• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the Transformation of Mapping Method for Cancer Patients' Health Utility in the Asia-Pacific Region

    2020-03-23 05:33:28ZhangJieSunQuanZhangFang

    Zhang Jie,Sun Quan,Zhang Fang

    (School of Business Administration,Shenyang Pharmaceutical University,Shenyang 110016,China)

    Abstract Objective To systematically collect the mapping functions of health utility values of various cancer patients in the Asia-Pacific region to provide scientific reference for domestic research in the field of cancer patients' health utility values.Methods A systematic literature search was conducted by using PubMed,ScienceDirect,Web of Science,CNKI,VIP Database and Wanfang Database to collect studies on the application of mapping method for health utility value measurement from 2008 to 2019.The key words included cancer,scale,mapping,and health utility.The inclusion criteria for the studies were:(1)The research papers came from countries in Asia Pacific region;(2)Original research articles;(3)Written/published in Chinese and English.Results and Conclusion A total of 137 Chinese and English articles were retrieved,and 9 articles met the requirements in the screening.The literature was classified by the following types:(1)It had a clear functional relationship;(2)It had no clear functional relationship.Due to the small numbers of samples,the reliability of the research results is not high.The construction of mapping model should build multiple regression models to test the performance of the model combined with different index variables.In addition,due to the limitations of the research objects selected in the literature,more attention should be paid to the mapping function of other types of cancers.At the same time,the research and development of the original data should be focused on as well.

    Keywords:cancer patients;scale;mapping;health utility

    In the measurement of health utility value,mapping method refers to the transformation of non-preference-based information in the initial scale into utility index through modeling,and the functional formulas of each model are obtained.The interpretation and prediction ability of each model are evaluated by reserved data,and finally the best utility value conversion model is obtained.The basic logic of the mapping method is shown in Fig.1.

    At present,the research on health utility mapping model abroad has a certain historicity and scale,which is mainly reflected in the depth and breadth of the research.However,domestic research on health utility mapping model has just started.Fu Xijing,Liang Minhong and Sun Mao et al.introduced the application principle,process and selection of models needed for mapping method in measuring health utility value[1].Liu Tong,Li Shunping and Chen Gang systematically sorted out the core idea,applicable model,application situation and shortcomings of mapping method[2].Sun Yuanyuan,Yu Zheng and Li Hongchao systematically discussed the mapping method and its related models for health utility value.They introduced the application of each model in probability mapping with the example of converting the measurement results of quality of life scale into the utility values of European five-dimensional health scale[3].Zhou Ting and Ma Aixia elaborated on the common empirical models and international application status of disease specific scale mapping[4].John E.Brazier et al.conducted a review of health measurement studies based on non-preference and general preference[5].Many researchers have carried out in-depth analysis from the aspects of research content,progress,tools and status,which reveals the future research direction.

    Fig.1 Basic logic of mapping method

    The current situation and trend of cancer epidemiology in China are not good.According to the global cancer report from World Health Organization,9.6 million people died of cancer in 2018,equivalent to 1/8 and 1/11 of the deaths of men and women.Compared with the 8.2 million cancer deaths in 2012,this figure is significantly higher,and the number of new cases is also increasing.However,the latest cancer data released by the National Cancer Center in 2018 shows that cancer is the main cause of death for Chinese.With the growth of age,the incidence and mortality rate of cancer for men and women in China are increasing[6].Based on the trend of cancer epidemics and the comprehensive burden of cancer in China,it is of great significance to systematically collect the research on the mapping method for cancer health utility value in Asia Pacific region so that a reasonable and scientific quality of life assessment scale can be used to evaluate and improve the quality of life of specific population[7].

