | 成人毛片a级毛片在线播放| 欧美日本中文国产一区发布| 成年女人在线观看亚洲视频| 麻豆精品久久久久久蜜桃| 久久影院123| 久久精品久久久久久噜噜老黄| 肉色欧美久久久久久久蜜桃| 一个人免费看片子| 男人爽女人下面视频在线观看| 在线观看三级黄色| 日韩av不卡免费在线播放| 久久女婷五月综合色啪小说| 亚洲国产毛片av蜜桃av| 啦啦啦啦在线视频资源| 国产片特级美女逼逼视频| 高清不卡的av网站| 黑人猛操日本美女一级片| 少妇丰满av| 国产欧美日韩综合在线一区二区 | 亚洲国产精品一区三区| 成人国产av品久久久| 久久免费观看电影| 国产有黄有色有爽视频| 日韩熟女老妇一区二区性免费视频| 精品一品国产午夜福利视频| 欧美成人精品欧美一级黄| 亚洲精品日本国产第一区| 久久精品久久精品一区二区三区| 99久久中文字幕三级久久日本| 久久免费观看电影| 亚洲电影在线观看av| 九草在线视频观看| 伦精品一区二区三区| 亚洲国产毛片av蜜桃av| 午夜精品国产一区二区电影| 欧美日韩av久久| 婷婷色综合www| 我要看日韩黄色一级片| 日日撸夜夜添| 中文欧美无线码| 国产av精品麻豆| 中文资源天堂在线| 丝袜喷水一区| 久久久久久久大尺度免费视频| 国产精品熟女久久久久浪| 在线观看美女被高潮喷水网站| 国产精品国产三级国产av玫瑰| 自拍偷自拍亚洲精品老妇| 波野结衣二区三区在线| 久久亚洲国产成人精品v| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦啦在线视频资源| 中文字幕精品免费在线观看视频 | 亚洲美女搞黄在线观看| 51国产日韩欧美| 久久久久网色| 亚洲高清免费不卡视频| av天堂久久9| 日日撸夜夜添| 成人黄色视频免费在线看| 永久免费av网站大全| 岛国毛片在线播放| 亚洲美女搞黄在线观看| 国产精品熟女久久久久浪| 水蜜桃什么品种好| 国产免费视频播放在线视频| 一级毛片电影观看| 18禁裸乳无遮挡动漫免费视频| 亚洲天堂av无毛| 最新的欧美精品一区二区| 男女免费视频国产| av天堂中文字幕网| 欧美+日韩+精品| 国产午夜精品一二区理论片| 老女人水多毛片| 久久久久久久大尺度免费视频| 丰满饥渴人妻一区二区三| 日韩亚洲欧美综合| av国产久精品久网站免费入址| 天美传媒精品一区二区| 精品一区在线观看国产| xxx大片免费视频| 国产精品秋霞免费鲁丝片| 日韩中字成人| 免费观看a级毛片全部| 亚洲真实伦在线观看| 91久久精品电影网| 欧美日韩一区二区视频在线观看视频在线| 黄色配什么色好看| 久久久久久久久久成人| 两个人免费观看高清视频 | 久久免费观看电影| 日韩欧美 国产精品| 国产精品久久久久久久电影| 黑丝袜美女国产一区| 女性生殖器流出的白浆| 岛国毛片在线播放| 国产成人精品福利久久| 成年人免费黄色播放视频 | .国产精品久久| 高清视频免费观看一区二区| 国产精品人妻久久久久久| 男人添女人高潮全过程视频| 精品亚洲成国产av| 熟妇人妻不卡中文字幕| 亚洲av不卡在线观看| 亚洲精品成人av观看孕妇| 在线 av 中文字幕| 欧美 亚洲 国产 日韩一| 久久午夜福利片| 男男h啪啪无遮挡| 精品少妇久久久久久888优播| 成人漫画全彩无遮挡| 亚洲内射少妇av| 亚洲精品乱久久久久久| 精品国产一区二区久久| 中文欧美无线码| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 国产精品一区二区性色av| 久久女婷五月综合色啪小说| 人妻制服诱惑在线中文字幕| 尾随美女入室| 秋霞伦理黄片| 国产在线男女| 久久狼人影院| 99久久精品一区二区三区| 精品一区二区三卡| videos熟女内射| 十八禁高潮呻吟视频 | 国产精品久久久久久久电影| 亚洲欧美精品自产自拍| 免费观看av网站的网址| 欧美日韩一区二区视频在线观看视频在线| 男人添女人高潮全过程视频| 国产在线一区二区三区精| 少妇人妻精品综合一区二区| 日韩一区二区三区影片| 国产黄色视频一区二区在线观看| 国产精品一区www在线观看| 国产老妇伦熟女老妇高清| 狂野欧美白嫩少妇大欣赏| 丁香六月天网| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲高清精品| 熟妇人妻不卡中文字幕| 亚洲av在线观看美女高潮| 欧美97在线视频| 秋霞伦理黄片| 少妇被粗大的猛进出69影院 | 久久99一区二区三区| 成人毛片a级毛片在线播放| av播播在线观看一区| 久久精品国产自在天天线| www.色视频.com| 麻豆精品久久久久久蜜桃| a级毛色黄片| 国产欧美日韩一区二区三区在线 | 国产精品麻豆人妻色哟哟久久| 国产深夜福利视频在线观看| 新久久久久国产一级毛片| 老女人水多毛片| 欧美变态另类bdsm刘玥| 美女脱内裤让男人舔精品视频| 欧美日韩一区二区视频在线观看视频在线| www.av在线官网国产| 女性生殖器流出的白浆| 成人毛片60女人毛片免费| 黑丝袜美女国产一区| 男女啪啪激烈高潮av片| 亚洲欧洲国产日韩| 国产精品三级大全| 日本爱情动作片www.在线观看| 婷婷色综合www| 乱系列少妇在线播放| 在线 av 中文字幕| 三级国产精品片| 亚洲av不卡在线观看| 一级爰片在线观看| 人妻 亚洲 视频| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 22中文网久久字幕| 最新中文字幕久久久久| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 亚洲高清免费不卡视频| 亚洲国产精品成人久久小说| 乱系列少妇在线播放| 国产乱来视频区| 热re99久久精品国产66热6| 99久久人妻综合| 少妇精品久久久久久久| 亚洲欧美成人精品一区二区| 尾随美女入室| 在线播放无遮挡| 蜜桃在线观看..| av有码第一页| 欧美xxⅹ黑人| 国产极品天堂在线| 日韩中字成人| 一区在线观看完整版| 爱豆传媒免费全集在线观看| 国国产精品蜜臀av免费| 丰满迷人的少妇在线观看| 久久99热这里只频精品6学生| 国精品久久久久久国模美| 中文字幕精品免费在线观看视频 | 人人妻人人澡人人爽人人夜夜| 色94色欧美一区二区| 永久网站在线| 2022亚洲国产成人精品| 久久久久精品久久久久真实原创| 少妇的逼好多水| 日韩成人av中文字幕在线观看| 美女内射精品一级片tv| 国产 精品1| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费 | 日韩一区二区视频免费看| 精品一品国产午夜福利视频| av有码第一页| 国产免费福利视频在线观看| 3wmmmm亚洲av在线观看| 亚洲精品乱久久久久久| 99九九线精品视频在线观看视频| 日日爽夜夜爽网站| 下体分泌物呈黄色| 中文字幕亚洲精品专区| 涩涩av久久男人的天堂| 亚洲精华国产精华液的使用体验| 欧美激情极品国产一区二区三区 | 成人影院久久| 国产亚洲91精品色在线| 欧美日韩视频高清一区二区三区二| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区国产| 99久久人妻综合| 99久久精品一区二区三区| 午夜福利,免费看| 国产av码专区亚洲av| 亚洲美女黄色视频免费看| 亚洲熟女精品中文字幕| 女人精品久久久久毛片| 少妇的逼好多水| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 乱码一卡2卡4卡精品| 熟女av电影| 国产有黄有色有爽视频| 亚洲一区二区三区欧美精品| xxx大片免费视频| 久久午夜福利片| 亚洲国产欧美日韩在线播放 | 久久热精品热| 久久精品夜色国产| 亚洲av综合色区一区| 中文字幕久久专区| 大话2 男鬼变身卡| 日产精品乱码卡一卡2卡三| 免费观看a级毛片全部| 久久久久人妻精品一区果冻| 美女cb高潮喷水在线观看| 建设人人有责人人尽责人人享有的| 丁香六月天网| 全区人妻精品视频| 一区二区av电影网| 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 在线观看www视频免费| 在线观看免费视频网站a站| 亚洲av二区三区四区| a级毛片在线看网站| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 国产一级毛片在线| 丁香六月天网| 久久久久久久久久久免费av| 亚洲av.av天堂| 色婷婷久久久亚洲欧美| 自线自在国产av| 日韩在线高清观看一区二区三区| 中文字幕人妻丝袜制服| 深夜a级毛片| 一级毛片电影观看| 国产亚洲精品久久久com| 亚洲精品456在线播放app| 又黄又爽又刺激的免费视频.