    1 Research progress

    1.1 Search situation

    Taking the ten years from 2008 to 2019 as the searching period and using cancer,mapping and scale as keywords,35 Chinese documents were retrieved from CNKI and Wanfang Database.Taking cancer,mapping and health utility as keywords,we searched PubMed,ScienceDirect and Web of Science,and retrieved 102 English documents.In the analysis of the included articles,each study was classified according to the following types:(1)The studies with explicit mapping function;(2)The studies without explicit mapping function.Both types of studies included the mapping between disease-specific scale and universal scale and the mapping between universal scale and universal scale.137 articles were identified through literature search in Chinese and English databases.After two rounds of screening,9 English literatures that met the screening criteria were finally identified,all of which were empirical articles rather than reviews.The classification of these literatures according to study design is shown in Fig 2.

    1.2 Status of scale research

    1.2.1 Studies of explicit mapping function

    Three papers have given explicit mapping functions.They included not only mapping research between disease-specific scale and universal scale,but also the mapping research between universal scale and universal scale.They were summarized according to the author,year,disease,sample size,regression model used,initial scale,target scale,mapping function,etc.The summary of documents in the schedule is shown in Table 1.

    Fig.2 Articles selection process

    Table 1 The information for retrieving literature

    Askew RL[8]et al.took 273 American patients with melanoma as the study subjects,and took the functional assessment of cancer therapymelanoma(FACT-M)and EuroQol five-dimensional questionnaire(EQ-5D)scores of cancer treated melanoma as explanatory variables,as well as race/ethnicity,age,gender,marital status,and AJCC melanoma stage.The censored least absolute deviation(CLAD)and the ordinary least square(OLS)regression analysis were used to map the model,and the performance of the model was checked byR2,which compared the residuals and verified the fit in the data.The results showed that the OLS mapping function had better prediction ability and could map from FACT-M to EQ-5D practical score.When there was no direct population preference measure,it would be helpful to deduce the utility program.

    Fu Xijing[9]et al.collected the information of 676 Chinese lung cancer patients based on the Functional Assessment of Cancer Therapy-Lung(FACT-L)Chinese version(V4.0)and Chinese version of EQ-5D data,then they took the FACT-L scores and age and gender indices as explanatory variables.OLS,the generalized linear model(GLM),Tobit model,CLAD and quantile regression models were used to map the utility value integral systems in China,Japan and Britain.R2,mean absolute error(MAE)and root mean squared error(RMSE)were used as model performance evaluation indicators for comparative analysis.The results showed the mapping model between FACT-L and EQ-5D based on the Chinese population had good predictive ability,and accurately converted the non-preference life quality information of lung cancer patients into health utility values.This is the only empirical mapping study retrieved in China.

    Khan I[10]et al.took the questionnaire data of 100 non-small cell lung cancer patients as an example,using age,gender,smoking status,stage,and histology as explanatory variables.The mapping algorithm between the EQ-5D-3L,EQ-5D-5L and European organization for research and treatment of cancer quality of life questionnaire core-30(EORTC QLQ-C30)was determined by using the random effect linear regression model,Beta-binomial(BB)and limited dependent variable mixture model(LDVMM)respectively.The results showed that the BB mapping algorithm could be better applied to EQ-5D-3L and EQ-5D-5L.In addition,EQ-5D-5L could provide better predictions under poor health conditions,while several algorithms previously using EQ-5D-3L were generally over-predicted.

    1.2.2 Mapping without explicit transformation formulas

    A total of 6 documents did not give a clear mapping function.Cheung[11]et al.used clinical data of 558 Singaporean cancer patients,taking the physical,emotional and functional status dimension scores as explanatory variables.They attempted to establish a mapping model between the English and Chinese versions of the functional assessment of cancer therapy-general(FACT-G)scores and the EuroQoL Group's EQ-5D utility index through OLS and CLAD methods respectively.R2and MAE were used as model performance evaluation indicators for comparative study.The results showed the social and family factors of FACT-G were poorly correlated with the EQ-5D utility index,while the algorithm built by CLAD had better performance and could accurately map the FACT-G(Chinese and English versions)utility values to EQ-5D.