| 伦理电影大哥的女人| 亚洲美女视频黄频| 99九九线精品视频在线观看视频| 2021少妇久久久久久久久久久| 欧美3d第一页| 男人添女人高潮全过程视频| 免费大片黄手机在线观看| 亚洲av欧美aⅴ国产| 日韩制服骚丝袜av| 亚洲色图综合在线观看| 简卡轻食公司| 91精品国产九色| 秋霞伦理黄片| 久久久国产精品麻豆| 国产精品国产三级专区第一集| 午夜福利在线观看免费完整高清在| av播播在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 日本-黄色视频高清免费观看| 五月伊人婷婷丁香| 综合色丁香网| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| 黄色配什么色好看| 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 日韩精品有码人妻一区| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的| 成人综合一区亚洲| 在线精品无人区一区二区三| 午夜福利网站1000一区二区三区| 亚洲自偷自拍三级| 国产亚洲最大av| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看 | 国产中年淑女户外野战色| 观看免费一级毛片| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 啦啦啦中文免费视频观看日本| 欧美精品亚洲一区二区| 日韩视频在线欧美| 寂寞人妻少妇视频99o| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 日本黄色片子视频| 国产精品国产av在线观看| 看十八女毛片水多多多| 亚洲真实伦在线观看| 国产午夜精品久久久久久一区二区三区| 一级a做视频免费观看| 免费av中文字幕在线| 国产精品嫩草影院av在线观看| 国产乱人偷精品视频| 黄色一级大片看看| 少妇被粗大猛烈的视频| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 国产精品国产av在线观看| 欧美xxⅹ黑人| 各种免费的搞黄视频| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 五月开心婷婷网| 精品久久久久久电影网| 精品一区二区三区视频在线| 麻豆成人av视频| 哪个播放器可以免费观看大片| 啦啦啦视频在线资源免费观看| 18禁动态无遮挡网站| 色5月婷婷丁香| 91aial.com中文字幕在线观看| 99九九线精品视频在线观看视频| 热re99久久精品国产66热6| 伦精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产黄片视频在线免费观看| 少妇 在线观看| 国产精品99久久久久久久久| 国产精品成人在线| 日韩伦理黄色片| 人人澡人人妻人| 国产视频内射| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 美女内射精品一级片tv| 国产精品麻豆人妻色哟哟久久| 国产av码专区亚洲av| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 另类亚洲欧美激情| 街头女战士在线观看网站| 国产高清有码在线观看视频| 欧美3d第一页| 黄色配什么色好看| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 又粗又硬又长又爽又黄的视频| 欧美丝袜亚洲另类| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 校园人妻丝袜中文字幕| av线在线观看网站| 国产免费一级a男人的天堂| 午夜久久久在线观看| 午夜激情福利司机影院| 久久久久久久久久成人| 在线观看三级黄色| 久久精品国产亚洲网站| 亚洲精品一二三| 免费观看a级毛片全部| 热re99久久国产66热| 欧美精品高潮呻吟av久久| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品精品| 国产一级毛片在线| 黄色一级大片看看| 丰满人妻一区二区三区视频av| 亚洲av免费高清在线观看| 欧美老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| a级一级毛片免费在线观看| 免费人妻精品一区二区三区视频| 18禁在线播放成人免费| 在线亚洲精品国产二区图片欧美 | 内地一区二区视频在线| 大话2 男鬼变身卡| av卡一久久| 久久久精品免费免费高清| 国产 一区精品| 观看美女的网站| 涩涩av久久男人的天堂| 伊人亚洲综合成人网| 一级毛片电影观看| 免费黄网站久久成人精品| 精品国产一区二区三区久久久樱花| 自拍欧美九色日韩亚洲蝌蚪91 | 成人亚洲欧美一区二区av| 欧美bdsm另类| 亚洲国产最新在线播放| 精品视频人人做人人爽| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 十八禁高潮呻吟视频 | videossex国产| 国产淫语在线视频| 91aial.com中文字幕在线观看| av在线播放精品| 