    Doble and Lorgelly[12]collected the data of 3 560 Australian cancer patients,using QLQ-C30 total score and its interaction term as explanatory variables to construct 10 mapping algorithms between QLQ-C30 and EQ-5D-3L by OLS and quantile regression(QR).Meanwhile,RMSE and MAE were used as indicators.The results showed two out of the 10 algorithms could construct accurate relationship between QLQ-C30 and EQ-5D-3L,with the indicators of the two models performing well.

    Wong[13]et al.collected data of 509 Hong Kong patients with colorectal cancer,and used the cancer quality of life questionnaires(QLQ-C30 and QLQ-CR29)scores and their weighted variables as explanatory variables.Then they constructed mapping models between QLQ-C30 and SF-6D,QLQ-CR29 and SF-6D.The fitting degree of the model was examined by using exploratory power(R2and adjustedR2).The results showed both scale and item response models could explain more than 67% of the variation in SF-6D scores,thus indicating SF-6D scores could be predicted from QLQ-C30 and QLQ-CR38/CR29 scores with satisfactory precision.

    From 893 Korean cancer patients,Kim[14]et al.used the clinical data,body,role,mood and pain index of EORTC QLQ-C30 as explanatory variables to construct an OLS multiple linear regression model.RMSE was chosen as the indicator of the performance of the model.The results showed this algorithm could accurately establish the mapping model between QLQ-C30 and EQ-5D,and it could be used to convert the utility value of cancer patients in Korea.

    In another study,Kim et al.used the clinical data of 199 Korean patients with metastatic breast cancers as the study samples[15].They used the sub-items of EORTC QLQ-C30 and the European organization for research and treatment of cancer quality of life questionnaire breast cancer-23(EORTC QLQ-BR23)questionnaires as explanatory variables to construct six models through OLS.R2,MAE and RMSE were used as indicators for evaluating model performance of the mapping between QLQ-C30 and EQ-5D,QLQBR23 and EQ-5D.The results showed the regression model with the sub-item score of QLQ-C30 had the best performance and good predictive validity.

    Teckle et al.[16]used the FACT-G,EQ-5D and the Short Form-6D(SF-6D)questionnaire scores from 367 Canadian patients with cancer as the regression data to build three mapping models between FACT-G and EQ-5D,FACT-G and SF-6D through OLS,GLM and CLAD.Then RMSE and MAE were applied to predict scale utilities.The results showed the GLM predicted SF-6D scores matching the observed values more closely than the CLAD and OLS.Physical,functional,and emotional well-being domain scores of the FACT-G best explained the EQ-5D and SF-6D,and both mapping models built by GLM performed well.

    2 Characteristics of literature research

    2.1 Research content

    The number of samples of cancer utility health values selected by mapping study was small,and the number of samples in most literature was less than 1 000.Small sample size will lead to lower prediction accuracy.Therefore,the results of the study have large errors and the conclusions are subjective,which can directly lead to lower representativeness and reliability of other patients in one field.Moreover,the inherent differences in population(For example,socio-cultural,health,clinical practice models and access to health care services)may affect some of the explanatory results and limit the externalities of research findings.It is suggested that scholars should take statistical errors,clinical errors and group differences into consideration and select representative research samples to improve the prediction accuracy.

    Due to the effects of extreme health conditions,mapping models are often underestimated or overestimated,resulting in inaccurate prediction.Mixed model is less affected,but it does not perform well near the distribution center.In addition,the same observation indicators used in different clinical problems have different performance,and the research conclusions are not very pertinent.This systematic bias may lead to underestimated health benefits,especially the quality of interventions to improve quality of life.Overestimate and systematic bias are common in the most OLS models used.It is suggested that scholars should use multiple models to match different problem situations and apply mapping algorithm cautiously.Sensitivity analysis is also recommended to evaluate the impact of the choice of these algorithms on costbenefit studies[17]..At the same time,it is necessary to increase the types of observation indicators,and carry out multi-faceted studies.The in-depth evaluation of the mapping model can reduce the calculation amount and the phenomenon of high value underestimation or low value overestimation.

    Cancer covers hundreds of categories and involves multiple diseases.However,the results of current literature research in the Asia-Pacific region indicate that the types of cancer selected by the mapping method are relatively limited.In China,there is only one empirical study on the transformation of cancer health utility value mapping methods and most other mapping studies are still at the level of secondary analysis and literature inference.It is recommended that scholars broaden the research field and pay more attention to the mapping function of other types of cancer.Besides,they should attach importance to the research and development of raw data for enriching the research.

    2.2 Scale

    The performance of the mapping model is related to the degree of overlap between the instruments.In the current review,most studies have chosen EQ-5D as the target scale,followed by SF series scale.However,the results of many studies show that the general scale represented by EQ-5D is an important aspect of the target scale that does not fully cover condition-specific indicators[18].For example,EQ-5D does not contain dimensions of energy or vitality.In another example,SF-36 has been shown to have significant floor effects,and EQ-5D has a high ceiling effect[19].

    Some scholars take single diseases such as lung cancer,melanoma,colorectal cancer,and breast cancer as research subjects,while others use the data of all cancer patients as the research basis.Clinical trial data is the main data source for the samples applied by mapping method.The selection of the initial scales involves the universal scale and the disease-specific scale.Among them,the disease-specific scale includes FACT-M,FACT-L,FACT-G,QLQ-C30,QLQBR23,QLQ-CR29,and QLQ-CR38.The disease universal scales are EQ-5D,EQ-5D-3L,EQ-5D-5L,and SF-6D,of which EQ-5D is more commonly used.The EQ-5D-5L provides better predictions in poor health conditions.However,several algorithms that previously used the EQ-5D-3L are generally overestimated.

    2.3 Econometric methods

    Most of the research models constructed with demographic variables and clinical measurement results are used as explanatory variables,and utility index and scores of each dimension as dependent variables.In the selection of econometric methods,OLS has the highest application frequency.CLAD,GLM,Tobit,Beta-Binomial,LDVMM and QR are widely used.Among them,the mapping models established by OLS,CLAD and GLM all can perform well.The accuracy and fitting effect indicators of the model are determined byR2,adjustedR2,comparative residual,and AIC.RMSE and MAE are used to evaluate the predictive ability of the model.The best mapping model is selected by considering the fitting effect index and the forecasting effect index.

    3 Discussions

    At present,as to the research on cancer mapping method in the Asia-Pacific region,China is still in the preliminary stage.We have only one empirical study to accurately convert the non-preference quality of life information of lung cancer patients into health utility values.However,the relevant empirical research abroad is relatively mature,which has developed a multi mapping algorithm for the transformation of cancer utility health value.In the current review of related research,the most common estimation method is OLS,followed by GLM and CLAD.Some scholars worry that the standard OLS regression model can underestimate the level of uncertainty in the estimation.The mapping model obtained by other methods also has some problems,such as the ability of model interpretation,the coverage of physical size and so on.It is suggested that researchers use different regression methods to construct multiple mapping models and compare the comprehensive performance of each model according to multiple evaluation indicators.In addition,the research scope of disease types should bet comprehensive.However,the mapping studies of many common diseases have not yet been carried out.This reveals that more mapping studies may lead to common diseases that may require knowledge and clinical application.In the later exploration of the application of health utility value,relevant empirical research should be carried out.With the increasing emphasis on the quality of life and the in-depth study of health utility value,research on the scale mapping method of cancer in various countries will develop mature,and the mapping method suitable for China will also be presented more systematically in the future.