内地一区二区视频在线| 91久久精品电影网| 午夜免费鲁丝| tube8黄色片| 这个男人来自地球电影免费观看 | av在线老鸭窝| 婷婷色麻豆天堂久久| 午夜福利视频精品| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区 | 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| 五月天丁香电影| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 一本一本综合久久| 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 欧美精品亚洲一区二区| 国产成人精品福利久久| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 亚洲电影在线观看av| 国产日韩一区二区三区精品不卡 | av在线播放精品| 91成人精品电影| 日日啪夜夜撸| 99九九在线精品视频 | 亚洲怡红院男人天堂| 秋霞在线观看毛片| 亚洲成人av在线免费| 精品午夜福利在线看| 国产视频内射| 制服丝袜香蕉在线| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 国内揄拍国产精品人妻在线| 下体分泌物呈黄色| 波野结衣二区三区在线| 久久ye,这里只有精品| 老女人水多毛片| 自拍偷自拍亚洲精品老妇| 久久午夜福利片| 久久婷婷青草| 亚洲综合色惰| 亚洲人与动物交配视频| 国产成人freesex在线| www.色视频.com| 国产亚洲精品久久久com| 免费观看在线日韩| 毛片一级片免费看久久久久| 人人妻人人看人人澡| 中国三级夫妇交换| 成人二区视频| 亚洲精品亚洲一区二区| 大片免费播放器 马上看| 熟女av电影| 午夜av观看不卡| 下体分泌物呈黄色| 99re6热这里在线精品视频| 高清av免费在线| 日本91视频免费播放| 桃花免费在线播放| 乱人伦中国视频| 如日韩欧美国产精品一区二区三区 | 久久久久久久亚洲中文字幕| 26uuu在线亚洲综合色| 久久久久网色| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡 | 国产成人免费无遮挡视频| 成人午夜精彩视频在线观看| 少妇人妻久久综合中文| 午夜精品国产一区二区电影| 免费人妻精品一区二区三区视频| 日韩亚洲欧美综合| 女性生殖器流出的白浆| 综合色丁香网| 国产精品人妻久久久久久| 国产欧美另类精品又又久久亚洲欧美| 91精品国产九色| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| av有码第一页| 免费大片18禁| 久久精品熟女亚洲av麻豆精品| 久久久久久伊人网av| 亚洲精品国产av蜜桃| 亚洲av成人精品一二三区| 午夜激情福利司机影院| 日本黄大片高清| 丰满少妇做爰视频| 看十八女毛片水多多多| av在线播放精品| 人妻制服诱惑在线中文字幕| 搡老乐熟女国产| 国产欧美日韩精品一区二区| xxx大片免费视频| 精品亚洲成国产av| 亚洲欧洲国产日韩| 国产成人aa在线观看| 我的老师免费观看完整版| 一区二区三区四区激情视频| 高清视频免费观看一区二区| 久久ye,这里只有精品| 国产色婷婷99| 亚洲国产精品专区欧美| 亚洲国产欧美日韩在线播放 | 国产精品一区二区在线不卡| 精品一区二区三卡| 久久久久久久久大av| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 一二三四中文在线观看免费高清| 久久av网站| 久久午夜综合久久蜜桃| 国产伦精品一区二区三区四那| 美女xxoo啪啪120秒动态图| 久久久精品免费免费高清| 精品久久国产蜜桃| tube8黄色片| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| 中文欧美无线码| 中文字幕亚洲精品专区| 26uuu在线亚洲综合色| 国产爽快片一区二区三区| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 久久精品夜色国产| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人 | 黄色毛片三级朝国网站 | 搡老乐熟女国产| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 亚洲无线观看免费| 人人澡人人妻人| 尾随美女入室| 亚洲情色 制服丝袜| 高清视频免费观看一区二区|