    日韩制服骚丝袜av| 亚洲欧美精品自产自拍| 男人添女人高潮全过程视频| 中文字幕另类日韩欧美亚洲嫩草| 性少妇av在线| 亚洲成人手机| av线在线观看网站| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 在线精品无人区一区二区三| 男女午夜视频在线观看| 丁香六月天网| 婷婷成人精品国产| 亚洲欧美一区二区三区国产| 黄色视频在线播放观看不卡| 曰老女人黄片| 久久韩国三级中文字幕| av国产精品久久久久影院| 精品一区二区免费观看| 久久精品国产亚洲av高清一级| 免费女性裸体啪啪无遮挡网站| 最近2019中文字幕mv第一页| 观看美女的网站| 精品一区在线观看国产| 韩国av在线不卡| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 一本久久精品| av在线老鸭窝| 男女免费视频国产| 高清av免费在线| av电影中文网址| 韩国精品一区二区三区| 亚洲成人av在线免费| 国产精品无大码| av网站在线播放免费| 最近手机中文字幕大全| 久久久久久人妻| 黄色配什么色好看| 啦啦啦中文免费视频观看日本| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲| 亚洲人成77777在线视频| 26uuu在线亚洲综合色| 精品第一国产精品| 蜜桃国产av成人99| 九草在线视频观看| 国产成人91sexporn| 午夜福利视频精品| 丁香六月天网| 狠狠婷婷综合久久久久久88av| 看非洲黑人一级黄片| 青青草视频在线视频观看| 在线观看www视频免费| av视频免费观看在线观看| 边亲边吃奶的免费视频| 成年女人毛片免费观看观看9 | 日韩一卡2卡3卡4卡2021年| 久久 成人 亚洲| 999精品在线视频| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 免费av中文字幕在线| 欧美日韩精品网址| 国产又色又爽无遮挡免| 国产一区二区三区av在线| 国产综合精华液| 建设人人有责人人尽责人人享有的| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲国产精品一区三区| 亚洲国产成人一精品久久久| 午夜福利在线免费观看网站| 日韩中文字幕视频在线看片| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 午夜av观看不卡| 久久热在线av| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 七月丁香在线播放| 午夜老司机福利剧场| 涩涩av久久男人的天堂| 最近最新中文字幕大全免费视频 | 最新中文字幕久久久久| videossex国产| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 日韩中字成人| 一本久久精品| 国产av一区二区精品久久| 久久免费观看电影| av国产精品久久久久影院| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 色哟哟·www| 国产精品99久久99久久久不卡 | 亚洲精品视频女| 97在线视频观看| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 欧美另类一区| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 亚洲精品国产一区二区精华液| 中文乱码字字幕精品一区二区三区| 精品国产一区二区三区四区第35| 一区二区三区精品91| 久久热在线av| 国产在线一区二区三区精| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲一区中文字幕在线| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| 免费av中文字幕在线| 一级毛片我不卡| 亚洲五月色婷婷综合| 亚洲伊人色综图| 涩涩av久久男人的天堂| 久久久久久人人人人人| 涩涩av久久男人的天堂| h视频一区二区三区| 午夜福利,免费看| videosex国产| 最新的欧美精品一区二区| 少妇人妻久久综合中文| 中国三级夫妇交换| 亚洲精品乱久久久久久| 国产精品三级大全| 色视频在线一区二区三区| 天天躁日日躁夜夜躁夜夜| 少妇 在线观看| 激情视频va一区二区三区| 国产野战对白在线观看| 免费看不卡的av| 欧美最新免费一区二区三区| 岛国毛片在线播放| 免费高清在线观看日韩| 国产精品一国产av| 久久久国产一区二区| 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 久久99蜜桃精品久久| 久久精品久久精品一区二区三区| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 久久久久久伊人网av| 亚洲国产欧美网| 日韩视频在线欧美| 欧美日韩一级在线毛片| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 亚洲欧洲国产日韩| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 性少妇av在线| 欧美日韩精品网址| 亚洲av电影在线进入| xxx大片免费视频| 97人妻天天添夜夜摸| 国产成人一区二区在线| 一本—道久久a久久精品蜜桃钙片| 久久久久精品性色| 午夜福利,免费看| 国产国语露脸激情在线看| 国产1区2区3区精品| 超碰97精品在线观看| 97在线人人人人妻| 国产精品久久久久久精品电影小说| 建设人人有责人人尽责人人享有的| 国产亚洲一区二区精品| 亚洲精品国产av蜜桃| 久久这里有精品视频免费| 十八禁网站网址无遮挡| 精品国产乱码久久久久久男人| 久久99精品国语久久久| 亚洲成国产人片在线观看| 久久99热这里只频精品6学生| 狂野欧美激情性bbbbbb| 国产精品久久久av美女十八| videosex国产| 亚洲熟女精品中文字幕| 国产成人av激情在线播放| 少妇熟女欧美另类| 欧美97在线视频| 香蕉丝袜av| 欧美人与性动交α欧美精品济南到 | 91aial.com中文字幕在线观看| 大片电影免费在线观看免费| 蜜桃国产av成人99| 成人毛片60女人毛片免费| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 久久久久久人人人人人| 美女大奶头黄色视频| 久久影院123| 亚洲精品国产av成人精品| av在线老鸭窝| 人人妻人人澡人人看| 女性被躁到高潮视频| 亚洲在久久综合| 18禁裸乳无遮挡动漫免费视频| 韩国高清视频一区二区三区| 男的添女的下面高潮视频| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 成人亚洲欧美一区二区av| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 午夜av观看不卡| 国产精品久久久久成人av| 尾随美女入室| 97在线视频观看| 老熟女久久久| 成人手机av| 国产精品久久久久成人av| 国产成人一区二区在线| √禁漫天堂资源中文www| 如何舔出高潮| 男女下面插进去视频免费观看| 久久99热这里只频精品6学生| 午夜影院在线不卡| 日本vs欧美在线观看视频| 亚洲欧美中文字幕日韩二区| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 新久久久久国产一级毛片| 久久精品亚洲av国产电影网| av不卡在线播放| 91精品三级在线观看| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 日韩一本色道免费dvd| 亚洲成人手机| 免费大片黄手机在线观看| xxx大片免费视频| 999久久久国产精品视频| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 日韩精品免费视频一区二区三区| 久久久精品国产亚洲av高清涩受| 久久精品国产鲁丝片午夜精品| 亚洲一码二码三码区别大吗| av在线播放精品| 波多野结衣av一区二区av| 欧美日韩视频精品一区| 亚洲国产色片| 国产免费福利视频在线观看| 99九九在线精品视频| 国产午夜精品一二区理论片| 黄频高清免费视频| 成人手机av| 色94色欧美一区二区| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| av有码第一页| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| 久久久久久久久免费视频了| av国产久精品久网站免费入址| 性色avwww在线观看| 亚洲一区中文字幕在线| 99久久人妻综合| 日本91视频免费播放| a级片在线免费高清观看视频| 天堂中文最新版在线下载| 亚洲精品久久久久久婷婷小说| 成人手机av| 日韩av免费高清视频| 精品少妇久久久久久888优播| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 久久精品亚洲av国产电影网| 日本av手机在线免费观看| 成人二区视频| videosex国产| 有码 亚洲区| 亚洲成人手机| 欧美精品高潮呻吟av久久| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 啦啦啦在线观看免费高清www| videossex国产| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频| 国产极品天堂在线| 日韩 亚洲 欧美在线| 久久久久国产网址| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 观看av在线不卡| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产乱人偷精品视频| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 熟女av电影| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 亚洲经典国产精华液单| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 成年人午夜在线观看视频| 亚洲经典国产精华液单| 亚洲婷婷狠狠爱综合网| 久久精品人人爽人人爽视色| 国产片内射在线| 女人高潮潮喷娇喘18禁视频| 亚洲av.av天堂| 熟妇人妻不卡中文字幕| 亚洲精品视频女| 丝袜脚勾引网站| 美女脱内裤让男人舔精品视频| 免费av中文字幕在线| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| 免费在线观看完整版高清| 国产亚洲欧美精品永久| 久久久久久久国产电影| 只有这里有精品99| 精品国产超薄肉色丝袜足j| 亚洲第一区二区三区不卡| 午夜日韩欧美国产| 99国产综合亚洲精品| 啦啦啦中文免费视频观看日本| 国产精品不卡视频一区二区| 制服人妻中文乱码| 日本91视频免费播放| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| 日本av免费视频播放| 激情视频va一区二区三区| 丝袜人妻中文字幕| 亚洲精品第二区| 欧美xxⅹ黑人| 中文字幕精品免费在线观看视频| av.在线天堂| 午夜老司机福利剧场| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 亚洲男人天堂网一区| 国产精品女同一区二区软件| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 男人添女人高潮全过程视频| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 看免费成人av毛片| 一区二区三区四区激情视频| videosex国产| 午夜福利影视在线免费观看| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 春色校园在线视频观看| 免费观看av网站的网址| www日本在线高清视频| 午夜福利在线免费观看网站| 色播在线永久视频| 国产有黄有色有爽视频| 一本大道久久a久久精品| 色94色欧美一区二区| 美女福利国产在线| 国产精品一区二区在线观看99| 卡戴珊不雅视频在线播放| 国产欧美亚洲国产| 午夜福利视频精品| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 最近最新中文字幕大全免费视频 | 啦啦啦在线免费观看视频4| 亚洲男人天堂网一区| 9色porny在线观看| 大香蕉久久网| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 男男h啪啪无遮挡| 久久av网站| 十分钟在线观看高清视频www| 一区二区三区激情视频| 天天躁夜夜躁狠狠久久av| 精品一区二区三区四区五区乱码 | 人体艺术视频欧美日本| 男女国产视频网站| 精品亚洲成a人片在线观看| 亚洲第一区二区三区不卡| 亚洲国产av影院在线观看| 好男人视频免费观看在线| 国产深夜福利视频在线观看| 免费在线观看完整版高清| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻一区二区| 国产色婷婷99| 亚洲国产精品一区二区三区在线| 成年女人毛片免费观看观看9 | 成人二区视频| 老鸭窝网址在线观看| 亚洲成人手机| 热99久久久久精品小说推荐| 香蕉丝袜av| 一区二区三区乱码不卡18| 日本免费在线观看一区| 欧美日韩精品网址| 欧美日韩视频精品一区| 黄色 视频免费看| 视频区图区小说| 女人高潮潮喷娇喘18禁视频| 国产激情久久老熟女| 国产成人午夜福利电影在线观看| av在线播放精品| 大陆偷拍与自拍| 成年人午夜在线观看视频| 久久久亚洲精品成人影院| 青春草国产在线视频| av福利片在线| 高清在线视频一区二区三区| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 亚洲国产精品999| 国产免费视频播放在线视频| 少妇人妻久久综合中文| 国产野战对白在线观看| 欧美国产精品一级二级三级| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 精品国产乱码久久久久久男人| 老司机影院成人| 男女边摸边吃奶| 欧美亚洲日本最大视频资源| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 欧美最新免费一区二区三区| 欧美日韩精品网址| 日本午夜av视频| 日韩制服丝袜自拍偷拍| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 香蕉丝袜av| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 男人舔女人的私密视频| 精品午夜福利在线看| 久久毛片免费看一区二区三区| 久久青草综合色| 色94色欧美一区二区| 国产精品熟女久久久久浪| 国产极品天堂在线| 熟妇人妻不卡中文字幕| 2018国产大陆天天弄谢| 高清视频免费观看一区二区| 色播在线永久视频| 日韩人妻精品一区2区三区| 麻豆精品久久久久久蜜桃| 69精品国产乱码久久久| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 久久久久久人人人人人| 国产一区亚洲一区在线观看| 午夜免费男女啪啪视频观看| 亚洲成人手机| 免费观看在线日韩| 亚洲欧美日韩另类电影网站| 又大又黄又爽视频免费| 精品视频人人做人人爽| 国产综合精华液| 国产男女超爽视频在线观看| 国产片特级美女逼逼视频| 欧美精品一区二区免费开放| 国产爽快片一区二区三区| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 2021少妇久久久久久久久久久| 久久免费观看电影| 久久久久久人人人人人| 亚洲精品国产一区二区精华液| 国产精品不卡视频一区二区| 国产免费一区二区三区四区乱码| 亚洲精品自拍成人| 男人舔女人的私密视频| 亚洲综合色网址| 欧美激情 高清一区二区三区| av卡一久久| 亚洲av日韩在线播放| 亚洲三区欧美一区| 久久久久久伊人网av| 18+在线观看网站| 人人妻人人添人人爽欧美一区卜| 午夜福利在线观看免费完整高清在| 久久精品久久久久久久性| 十分钟在线观看高清视频www| 国产成人午夜福利电影在线观看| av国产久精品久网站免费入址| 母亲3免费完整高清在线观看 | 一级,二级,三级黄色视频| 中文字幕亚洲精品专区| 熟女少妇亚洲综合色aaa.| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| 久久99精品国语久久久| av在线老鸭窝| 黄片播放在线免费| 国产成人精品久久久久久| 青春草国产在线视频| 亚洲综合色惰| 午夜福利,免费看| 精品久久久精品久久久| 欧美亚洲 丝袜 人妻 在线| 99久久人妻综合| 久久ye,这里只有精品| 亚洲中文av在线| 国产精品熟女久久久久浪| 国产一区二区三区av在线| 涩涩av久久男人的天堂| 久久影院123| 一级毛片黄色毛片免费观看视频| 韩国av在线不卡| 美女国产视频在线观看| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 最新的欧美精品一区二区| 高清在线视频一区二区三区| 成人影院久久| 免费观看av网站的网址| 久热久热在线精品观看| 精品久久蜜臀av无| 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 亚洲av成人精品一二三区| 免费看不卡的av| 丝袜美足系列| 最新的欧美精品一区二区| 极品少妇高潮喷水抽搐| 国产片内射在线| 成人亚洲欧美一区二区av| 性色av一级| 又粗又硬又长又爽又黄的视频| 十八禁网站网址无遮挡| 欧美日韩精品网址| 亚洲综合色惰| 欧美黄色片欧美黄色片| 99久国产av精品国产电影| 观看av在线不卡| 成年动漫av网址| 99久久综合免费| 日韩一本色道免费dvd| 国产乱人偷精品视频| 亚洲av电影在线观看一区二区三区| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 国产毛片在线视频| 色婷婷久久久亚洲欧美| 国产极品粉嫩免费观看在线| 另类亚洲欧美激情| 日韩免费高清中文字幕av| 国产黄频视频在线观看| 久久久a久久爽久久v久久| 看免费av毛片| 你懂的网址亚洲精品在线观看| 久久久久久免费高清国产稀缺| 熟女少妇亚洲综合色aaa.| av有码第一页| 秋霞在线观看毛片| 777米奇影视久久| 精品酒店卫生间| 黄网站色视频无遮挡免费观看| 亚洲综合色网址| videosex国产| 麻豆精品久久久久久蜜桃| 色吧在线观看| 免费大片黄手机在线观看| 亚洲五月色婷婷综合| 免费不卡的大黄色大毛片视频在线观看| 九草在线视频观看| 九色亚洲精品在线播放| 人妻一区二区av| 亚洲四区av| 日韩不卡一区二区三区视频在线| 久久av网站| av女优亚洲男人天堂| 亚洲欧洲国产日韩|